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The Zeeman Hamiltonian for (spinless) hydrogen in constant magnetic field is shown to be equivalent to a four-dimensional
anisotropic anharmonic oscillator. This relation is used to rederive the large-order behaviour of Rayleigh-Schrédinger perturba-
tion series expansions for Zeeman energies in terms of known Bender—-Wu formulae for anharmonic oscillators.

Ever since the work of Kustaanheimo and Stiefel
[1] on the classical Kepler problem it has been
known that three-dimensional Coulomb systems can
be related to four-dimensional oscillators. More re-
cently this relation was exploited by Duru and Klei-
nert [2] to obtain the path-integral quantization of
the pure Coulomb potential in terms of the har-
monic oscillator. For more general Coulomb sys-
tems, the equivalent oscillator will contain anhar-
monic terms and may in general be anisotropic.

A well-known example for such a generalization is
the Stark Hamiltonian for a hydrogen atom in con-
stant electric field. This system can be shown [3] to
be equivalent to two decoupled two-dimensional iso-
tropic oscillators with quartic anharmonicity. Em-
ploying this relation, Rayleigh-Schrédinger pertur-
bation series expansions for Stark resonances were
calculated [4] from those for oscillator energies. A
particularly useful application is the derivation of es-
timates for the large-order behaviour of these Stark
series [3-5] which, by making use of the corre-
sponding known Bender-Wu formulae [6-8] for an-
harmonic oscillators, turned out to be straightfor-
ward in this approach.

For the Zeeman effect [9], on the other hand, ob-
served when a hydrogen atom moves in a constant
magnetic field, a similar approach has never been
taken since the equivalent oscillator system was ap-
parently not known. Consequently, perturbation se-
ries [10] and their large-order behaviours [11,5]

were derived independently, staying completely
within the Coulomb formulation. The purpose of this
note is to close the gap by showing that the Zeeman
effect can also be described in terms of a four-di-
mensional oscillator, with an anharmonic term which
turns out to be of anisotropic, sextic type. Many fea-
tures of this relation can already be investigated [12]
in a simplified model with isotropic perturbations of
the Coulomb potential. Here we shall focus on phys-
ical applications and demonstrate its usefulness by
rederiving perturbation expansions for the Zeeman
effect and their large-order properties from known
results for the equivalent oscillator system.

In atomic units, the Zeeman Hamiltonian for
spinless hydrogen (with infinitely heavy nucleus) in
constant magnetic field B is given by

H=Hc+H,
=3P - 1/r)+[g(x*+y*)+3BL.], (1)

where p=—iV, g=B2?/8, and L, is the angular mo-
mentum operator in z direction, which is taken along
the magnetic field direction, B=Be,.

In atomic units, B=1 corresponds t0 2.35x 10° G.
Although this is extremely large compared with typ-
ical laboratory fields around 10* G, such strong mag-
netic fields are needed in astrophysics [13,14] to de-
scribe neutron star surfaces (10'°-10'3 G) and white
dwarf stars (107-10® G) as well as in some solid-state
systems [14] to take into account effective interac-
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tions (up to 10'° G). Many numerical and analytical
investigations of this Hamiltonian have been re-
ported in the literature [15]. For strong fields, usual
low-order perturbation expansions are certainly not
sufficient. Carrying them to higher orders seems, at
first sight, useless since they are known to be asymp-
totic series with coefficients growing like (2k)! [11].
Still, if such high-order perturbation expansions are
combined with special resummation algorithms [16],
they are a useful tool for calculating precise Zeeman
energies, even for strong fields. For most of such al-
gorithms, a necessary prerequisite is the detailed
knowledge of the large-order behaviour of the per-

turbation expansions. For the Zeeman Hamiltonian -

this has been derived [11] on the basis of quite in-
volved multidimensional WKB techniques. By means
of the new equivalence we shall be able to reproduce
these results very easily by using known Bender-wu
formulae [6-8 ] for anharmonic oscillators, similarly
to the treatment of the Stark effect.

In order to motivate the new equivalence, let us
start with a few heuristic considerations based di-
rectly on the Kustaanheimo-Stiefel mapping [1,2]
from three to four dimensions,

x=2(x,x3+X%,) ,

y==2(x1X4 —X3X3) ,

z=—(x{+x3)+ (x3+x3), (2)
satisfying

(x2+y*+z)P=r=x’=x} +x3+xj+x}.

For the pure Coulomb term in (1), V= —Z/r, this
mapping has been used in ref. [2] to show that the
Schrédinger equation Heyw= Ecy is equivalent to that
of a four-dimensional harmonic oscillator,

(—iV?+Vc)p=€p, Ve=lox?, (3)
with energies € and E related by #

e=ze(w)=¢e(/—Ec/2)=Z. (4)

The main effect of this transformation can be sum-
marized by the simple rule that the non-derivative
terms are multiplied by a factor r Vo—E¢

¥ To be precise, this has to be supplemented by some con-
straints on the four-dimensional system [2], which we shall
neglect for the moment
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—r(Vec—Ec)= —Z—Ecx? Using this rule, it is easy
to see that the interaction term Vi=g(x?+y?) of the
Zeeman potential (assuming L,=0, for simplicity)
maps onto

Vcx?(x3+x3) (x3+x3), (5)

suggesting that the Zeeman Hamiltonian is related
with an anharmonic anisotropic oscillator in four
dimensions.

Of course, in order to establish this relation rig-
orously, a more careful derivation is necessary, which
proceeds as follows. Separating the Schrddinger
equation Hy=Ey for the Zeeman Hamiltonian (1)
in cylindrical coordinates (x=pcosq, y=psinq,
z=2z) with w=p~"2pexp(ilcat), Ic=0, *1, ..., and
changing then to parabolic coordinates p,, p, defined
by z=p? —p3, p=2p,p,, we arrive at (Z=1)
i, R

2pi 273

(—%(azl+a;2>+

+(—4E) (p? +p}) +4gx4(p? +p%)p%p%>¢

=4Zyp, (6)

where E=E—Bic/2. We now observe that this can
be interpreted as the Schrodinger equation of two
coupled two-dimensional anharmonic oscillators in
cylindrical polar coordinates subject to the constraint

=1 =l (7)

Hence, going back to Cartesian coordinates
(x,=piCOsS @, Xo=p;SiNQ,;,, X3=p3C080, X4=
p28in ¢ ), we recover after a further trivial rescaling
the heuristic result (5), but now supplemented with
the ““selection rule” (7) and with the BL.-term taken
into account:

hp=[—iV2+iw3?

+4ix(xi+x3)(xi+x3) 1o=ep, (8)
where
w*=—-FE/2, i=g/4%, %

and the energies € and E=E— Bl/2 are related by
e(w,\)=¢e(/—E/2,g/8)=Z=1. (10)

As far as the energies are concerned this is the com-
plete answer. To relate also the wave-functions in a

117



Volume 144, number 3

unique way, further constraints on the four-dimen-
sional system are necessary which shall be discussed
elsewhere [17].

As an application we shall now relate the pertur-
bation expansions of the Zeeman energies,

E= Y Eg*, (11)
k=0

with those of the oscillator energies in (8) which, by
a simple scaling argument, must be of the form

e=w Y (A/w*)k. (12)
k=0

If this is inserted in eq. (10), a perturbative solution
yields the coefficients E, expressed in terms of ¢, with
<k,

Eo=-2/¢€}, E, =4¢6¢€,/4%,
E,=€§(10€? +4e,6q) /4%, ... (13)

Identical relations emerge in the simplified model
study [12] for isotropic perturbations x r? with p=2
in (1), corresponding to anharmonic terms
x |x|2®*D in (8).

For the ground-state energy of (8), the low-order
coefficients €, are easily calculated by means of stan-
dard perturbation theory,
=2, €=16, ez=—42><—1%, (14)
Inserting these numbers in (13), we recover the
known coefficients for the ground-state expansion
(lc=0) of the Zeeman system [10,11],

Ey=-1/2, E =2, E,=-53/3, ... (15)

In principle, the perturbative solution of (10) can
be extended to any order {12,17]. In large orders,
however, this becomes quite cumbersome and it is
advisable to use a method #** which is more specific
to the large-order behaviour of these series. For an-
harmonic oscillator systems it is generically of the
form [6,7] *

k—oo

@ —Ly(=a)I(pk+b), (16)

#2 A similar approach was used in the field-theoretical context of
e-expansions for critical exponents in ref. [18].

*3 For reviews, see ref. [19]. See also the forthcoming introduc-
tory text [20].
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where y and a equal some constants, the parameter
p is related with the degree of anharmonicity
(xcx2P* D yielding p=2 in (8)), and b is associ-
ated with the symmetries of the system. An equiv-
alent statement is that, for negative coupling, the
energies develop an imaginary part of the form

A-0-
Ime(w, ) —— wy[(a|| /w2+l’)-—l/p]b
Xexp[—(ald]/w?*P)~1/P]. (17)

The equivalence of (16) and (17) can be shown by
means of a dispersion relation [6,21],

0
we 1 Im e(w, A+10)
(w2+kp)k=;.c' J d Sk ’ (18)

which has been proved rigorously for simple oscil-
lator systems. The idea is now to relate first the im-
aginary parts of € and E by solving eq. (10) for small
negative coupling. Using (18), this leads then im-
mediately to the desired relation between the large-
order coefficients. For general p and negative cou-
pling, eq. (10) can be written as
k

, A ,

l=€e(w, i) =cuk§0 ek(m) +ilme(w, ), (19)
with w?= —E/2 and A=g/47*!. Here we have added
the real part of € which, perturbatively, has the same
expansion as for A>0 (see (12), extended to general
p). To solve this for E= —2w?, we put w=x+iy and
note that yocIm e is exponentially small. A straight-
forward perturbative solution [12] yields then to
lowest order

Im E£(g) - Y[ (a*|gl)~""1°
xexp[(a*|gl)~""], (20)

with #

a*=(e3*?/4'*P)a, y*=(4/€d)y. (21)

We have thus succeeded in expressing the large-order
parameters for quite general Coulomb systems in
terms of those for the equivalent oscillator systems.

To complete our discussion for the Zeeman sys-

# For p=1, y* has to be multiplied by a factor exp( —¢,/¢), re-
sulting from higher order corrections. For more details, see
ref. [12].
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tem, we now present a derivation of these parame-
ters for the ground-state energy of the anisotropic
anharmonic oscillator (8). By making use of known
results for isotropic anharmonic oscillators, this turns
out to be quite straightforward. We shall use the path-
integral approach in Langer’s formulation [22]
(Langer’s approach is somewhat different from the
path-integral formulation in ref. [23]) which
amounts to a saddle-point approximation, for small
A<0, of the imaginary part of the partition function

Z=j92u Z2vexp(—[u, v] )2‘: e~ P, (22)
where
B2
oA u,v]= J. dr [4a+ 502+ Ju?+1v?
-B/2
+4A(u?+0?)u?) (23)

is the Euclidean action associated with the Hamil-
tonian (8). Here we have introduced the convenient
notation x= (&, v) = (u,, U,, vy, 1,) and put w=1, for
simplicity. The imaginary part of the ground-state
energy € (for A<Q) follows then from

Ime=—~-p-'ImZ/ReZ. (24)

The real part of Z, Re Z=exp{—-2B[1+0(4)]}, is
caused by fluctuations around the locally stable min-
imum at (#, v) =0. Here and in the sequel, the large
B limit is always implied.

The saddle points of (23) correspond to “tunnel-
ing paths” with least action. In our case they are ob-
viously along the diagonal ray |#|=|v|>0. The di-
rections of the two-dimensional vectors # and » are
independent and can be choosen both arbitrarily, re-
flecting the O(2) X O(2) symmetry of the system. A
convenient parametrization is

1
u=ﬁ(w,0)=v, (25)

since the action then reduces to that of a one-di-
mensional sextic anharmonic oscillator with the usual
normalizations,

.d=Jd1(%wz+%w2+lw6) . (26)

It is known [7,19] that this is further extremized by
the “critical bubble” solution
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1/4
1 1
w=(s71) oy @

with associated action

d=A/12"*=1/(alA])'?,
a=(1/A)2=32/7[2 . (28)

Besides the directions of # and v also the origin 7, in
(27) can be chosen arbitrarily. (In the sequel we shall
put 7,=0.) Any choice breaks the symmetry spon-
taneously and leads to Nambu-Goldstone zero-
modes which require a special treatment when con-
sidering the fluctuations around the “critical bub-
ble” solution.

The leading contribution of such fluctuations is
found by expanding the full action (23) in the de-
viations du=u—u., dv=v—v, up to quadratic order,

St =of — =14 j drt [842 + 6%+ du’+ v
+82.(8ui8V[)M,'j(8uj81)j)t+...] ) (29)

where the superscript t denotes transposition. If the
“critical bubble” solution is inserted, the 2X2 ma-
trix M;; can be decomposed into a longitudinal and
transversal part,

(su,- SU,)MU( Suj' Sv_i)t = (Sul 81)1 )ML( 5141 81)1 )‘

+(SU28U2)MT(8u26U2)l, (30)
with
8
M=o/ (g 3).
Me=onr 2 (3 9)- (31)

Diagonalizing the matrix M; (with eigenvalues
MM = (w./{/2)*(~1, 15)) by a 45° rotation to
new coordinates

1 1
§=ﬁ(8u1+8v1), 7]=7§(8u1_8v1) s

the longitudinal part of 8.2/ =584 +8.94 decouples
into

119



Volume 144, number 3

1 d? 15
SN N T
) dz [é< d12+1 cosh22‘r>é

d? 1
+71<— Fps: +1+ cosh221>’7+"':| . (32)

The operator governing the ¢ fluctuations coincides
precisely with that of the one-dimensional x® oscil-
lator. Its associated fluctuation determinant, result-
ing from the Gaussian integrations over &, can there-
fore be taken directly from the literature [7,19]:

& 15\
f¢=det<— dr? - cosh221)

i 1 _
_—qul%ﬁe B/2. (33)

The imaginary unit, indicating the expected meta-
stability, is caused by an eigenmode &_ with negative
eigenvalue, and the factor § is associated with a zero-
mode &yoc W, reflecting the translational invariance
in 7, i.e., the freedom of choosing 7, in (27).

The operator associated with the 7 fluctuations ob-
viously has only positive eigenvalues whose product
can be calculated as follows. Separating out the har-
monic fluctuations,

d2 1\
fy=det| — — +1+ =fZoss  (34)

dr? cosh?2t

where

d2 -1/2
Zosc = - - +1
osc det( a0 )

1 freoo

-, a-B2
2sh(B/2)

is the partition function of the harmonic oscillator,
and changing variables to t=27, we obtain

s [ det[ :dz/dzzig:,g_;w/coshZz]>‘”2
- det(—d?/dt*+z)

_<F(\fz~s)r<ﬁ+l+s>>‘” 35)
"\ I(/I(/z+1) ’

with z=1/4 and s= —1/2. The second line follows
from a general formula [7,19] in the theory of Fred-
holm determinants which, in more physical terms,
can be derived [20] by relating f to the quantum-
mechanical transmission amplitude of one-dimen-
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sional scattering at the potential z—s(s+1)/cosh?t.
Inserting the numbers for z and s, we finally have

fr=(2/m)" e P2 (36)

The transversal fluctuation factors can be taken
again from the literature on anharmonic oscillators
[7,19]. Since the matrix My is proportional to unity,
the transversal degrees of freedom of éu and ér de-
couple automatically, and we find

SQ/T—ljd‘c[Su < d—2+1 i)ﬁ
T2 AT a2 T cosh22r )0
X(8u2<—>8v2)+...], (37)

with an operator identical to that governing the
transversal fluctuations of a general O(#) symmetric
| x| oscillator. It contains one zero-modex w, with
eigenvalue xy=0, associated with the freedom of
choosing the direction of w. and v, respectively.
Adapting the general prescription [7,19] for dealing
with such rotational zero-modes to our case n=2, we
obtain

2 1/2
(17 [ o) (38)

where S,=2m is the “surface” of the unit-circle. In-
serting u2=1w? and using the scaling properties of
the action, the square root factor can be simplified
to

1/2 172
ug 1 J we
(.[ d121t> _ﬁ( de 275)

=ﬁ./&/€/n. (39)

Notice the additional factor l/ﬁ compared with
the ordinary O(2)-symmetric | x| oscillator. Taking
into account the known contribution [7,19] of all
other modes with positive eigenvalues, we get

1/2
1 1
j%uz =f51)2 = ﬁ <m>
X2/ me~ P2 (40)

Finally, combining (33), (36) and (40) we find
ImZ=— |fr§ !f;yféuzfévz exp( - g/c) 5
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and using (24) we end up with
l 3/2
Ime=./2 (M) LY exp(— L)

32
=m&/3/zexp(—%), (41)
where .= (32]A| /")~ % (see eq. (28)). Recall-
ing the dispersion relation (18), this is equivalent to

k—oo

s % (—32/72)T'(2k+3/2) =€
(42)

displaying directly the large-order parameters p, a, b,
y defined in (16):

p=2, a=32/n%, b=3/2, y=32/n3?. (43)

Using (21) this implies for the Zeceman ground-state
energy the large-order formula

k—oo

E,— — ;35—2,2 (—8/72)*I(2k+3/2)=E3
(44)

in agreement with the calculations in ref. [11] based
on multidimensional WKB techniques. Notice that
in the present path-integral approach the leading be-
haviour, E,ocI'(2k+3/2, can be understood by sim-
ple scaling (p=2) and symmetry (b= half the num-
ber of zero-modes = 3/2) arguments alone.

The asymptotic formula (42) has been checked
against exact coefficients in high order (up to
k=100) calculated by means of special recursion re-
lations [17]. Applying numerical (Neville-like) ex-
trapolation schemes [24] to this series, the correc-
tion parameters y,, y, in the ansatz

ek=ezsv<1+%+%+...) (45)

can be calculated quite accurately and then trans-
formed back to the Zeeman system. It turns out [17]
that the oscillator series approaches its asymptotic
behaviour much more rapidly (y,=-0.15090,
y,=—3.9821) than the Zeeman series (yT=
—2.6183, y5=1.2847). This observation might be
important for efficient use of resummation algo-
rithms (like, e.g., Borel’s [19]) which make use of
the large-order information. Moreover, the strong
coupling behaviour of the oscillator energies
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(exAl/* as A—o00) is more regular than that of the
Zeeman ecnergies (containing terms o log’g,
log(logg) as g—oo [25]), which should further im-
prove the performance of such algorithms. This sug-
gests that the new equivalence may lead to improved
numerical schemes for calculating precise Zeeman
energies from perturbation theory. Furthermore, it is
clear that many techniques available for the oscil-
lator system (such as rigorous bounds etc.) are
transferable to the Zeeman system. It would be in-
teresting to investigate these points in more detail.

The author thanks Professor H. Kleinert for useful
discussions.
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