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We perform further Monte Carlo simulations of the Laplacian roughening model on a triangular lattice to decide whether two- 
dimensional defect melting proceeds in a singlefirst-order or two successive continuous transitions, as predicted by two conflicting 
theories. Of the two alternatives, the new high-statistics Monte Carlo data favor the single first-order transition. 

1. Introduct ion 

Until very recently [ 1 ] the nature o f  the two-di- 
mensional melting transition was very controversial 
both experimentally and theoretically. The previous 
status until winter '87 was summarized in an exten- 
sive review by Strandburg [ 2 ]. In the context o f  de- 
fect models O f melting, Strandburg gave special em- 
phasis upon the Laplacian roughening model [3] ,  
the dual formulation o f  a disclination system with 
long range forces. She argued that, on a triangular 
lattice, this model undergoes a sequence o f  two Kos- 
terlitz-Thouless (KT)  transitions as suggested by the 
K T H N Y  theory [4].  An alternative theory [ 5], pre- 
dicting a single first-order transition in this model, 
due to a coupled transition o f  dislocations and dis- 
clinations, was briefly considered by Strandburg but 
subsequently ruled out on the basis o f  Monte Carlo 
data [6,7 ] ~1, which she claims to favor the K T H N Y  
scenario. This claim, however, is not  consistent with 
our own Monte Carlo simulations [9,10] #2 o f  the 
same model which showed a single weak first-order 
transition. 

Naturally, Strandburg [2] tried to "resolve" this 
contradiction by criticizing our  numerical analysis. 

Work supported in part by the Bundesministerium f'tir For- 
schung und Technologic under grant no. 0326315C. 

#1 For work related to ref. [ 6 ], on a square lattice, see ref. [ 8 ]. 
#2 On a square lattice in a dually equivalent form, ref. [9],  and 

on a triangular lattice, ref. [ 10]. 

Her arguments will be presented later in the course 
o f  the discussion. While we were able to convince 
ourselves that this critique is unjustified, Strandburg 
succeeded in attracting a group of  renowned exper- 
imentalists to her standpoint [ 11 ], making Hurlbut 
and Dash even withdraw (see ref. [ 12 ], Response to 
the Comment  cited in ref. [ 11 ] ) their original inter- 
pretation [ 13 ] o f  experimental data. This fact to- 
gether with the new light shed upon the problem by 
the most recent theoretical work [ 1 ] compelled us 
to investigate once more the issue of  a singlefirst-or- 
der versus two successive cont inuous melting transi- 
tions in the Laplacian roughening model via Monte 
Carlo simulations, with much higher statistics and 
better temperature resolution than before. 

Although we find that it is impossible to extract 
from the data a completely unbiased statement about 
the nature of  the transition, a difficulty we share with 
most other Monte Carlo simulations, the data do help 
to judge between the two alternative theories: They 
definitely favor a single first-order transition over two 
successive KT transitions. 

2. T h e  mode l  and i ts  s imula t ion  

Adopting the usual conventions, the Laplacian 
roughening model is described by an energy 
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flE= fl ~ [¢'Vh(x) ] " 

2 

(1) 

where x denote  the sites of  a t r iangular  lattice, the i 
are the d isp lacement  vectors to the six nearest  neigh- 
bors, and fl=J/kaT. The h(x) are integer variables 
to be summed  over in the par t i t ion  function.  They 
may be in terpreted as the height var iable  o f  a surface 
at site x. Via a s tandard  dual i ty  t ransformat ion  [ 3 ], 
this ensemble of  f luctuating surfaces is known to be 
equivalent  to a system of  defects with long-range 
interact ions,  

1 4x z ~ m ( x ) v , ( x - x ' ) m ( x ' )  (2 )  #e= ~ -  ,~, 

The integer valued defect f ield m(x) describes dis- 
c l inat ions at site x. Since the infrared divergence o f  
the potent ia l  v4(x-x')--- 1/(VV) 2 enforces neutral-  
ity and dipole  neutral i ty  of  these defects 
(Y,,m(x) = 0 ,  Y,,xm(x)=O), it  can be replaced by 
the twice subtracted finite potent ia l  

v t  _ _  t v  U4(X) =v4(nl, n2) 

i d2k e x p ( i k . x ) -  1 + ~x2Kd( 
= (27t)2 ( ~  , (3 )  

where 

/~r(= 4 _  4 [ cos (k l )  + cos(k2)  +cos (k1  +k2)  ] , 

n l, n2 are the components  of  x in the basis (1, 0) ,  
( - 1 / 2 ,  x / ~ / 2 ) ,  and  kl, k2 are those o f k  in the re- 
ciprocal  basis ( 1, 1 /v /3 ) ,  (0, 2 / x / ~ ) .  Its asymptot ic  
behav iour  has been calculated analyt ical ly [ 14 ], 

v'd(x) I , .~ ,  ~ 1 8--x [ IxlZ In( Ix lZx/~  eV-l)  

- ½ l n ( I x l 2 v C J e y - l / 6 ) l ,  (4)  

where y=0.5772. . ,  is Euler 's  constant  ~3. 
F r o m  a study o f  the asymptot ic  behav iour  o f  sur- 

face correlat ion funct ions on a 32X 32 lattice, SSC 
[ 6 ] c la imed evidence for two cont inuous  t ransi t ions  
at / /~ '  ) = 1 / ( 1.84 + 0.01 ) = 0.5435 + 0.0030 and f12 = 
1 / (  1.925 _+0.015) =0.5195+_0.0040. In the dual  de- 

feet in terpre ta t ion (2) ,  the first t ransi t ion is caused 
by an unbinding  of  dislocat ions (which are p ic tured 
as tightly bound  pairs of  d isc l ina t ions)  destroying 
the t ransla t ional  order. The second t ransi t ion is 
caused by an unbinding  o f  discl inat ions destroying 
the or ienta t ional  order. Calculat ing the specific heat  
via  numerica l  di f ferent ia t ion o f  the internal  energy, 
Strandburg,  Solla and Chester  (SSC) located a sin- 
gle, very sharp peak at flpk ~ 1 /1 .85~0 .541 .  The ap- 
pearance  of  two cont inuous  t ransi t ions contradicts  
our  findings [9,10] according to which the model  
undergoes a single f i rs t-order  transi t ion.  This con- 
clusion was deduced in ref. [ 10] from a finite-size 
scaling analysis of  the height of  the specific heat peak, 
Cmax, on 3 7 × 3 7 ,  4 4 × 4 4  and 5 8 × 5 8  tr iangular  lat- 
tices, being consistent  with the ansatz Cmax = a V +  
b ( V= L 2 = lat t ice vo lume) .  Indeed,  the location of  
the very sharp peak of  SSC is in reasonable agree- 
ment  with our value on a 58 × 58 lattice, flpk~ 0.536 
[10] .  

St randburg 's  cri t icism [2] o f  our  work [10] was 
based on the following arguments.  While  the specific 
heat  peak of  SSC [ 6 ] reaches a height o f  about  14 

#3 In the literature, the second subtraction is sometimes taken as 
½ (k.x) 2 instead of ~x2/~. This has the disadvantage that the 
asymptotic limit requires a numerical evaluation, the differ- 
ence to (4) being 

? d2k k2-RK 
~x 2 -,J (2x) 2 (/?dr') 2 • 

Notice that the asymptotic behaviour of this potential has been 
given incorrectly in ref. [3], ~ ~ Ixl 2 lnlxL +Alxl2-B, i.e. 
the term ~lnlxl has been missed. Unfortunately, this incor- 
rect result has been used in all subsequent works by Strand- 
burg et al. [2,6,7 ], with B~ 2.1 determined numerically. Our 
subtraction in eq. ( 3 ) has the virtue that botl~ (0, 0) = 0 and 
v~ ( 1, 0) = v~ (0, 1 ) = v~ ( 1, 1 ) = 0, so that disclinations as well 
as dislocations have no explicit self-energy. The natural core- 
energy of the dislocations is then obtained purely from the long- 
range part of the interaction 

-bi(x)(6oO2-OiOflv'd(x)bj(O) 

,x,~, _ ~ _ l  b,(x)[6oln( lxl2x/~er+t/2 ) 

- x, x i/xqbAO). 

It is therefore equal to E¢ = ~ x/~ ( 1/4n ) In (2x/~ e r+ 1/2 ) 
0.1599. For more details, see ref. [ 15 ]. When using the ½ (k.x) 2 
subtraction, this result appears only after adding the non-zero 
self-energies. 
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on a 32)< 32 triangular lattice, we obtained a con- 
siderably lower peak height of  only 8 on a 37)<37 
lattice [10]. Compared to SSC, we worked with 
somewhat larger temperature increments (Aft= 0.005 
corresponding to AT~ 0.017 near the transition point 
f ~ 0 . 5 4 ) .  This led Strandburg to suspect that we 
might have missed the true maximum of the specific 
heat. Later in fig. 3 we shall see that, on the contrary, 
their number 14 is exaggerated by statistical fluc- 
tuations. Let us recall that, since with increasing lat- 
tice size (44)<44 and 58)<58) we observed a con- 
siderable narrowing of the specific-heat peak, we also 
increased the temperature resolution. On our largest 
lattice with 58 )< 58 sites we estimated a peak height 
of about 14 which, accidentally, agrees quite well with 
the SSC value for the 32 )< 32 lattice. Whereas we in- 
terpreted this increase as a typical finite-size scaling 
signal near a first-order transition, Strandburg [2 ], 
taking this accidental agreement serious, speculated 
that the true height of  the specific heat peak is almost 
independent of  the lattice volume as would be nec- 
essary for a Kosterlitz-Thouless transition in the 
KTHNY scenario. In other words, Strandburg attri- 
butes the observed scaling of  the peak height with 
the lattice volume solely to the progressive increase 
of temperature resolution. 

It is the purpose of this note to present further evi- 
dence for our case, and against Strandburg's. First, 
we perform further simulations on smaller triangular 
lattices with carefully chosen temperature resolution 
and high statistics. In this way we expect to see the 
onset of  the asymptotic scaling behaviour. Second, 
we reinvestigate the lattice sizes studied in ref. [ 10 ] 
with much higher statistics. Third, we study even 
larger lattices (66×66  and 72×72)  in order to see 
more clearly the asymptotic scaling behaviour. 

In the whole of this work we use periodic bound- 
ary conditions. The Monte Carlo program is fully 
vectorized using a 3)< 3 checker-board update which 
explains why the linear lengths L of our lattices are 
multiples of  three. To update the configurations, we 
employ the standard Metropolis algorithm with trial 
values of  h ( x )  chosen randomly from one above or 
below the current value at each site. We measure lo- 
cal quantities like the internal energy (per site), 
u=- < e> =- < ( 1 / V)E>,  and the squared width of the 
interface 

where ha,, = - ( l / V ) Z x h ( x )  is the average height of  
one configuration, and the angular brackets denote 
the usual thermal averages. The specific heat (per 
site) is calculated from the fluctuations of the ener- 
gies, C=f2V( < e  2 > - -  <e>2). 

The statistical errors of  the energy and the squared 
width are estimated by dividing each run into blocks 
of  1000, 2000 and 5000 sweeps, calculating the block- 
average, and taking the variance of these partial 
energies. I f  the block-averages are uncorrelated (in 
"Monte Carlo t ime") ,  this error estimate does not 
depend on the block-size. For the two largest blocks 
this criterion was reasonably satisfied and is in ac- 
cord with a direct estimate of  the energy-energy 
"Monte Carlo time" correlation length. The errors of  
the specific heat are estimated similarly, but with a 
much larger block-size of  50000 sweeps. Since the 
average of specific heats within individual blocks is 
always smaller than the specific heat taken over the 
total run, we have rescaled our errors by this ratio. 

The statistics of  our samples is relatively large. It 
varies with lattice size, which is partly motivated by 
physical considerations and partly dictated by com- 
puter-time limitations. After discarding the first 
1 × 105 sweeps for thermalization, on the smaller lat- 
tices ( 1 2 × 1 2 - 3 0 × 3 0 )  we used averages over 
1.5 X 106-3.5 × 106 configurations, depending on the 
distance from the transition point. On the medium- 
sized lattices (36×36,  45)<45, and 57)<57) we 
worked with extremely high statistics (5)<106 , 
10)< 106, and 12)< 106). Unfortunately, due to the 
computer-time limitations, on the large lattices 
( 66 X 66 and 72 )< 72), we could gather similar (and 
physically desirable) statistics (9)< 106) only for a 
few points. This is clearly reflected by the error bars. 
In all simulations, the averages of  the large blocks 
were recorded on tape. This allowed us to check for 
equilibrium by discarding successively (1, 1.5, 2, 
...) )< 10 s thermalization sweeps and taking averages 
over the rest of  the run. Since even near the tran- 
sition no systematic trends are detectable, we are 
convinced that our averages display true equilibrium 
behaviour. 
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3. Results 

The resulting specific-heat (per site) curves are 
plotted in fig. I a for various lattice sizes. We observe 
a pronounced scaling with lattice volume in both the 
peak height and the "full width at half  max imum"  
(FWHM) .  From the form of  the peaks (which are 
always rounded to a downward parabolic shape by 
finite-size effects) it is obvious, that we cannot pos- 
sibly have missed the true maximum by a consid- 
erable amount  as suspected by Strandburg [2 ]. The 
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Fig. 1. (a) Finite-size scaling behaviour of the specific heat near 
the phase transition, tic(') and fl¢(2) are the Kosterlitz-Thouless 
transition points quoted by SSC [6], and the arrow at the top 
line shows their estimate for the location of the peak maximum 
on a 32 × 32 lattice. (b) Finite-size scaling plot of the data shown 
in (a). We see that they are consistent with the hypothesis of a 
single first-order transition. 

scaling behaviour of  our data for the large lattices is 
seen more clearly in the finite-size scaling plot fig. 
lb. It demonstrates that our data are consistent with 
a single first-order transition. 

In fig. 2a we plot the maxima of  the specific-heat 
peaks versus the lattice volume. (Fig. 2b will be dis- 
cussed later. ) We see again that the peak heights on 
the larger lattices scale with the lattice volume, as re- 
quired for a first-order transition. Furthermore, for 
the smaller lattices, the expected corrections to 
asymptotic scaling are also clearly visible. Fig. 2c 
shows the location of  the peak maxima, flpk, versus 
inverse lattice volume. Using a linear extrapolation 
to infinite volume, we estimate for the transition 
point 

/~pk =0.5385 + 0.001.  (6) 

In the vicinity o f  a first-order transition, the system 
is expected to tunnel between two metastable phases 
of  equal free energy. In a Monte Carlo simulation 
this is reflected by jumps of  the internal energy, 
Au ~ 0. Assuming well separated, sharp jumps, the 
constant a in the ansatz Cmax = a V+ b is easily iden- 
tified as a =  (As/2)  2 where A s = f l ~ A u  is the tran- 
sition entropy (per site), and b is found to be the 
average of  the specific heats in each phase. With 
a ~ 0.0015 read off  from fig. 2a, we obtain 

As~0.08  (7) 

in reasonable agreement with our former estimates 
[ 9 ] on the square lattice (measuring directly Au). 

It should be stressed that our specific heat data are 
deduced from the fluctuations of  the energies. We 
believe that this method is much more reliable than 
the numerical differentiation of  the internal energy, 
C=Ou/OT~ Au/AT, which was used in refs. [6 -8 ] .  
In the latter method, systematic errors can in prin- 
ciple only be avoided by choosing small enough tem- 
perature increments A T =  T 2 - T~. This however, is 
traded with an increase in statistical error since al- 
though AU=UE-U1~u(T2)-u(T])~O, the error 
8 (Au) = x/(5Ul ) 2 + (8u2) 2 remains constant. Notice 
that if AT is chosen too small, it is even possible to 
produce a negative specific heat! As an illustration, 
we compare in fig. 3 the specific heat on a 3 0 × 3 0  
lattice derived from energy fluctuations, C =  
fl2V((e2)- (e)2), with the results of  numerical 
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Fig. 2. Maxima of the specific heat (a) versus the lattice volume 
and (b) in a doubly logarithmic plot. The slope of the linear fit 
in (a), characteristic for a first-order transition, is related to the 
transition entropy (see eq. (7)). (c) Locations of the peaks ver- 
sus the inverse volume. Using a linear extrapolation to infinite 
volume, we estimate /~pk=0.5385--0.001. The data for the 
37 x 37, 44 × 44 and 58 × 58 lattices are taken from ref. [ 10 ]. 
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Fig. 3. Comparison of our new specific heat on a 30 X 30 lattice, 
calculated from energy flu~uations (O),  with the data obtained 
in the same way as SSC, namely by numerical differentiations 
(O)  of our energies, and with the curve given by SSC [61 ( X ) 
on a 32X32 lattice (no error bars are given in this reference). 
Notice the smallness of the error bars in the fluctuation method. 

d i f fe ren t i a t ions  ~4 o f  the  energies ,  C ~  A u / A T , ~  

_ f12 ( A u / A f l ) .  We see that  bo th  m e t h o d s  are  in rough 

a g r e e m e n t  w h e n  app l i ed  to our data.  T h e  s tat is t ical  

errors,  however ,  are  m u c h  larger  for  the  d i f ferent ia-  

t ion  me thod .  Obvious ly ,  ou r  new prec ise  da t a  de-  

v ia te  s ignif icant ly  f r o m  the  resul ts  o f  SSC for  a 

32 × 32 la t t ice  (us ing  n u m e r i c a l  d i f f e r en t i a t i on )  

shown as sol id curve.  Since  no  er ror  bars  are  g iven  

for  the  SSC data,  we can only speculate  that  they  mus t  

be  qu i t e  large in o rde r  to reconc i le  bo th  s imula t ions .  

In  fact,  i t  seems  tha t  SSC used  ve ry  smal l  t empe ra -  

ture  i nc r emen t s  ( d o w n  to A T =  0 .0007)  which  con-  

s iderably  b low up the  stat is t ical  errors  o f  the i r  ener-  

gies (which  are  averages  o v e r  only  2 0 0 0 0 - 5 0 0 0 0  
conf igu ra t ions ) .  

F inal ly ,  in fig. 4, we show s o m e  typical  surface  

conf igura t ions  af ter  2 . 0 5 X  104 sweeps on  a 3 0 X 3 0  

lat t ice for  t empera tu res  (a )  below, (b )  ve ry  near  and  
(c )  above  the  peak  o f  the  specif ic  heat.  

*~ In order to avoid unreasonably large error bars, we have not 
used the smallest possible distances in f, but the doubled step- 
wise Aft= 0.005 corresponding to AT~ 0.017. 
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a )  ~ = 0 .540  b )  13 = 0 .535  c)  [~ = 0 .530  

Fig. 4. Typical surface configurations after 2050000 sweeps on a 30× 30 lattice for temperatures below (a), near (b) and above (c) the 
specific-heat peak, flpk ~0.534. The different shadings symbolize different surface heights separated by one unit. The black (white) 
patches with white (black) dots are the highest (lowest) regions. 

4. Discussion 

Our data show that the Laplacian roughening 
model on a triangular lattice has a single, very sharp 
specific-heat peak around ~ = 0.5385 + 0.001. It is 
located between the two inverse temperatures, fl~l), 
fl~2), claimed by SSC to be KT transitions. This re- 
sult is very difficult to understand in the framework 
of the KTHNY theory. I f  there were two successive 
KT transitions, both should be accompanied by fi- 
nite, broad peaks lying above their respective tran- 
sitions in temperature. Such a behaviour is well-es- 
tablished for, e.g., the discrete Gaussian (DG)  
roughening model which shows a broad peak lying 

20% above the transition temperature. It is true 
that the shape of the peak and its temperature dis- 
placement are non-universal and may be different 
from the DG model. In fact, this is nicely illustrated 
by the most recent simulation data of  a more gen- 
eralized defect model [ 1 ]. Still, it appears very un- 
natural that the first ("dislocation"-)transition is 
connected with a very sharp peak displaced only by 
0 .5435/0 .537-  1 ~ 1.2% while the second ("discli- 
nation"-)transition seems to produce no peak at all. 
In fact, our simulations [ 1 ] of  the generalized model 
show that a sharp peak can only appear in the regime 
where both transitions have merged together. 

Our most compelling argument that the transition 
is weakly first-order rather than two successive KT 
transitions is based on the finite-size scaling analysis 
which is shown in fig. lb: While the peak height in- 
creases linearly with the lattice volume, the width of 

the peak clearly decreases. We see no sign of peak 
height and width stabilization as required by the KT 
scenario. This observation is important in view of 
the interpretation of experimental data [ 13 ] which 
was influenced [ 12 ] quite substantially by the SSC 
claim for a Kosterlitz-Thouless transition with an 
unusually small width [ 11 ]. 

After the first version of this preprint was circu- 
lated, an objection was raised by Strandburg [16 ] 
that our present data admit also an excellent fit to a 
straight line in a doubly logarithmic plot over the en- 
tire range of L 2 with a slope ~ 0.48, corresponding 
to C~.L  (see fig. 2b). This might, in principle, sug- 
gest that the transition is of  an entirely different na- 
ture not covered by either of the two available the- 
ories, with an amazing precocity of its limiting finite- 
size scaling behaviour. Certainly, our data do not al- 
low us to outrule such an extra possibility. This 
weakness of our analysis, however, is intrinsic to 
Monte Carlo studies altogether. Indeed, similar ar- 
guments would disqualify many results on the order 
of  phase transitions derived from finite-size scaling 
analyses, existing in the literature. To illustrate this, 
we have added such an analysis of  the data for one 
of the best understood first-order transitions in two 
dimensions, the q=  8 Potts model, for which rigor- 
ous results are available [17] (for a review see ref. 
[ 18 ] ). Among the best numerical data for this model 
are the points of Ferrenberg and Swendsen [ 19 ]. We 
have replotted them here in fig. 5 on a doubly log- 
arithmic scale. Without any theoretical bias, the most 
natural fit would, also here, be a straight line (with 
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Fig. 5. Peak specific heat data of Ferrenberg and Swendsen [ 19 ] 
for the q =  8 Potts model reploned on a doubly logarithmic scale. 
Also here a simple linear fit is apparently consistent. The insert 
shows the original plot used in ref. [ 19 ] to confirm the rigorously 
known first-order nature of the transition. The corrections to 
scaling are qualitatively similar to our fig. 2a. 

slope ~0.83) .  The original plot, on the other hand, 
used in ref. [ 19 ] to confirm the first-order nature of  
the transition (see the insert in fig. 5), looks qual- 
itatively similar to our fig. 2a. Notice that since the 
transition entropy is somewhat larger in the q=8  
Potts model (As=0.652914 [17], compared to 
As ~ 0.1 (eq. (7) ) ), it is natural that the corrections 
to asymptotic scaling are smaller than in our case. 
We therefore believe that, taking into account these 
corrections, it is reasonable to interpret also our data 
in favor of  a single first-order transition rather than 
two successive KT transitions. 

Finally let us mention that at least for an artifi- 
cially reduced core-energy in the model (2),  also 
Strandburg [ 7 ] identified the transition as first-or- 
der. However, to use her data for localizing a split- 
ting point in the transition line as a function of the 
core-energy seems to be quite dangerous. Her split- 
ting shows unusual variations over her core-energy 
interval which are themselves of  the order of  the dis- 
tance between the two transition lines at the crucial 
place corresponding to the pure Laplacian rough- 
ening model (her Ec~4.1 ). 

After this evidence, we believe that the splitting of 
the two-dimensional melting transition can only arise 
if the model is extended to incorporate also rota- 
tional stiffness with a length scale 121>0.2, as re- 

ported recently [ 1 ]. We would be pleased if the evi- 
dence presented in this note would induce Hurlbut 
and Dash to return to the original interpretation [ 13 ] 
of  their data. 
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