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We investigate higher-order Trotter formulas which converge more rapidly towards the continuum than the usual version. We
derive a formula which is convergent up to fourth order in the discretization parameter. We test this formulation by applying it to
the path integral treatment of the quantum mechanical harmonic oscillator and to a quantum statistical toy model. Some problems

inherent in this approach are pointed out.

1. Introduction

In many cases of practical interest involving func-
tional integration it is necessary or unavoidable to
do the calculations explicitly with the discrete ver-
sion of the path integral. This necessity arises if the
legitimacy of the limiting procedure is dubious as is
the case, e.g., in derivations of the Fokker-Planck
equation from path integral representations of the
heatbath where the well-known problem of operator
ordering notoriously manifests itself [1]. Also deal-
ing with the discrete version is unavoidable if cal-
culations are to be performed by the computer as in
Monte Carlo simulations [2]. It is therefore highly
desirable to have discrete formulations of the path
integral that approximate the continuous case to a
high degree of accuracy, and various attempts in this
direction have been published in the last years (for
a review see, e.g., ref. [3]).

One way to improve the convergence of the dis-
crete path integral is to work with better approxi-
mations of the short time propagator. Since quan-
tum effects are effectively suppressed for short times,
this can be achieved by using a semiclassical expan-
sion of the Wigner-Kirkwood type [4]. Rederiving
the first terms of this expansion such an approach
was first proposed by Makri and Miller [5]. Re-
cently precisely the same method has been rediscov-
ered and extended to curved manifolds [6]. Another
promising possibility is to apply variational approx-

imations to the short time propagator {7]. Other ap-
proaches based on the Fourier decomposition of path
integrals are described in a recent review by Doll et
al, {8].

The Trotter formula [9,10] provides an elegant
way to derive the path integral representation of a
quantum mechanical system and another suitable
way to look for improved discretization schemes. The
underlying mathematics being quite general, corre-
sponding low-order discretization schemes have also
been discussed in the context of classical physics (for
electromagnetic pulse propagation, see, e.g., ref.
[11]). Generalized Trotter formulas proposed by
Suzuki [12] considerably improve the convergence
of the discretized path integral and have successfully
been used in Monte Carlo applications [13,14]. A
disadvantage of these generalized Trotter formulas,
however, is that they involve higher commutators of
the operators. In this paper we also investigate an
approach to find more sophisticated versions of
Trotter formulas which, however, are independent
of the commutator. Outlining this approach in sec-
tion 2 we find an improved Trotter formula which

‘is convergent up to fourth order in the discretization
parameter. In section 3 we use this formula to derive
a more rapidly converging discrete formulation of
the path integral. The rate of convergence is explic-
itly demonstrated in section 4 by specializing to the
harmonic oscillator potential. In section 5 we con-
sider a quantum statistical toy model and show that
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better convergence can be gained also in this field.
Although the approach investigated here is feasible
in principle it is nonetheless marred by difficulties
which arise in practical applications and are dis-
cussed in section 6.

2. Higher-order Trotter formulas

Trotter’s well-known formula in its simplest ver-
sion states that for any two non-commuting opera-
tors A and B the following identity holds (for tech-
nical details see ref. [10]),
et B Al/im (et NeB/MYN (1)
Clearly, for finite N the error on the r.h.s. of this
equation is of order 1/N, and a symmetrization of
the decomposition like e/2VeB/Ne4/2N yields an error
of order 1/N2.

The idea of the approach that we are investigating
here is that the error introduced by the splitting of
the exponential may further be reduced by working
with a decomposition like

A/NaS1B/N, NaB2B/N
1A/NefB/NeaaA/NeB2BIN

where some freedom is gained to adjust the coeffi-
cients. More specifically we expand e4+2)/" and

eouA/Neﬁl B/NeazA/NeﬁzB/N

Table |
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in powers of 1/N and try to adjust the coefficients
«j, B; under the obvious constraint that X;a;=
2, B;=1. For the simple decomposition e*/*e?/~ used
in (1) we see that there is no freedom to adjust any
coefficient at all, whereas the symmetrized version
has one free coefficient which is uniquely deter-
mined to be  to equate the terms of order 1/N?2 ¥,
Proceeding in this way (see table 1) we find that a
decomposition of four exponentials yields the needed
coefficient non-uniquely but does not yet allow one
to equate the cubic terms. Convergence up to third
order may eventually be achieved by starting with a
decomposition of five exponentials. The coefficients
in this case are uniquely determined and turn out to
be complex. Starting with a decomposition of six ex-
ponentials a free parameter is gained again in the
coefficients but no better convergence may be
achieved. Note that in this case one of the &’s and
one of the f's are always negative no matter what
value we take for the free parameter y.

Since our primary concern in this investigation was
to find a rapidly convergent solution which could also
easily be used in practical applications we eventually
tried a decomposition of seven exponentials and
found that

#! Note that the convergence of the full Trotter formula for e**#
is trivially reduced by one order compared to the decomposi-
tion of e+ 5N,

Coefficients of higher-order Trotter formulas. y is an arbitrary parameter, and I is defined by I'= [(—12y3+45y2—48y+16)/
(—12y+9)]"/2 The order of convergence refers to the decomposition of e+ 2 as, e.g., in (1), (2).

Number of Qa; B 2% B Qs Bs Ay o
exponentials

2 1 1 1

N

1 1 1

— 1 - —_

3 2 2 N?

1 1 1

4 - — 1— — —

b=y 2y 7 2y N2

s 3ti/3 3+i,/3 1 Fi/3 3713 1

12 6 2 6 12 N?

p 1=y 14—yl pil 34y yFT _ 1 3y—%Fr ke

2y yil 2 22-3y 2 2y T N3

B 1 1-2v/3 123 1 B 1

7 2 2273 2 A =28, 2~ 22173 2 N4
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g1+ 8 = (ex4/NehiB/Neoad/NefrB/N
X E _ﬁi + V(% ~ l_e_ V(%)
XeazA/NeﬂlB/NemA/N)N+0(1/N4) , (2) exp| — 2 \2m X)) |=exp| — 27 X
where ie p? ) < ie . )
-0 — =V .
xexp( 72m) P\~ 37 (X) (6)

:Blzz__lz_lﬁ=+l35, ﬂ2=-—21/3ﬂ1=—1.70...,

1213
o, =%ﬂ1 =4+0.67..., a,= Tﬁl =-=0.17....

3)

There is also another set of complex coefficients but
if we impose the restriction that the coefficients be
real this choice of coefficients is furthermore unique.
We will now examine the usefulness of this formula
in two applications.

3. Convergence of the discretized path integral

Let us briefly recall how the path integral repre-
sentation of a quantum mechanical system is de-
rived using the Trotter formula. Starting from the
time propagator
<-xb tb Ixa ta >

ifp? .
=% lexp| — 2\ 5 +V(H) J(t—1) |1 x>

2m
(4)

we cut the time interval into short pieces of length
€= (1,—1t,)/N by inserting N— 1 complete sets of po-
sition eigenstates,

jdx,-l)g)(le:l .

The exponentials of the short time propagators are
now split according to Trotter’s formula (1),

exp[— %(213; + V()‘c))]

. .
zexp(— %%ﬁ) exp(— % V()‘c)) (5)

or, using the symmetrized version,

To proceed we need the matrix elements

. 1/2
lep?\ _(_m
N 'ex"(‘ 7 2m>""-' >—<2niheﬂ)

ol 35 (0= |

where we have included an arbitrary real constant g
the relevance of which will become clear later on,
presently we have f=1. Using (5) and (7) we fi-
nally arrive at the path integral representation of (4)
as the limit

'!b
{Xply | Xaln > = J‘ @xexp(%J‘ [imx2—V(x)] dt)
2
DRSS
—im LT ([ emefs 5[5 (%=

—V(xj—l):l}; (8)

where A= (2rifie/m)'/? and xo=X,, Xy=Xp.
Clearly, the ordinary path integral given in (8) is
accurate only to O(1/N). Using the symmetrized
version (6) instead of (5) the discretized action in-
tegral in the exponential would contain an addi-
tional term (ie/27%) [V(xy) —V(x) ], and the over-
all convergence of the path integral would be of O(1/
N?). Note that the version with the better conver-
gence is obtained by discretizing the potential in the
action integral according to the trapezoidal rule in-
stead of the primitive Riemann sum. The situation
is thus quite similar to the convergence behaviour in
ordinary numerical integration. For the following ar-
gument it is, however, essential to realize that this
similarity can at most serve as a heuristic argument.
The different convergence behaviour is really a con-
sequence of the better convergence of the Trotter
formula in its simple but symmetrized version as
pointed out in section 2. The point is now that the
modification of the Trotter formula given in eq. (2)
allows one to derive a discretization which is even

201



Volume 165, number 3

more rapidly convergent. The only difference is that
instead of using (5) or (6) the exponentials are ap-
proximated by the decomposition according to (2),

(7, o)l i
e""[‘ 7 (2m )]“""(‘“‘ 7 V)

p? i€
Xexp( /31 )exp( ale>, (9)

with the coefficients «;, §; given by (3). Due to the
extra exponentials in (9) we will now have to insert
3N—1 instead of only N—1 position eigenstates, i.e.
we will have to work with a finer time slicing. This
disadvantage will eventually, however, be compen-
sated by the more rapid convergence. Furthermore
we will now have to use (7) with 8=, respectively
B,. The final result then reads

j Qxexp( ]: [imx?—V(x)] dt)

la

1 d-x3N ljdx3N—~2

A3 A, A,
S (EAESIES Iy
+O(1/N*%), (10)
where
N
ﬂNséj; [—-511 V(x3;-3)
2
+ %(ng_z gX31-3) —a, V(xs5;_5)
2
+ %(ﬁ_l‘—;—xﬁi) —- @&, V(-ij—l)
m X3 —X3i_, : N ,
N 57}"(_?—) & V(xsj)jl (11)

and é=ie, G;= 3a,, ﬂ, 3B, Xo=Xa Xsy=Xp, and
A1~A3*(2mheﬂ1/m)”2 A, = (2niheB,/m)V/2.
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Egs. (10) and (11) are to be compared with eq.
(8). Note that up to this point the treatment is com-
pletely independent of the potential. Also note that,
although the formula does look quite lengthy at first
sight, its content is rather simple. The only differ-
ence to (8) is that the sites of the time lattice are pe-
riodically decorated with simple, real numerical
factors.

The feasibility of this formula shall now be dem-
onstrated by applying it to the harmonic oscillator
potential.

4. Application to the harmonic oscillator

Since the purpose of this section is to demonstrate
that the discretization of eqs. (10) and (11) does
indeed provide an approximation of the continuous
path integral accurate to O(1/N*) we will take a
short cut of the calculation and only look at the
“quantum mechanical partition function”

ﬂ’QMEJ.dx<xtb|xta>. (12)

Inserting the harmonic oscillator potential V=
imw?x?, the additional integration allows us to
write #2

7 H T
Zou= lim [] U A123>e""(2h~(" M")>

N . IN/2
1 2nihé
= lim = M)- 172
va.oo (A AZA ) ( m ) (det ) ’

(13)

where xT= (x, X5,..., X3n), and M is a 3N X 3N ma-
trix of the following structure,

b d ¢
d b ¢
c a ¢
c b d
M= g , (14)
b ¢
¢ ¢

#2 To avoid problems with caustics we confine ourselves to the
case w(tp—1,) <m.
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with

a=-2a&,(éw)*+2/8,,

b= —a&,(éw)*+1/8,+1/5,,

c=—1/B,, d=-1/8. (15)

The determinant of M can be found by the fol-
lowing strategy. First we eliminate the entries in the
upper right and lower left corner by expanding the
determinant. We are then left with the problem of
finding the determinant of a tridiagonal NX N ma-
trix M with periodically repeated entries. To calcu-
late det M we define an auxiliary lower triangular
(N+1)x (N+1) matrix

fw
v, U
vy U
W= 16
- : (16)
vy U
with trivial determinant. We then expand

det(WWT)=w2det U—w?v? detU’, where U has
the same structure as M. Equating M=U we obtain
u;, v; as functions of a, b, ¢, d by solving quartic equa-
tions. To get rid of U’ we choose w=1/v, and select
two sets of solutions #,., v;. with v}, #v}_. By
forming a linear combination we can now express
det M as

T
det M= det(W+W+2)-de§(W—WT)
wi —wi

and thus det M as a function of u,, v;.. We even-
tually end up with

detM = — (—c*d)" x4 sin?(1NeQ) , (17)
where

2bc?—a(b?-d?)

cos(eR2) = 2ed . (18)

Together with the prefactors in (13) the final result
may now be written as

1
= 2isin[3Q(t—1)]°

Z8m (19)

which is to be compared with the continuum result
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1
Zam=7; sin[$w(t,—1)]1"

(20)

To check the convergence behaviour we use defini-
tion {15) to express cos(€L2) given in (18) in terms
of the weights «;, §;

cos(e)=1—(ew)*(2a, B+, B2+ 2, 0z + 2 8,)
+ (ew)*Broz (20, 8y + 2, 8, + 0 8,)

—(ew)°a,ﬂ%a§ﬁ2 (21)
_y_ lew)®  (ew)?
-T2 4!

5 (ew)®
’(“42/3+4'/3_4) 6! (22)

In the last line we have finally inserted the explicit
values for the weights given in eq. (3). Clearly the
discrete frequency £2 agrees with the continuous one
up to fourth order in ¢ whereas the usual discreti-
zation is correct only up to O(e?) as can readily be
seen by inserting &, =4, =1, a,=4,=0into (21).

5. Quantum statistical toy model

The derivation of the path integral as given in the
previous two sections does not take over to the
Euclidean case which is due to the fact that the
Euclidean version of (7) is only valid for positive
whereas f, as given in (3) is negative. In the treat-
ment of the harmonic oscillator this problem is re-
flected by the fact that M would contain negative ei-
genvalues which would invalidate a Euclidean version
of (13). For this reason we will now discuss the ap-
plicability of the higher-order Trotter formula (2) to
a quantum statistical toy model which has also been
treated in a similar context in ref. [13]. The moti-
vation for this investigation is that in quantum sta-
tistical spin models the operators 4 and B are usually
compact and thus one may expect that the above-
mentioned problem will not be encountered in these
applications.

Consider the single site problem

Z=Trexp(Jo,+I0,), (23)

203



Volume 165, number 3

where o are spin-} operators. It is a one-line calcy-
lation to show that the exact partition function of this
simple problem is given by

Z=2cosh,/J*+I?*. (24)
To apply the Trotter formulas we write
Fy=Tr M", (25)
where for the usual version M is given by
M = eU/Noz I/ N)ox (26)
and for the more rapidly converging version by
M(l]) =eal(J/N)azeﬂl(F/N)axeaz(J/N)azeﬂz(l"/N)ax

% 22/ Moz o1 (T/N)oxgar (J/N)o: (27)
Note that since det MV =det M =1 the matrix M has

eigenvalues A, with A, A _ =1 and we can write quite
generally

ZIv=2cosh(NIni,)=2cosh 2y, (28)
with
cosh(Qy/N) =1 TrM. (29)

Applying the Trotter formula in its ordinary version
(1) we now obtain

cosh (2§’ /N)=cosh(J/N) cosh(I'/N) , (30)

whereas the sophisticated version (2) yields

cosh (QUV /N)
=cosh(J/N) cosh?(8,I'/N) cosh(B,I"/N)
+cosh[2(a, —a;)J/N] sinh?(B, I'/N)

X cosh(B, I'/NY+2 cosh(2c; J/N) sinh(f, I'/N)
x cosh (B, I'/N) sinh(8, I'/N) (31)
for arbitrary a;, §; From this we find that the exact
partition function is approximated by
J2I?sinh /J?+ 17
+
12,/ 2+ I?

z=2 6126+ 53

1
+8(a; —0,)? B+ 1685, ] -2} RE

+O(1/N*). (32)
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For the simple version we put 8, = 3, 8,=0 and obtain
J*I?sinh,/J?+1* 1

3,/J+1?  N?
+0O(1/N*y, (33)

P =7+

whereas the coefficients of (3) give as expected

FW = F+0(1/N%) . (34)

6. Discussion

Higher-order Trotter formulas provide a very gen-
eral and systematic way to derive discrete approxi-
mations of path integrals for quantum mechanical or
quantum statistical systems. These discretizations
converge more rapidly while being only slightly more
complicated than the usual low-order formulation.
This has been demonstrated for a version of the
Trotter formula which exhibits an increase of the rate
of convergence by two orders of magnitude in the
discretization parameter. This advantage, however,
cannot be readily exploited in Monte Carlo simu-
lations (as was our primary hope when starting this
investigation ) since a Euclidean version of the more
rapidly converging discrete path integral does not ex-
ist. This restriction is a consequence of the fact that
the negative coefficients of the higher-order Trotter
formula imply a negative mode which cannot be in-
tegrated out since the range of integration is infinite.
The resulting divergences are quite similar to the ones
appearing in the treatment of metastable systems.
They are of an intrinsic nature since the operators in
the path integral are essentially non-compact.

We have therefore investigated quantum statisti-
cal spin models where the non-commuting operators
of the Trotter formula in contrast are compact. En-
couraged by the successful treatment of the quantum
statistical toy model which demonstrated that in-
deed no principal problems are encountered in this
case, we then tried to apply the higher-order Trotter
formula to the less trivial two-dimensional trans-
verse Ising model. Again, however, the more rapid
convergence could not be exploited in numerical
computations since in this case some of the local
Boltzmann weights turn out to be negative (as it often
happens with quantum Monte Carlo formulations)
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and render the numerics unstable. It is therefore an
open problem whether this approach or a modifi-
cation thereof will be of practical use in this field.
Since, however, the Trotter formula in its improved
form is still perfectly general it is conceivable that it
may be of use in other fields of physics (e.g., laser
beam design [11]). In quantum mechanics another
application may be found in numerical evaluations
of path integrals in real time, a technically challeng-
ing problem where considerable progress has been
made in the last few years *3,

#3 Early attempts to treat this problem are reported in ref. [15].
For a review of the recent development in this field see ref.

[3].
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