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On the basis of a recently developed lattice model for ensembles of random loops which contains a parameter interpolating
between self-avoiding and Ising-like loops, we calculate the average length and the length fluctuations of self-avoiding loops in
three dimensions, using analytic as well as Monte Carlo methods, and compare the results with the Ising case. Applying finite-size
scaling techniques, we show that the critical behavior of self-avoiding random loops is consistent with universality predictions

based on the Ising model.

1. Introduction

The statistical mechanics of line-like geometrical
objects appears to be a useful tool in many different
fields of physics (for a general overview and many
references see ref. [1]). Its applications range from
quite abstract investigations of polymer-representa-
tions of quantum field theory to more practical top-
ics such as phase-transitions in condensed matter. In
many cases these transitions can be explained by a
proliferation of line-like excitatons. Well-known ex-
amples are the A-transition in liquid helium which is
caused by the proliferation of vortex-lines, and or-
dinary crystal melting where the growth of defect lines
causes the breakdown of crystalline order. In this
note, we want to focus on a third type of application
where line-like objects have a direct physical mean-
ing, namely polymerization processes [2]. A stan-
dard example is the polymerization of liquid sulphur
(for a review of the properties of liquid sulphur see
ref. [3]) which, around 115°C, consists mainly of
S¢ rings. With increasing temperature the system can
lower its free energy by opening up the S; rings, join-
ing the ends, and forming long loops and chains. Each
opened S ring will be considered as one polymer ele-
ment ( =monomer).

* Supported in part by Deutsche Forschungsgemeinschaft under
grant no. K1.256.

Open chains are suppressed by the high energy of
their end points. In the limit of infinite end point
energy, there will be only loops. Then, as the tem-
perature approaches the critical point at 7.~ 160°C,
the configurational entropy dominates and creates a
condensate of infinitely long loops. Since infinitely
long loops have infinitely many possibilities of
breaking into pieces, also the breaking entropy be-
comes very large. In an actual polymer system, the
end point energy is large but finite, and hence it can
be compensated by the large breaking entropy. This
is why a real polymer system contains always a siz-
able fraction of open chains above T, [2,4]. Also,
even at very large but finite end point energy, none
of the polymers can become any more infinitely long
so that the system does no longer have a phase tran-
sition in the strict sense. Still, the experimental tran-
sition is signaled by a sharp peak in the specific heat
[5], just as in a second order phase transition, in-
dicating the largeness of the end point energy.

Since we want to study the truly critical transition,
we shall confine ourselves to an ensemble of pure
loop-like polymers which, for simplicity, are as-
sumed to lie on the links of a simple hypercubic lat-
tice. Furthermore, we require that each link can be
occupied at most by one monomer, so that back:
tracking loops cannot appear. If loops are allowed to
touch each other at their corners then, by a duality
transformation, this ensemble is seen to be equiva-
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Fig. 1. A typical configuration of Ising loops. In the self-avoiding
loop gas, loops which touch each other at their corners like in
graph (¢) are not allowed.

lent to the Ising model, and we shall call it an Ising
loop gas. When excluded volume effects are taken
into account and such crossing-points are forbidden,
we get an ensemble of self-avoiding random loops
(for examples, see fig. 1). Recalling the duality with
the Ising model, it can be shown that open chains act
like an external magnetic field. This analogy pro-
vides just another way to see that open chains de-
stroy a well-defined phase transition *'.

The purpose of this note is to study the quanti-
tative differences between ensembles of self-avoid-
ing and Ising loops, and to compare their critical
behavior near the phase transition. We perform
Monte Carlo simulations in the recently developed
spin representation of loop gas models [6,7] and
analyze the data for self-avoiding loops using finite-
size scaling techniques.

The present note is an extension of an earlier (and
much simpler) study of the two-dimensional case

[8].

2. The model

If € is the energy per monomer, 7 the temperature,
and v=exp(—¢€/T) the corresponding fugacity, we
want to sum the partiton function
7= z e~Le/T , (1)

loop conf.
where L is the number of monomers (or the total

length of all polymers) in a loop-configuration which
can be chosen to contain self-avoiding or Ising loops,

#! This is well known for Ising loops — but it is obvious that it
holds also in the self-avoiding case.
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respectively (see fig. 1). For simplicity, we shall as-
sume these to lie on the links of a simple hypercubic
lattice.

For self-avoiding loop configurations, it was
pointed out by Hofsdss and Kleinert [6] that the
partition function (1) can be rewritten as an infinite
product of integrals over pure phase variables
U(x)=¢'°® (HK partition function):

z=T] ( f dé(x) [1+U*2(x)])

2

XH[1+UU(x)U(x+i)]. (2)

That this is true can easily be verified a posteriori by
noticing that the second product distributes ran-
domly, with a statistical weight v, pairs of phase vari-
ables U(x)U(x+i) over all oriented links i whose
end points are knitted together by the integrals over
U*?*(x). The fact that the measure of integration
contains only U*? ensures that each lattice site can
accommodate at most two end points. This is what
distinguishes the HK partition function of self-
avoiding loops from that of the Ising model, which
can also be written as an integral of the form (2) but
with an infinite sum of powers of U*? in the
integrand *2

T de
Z= U(J 2;") [1+U*2(x)+U*4(x)+...])

X]_[ [1+vU(x)U(x+i)]. (3)

The HK partition function is not yet very useful
for Monte Carlo simulations. A better version was
found in ref. [7]. It is based on introducing an aux-
iliary sum over Ising variables s,(x) living on links #3
and rewriting

¥2 We have omitted the trivial overall factor 2"(cosh fi,)™”
(N=number of lattice sites, D=space dimension ) when going
from the usual Ising model partition function Z;,=
(5= 21)exp[Bis2ris(x)s(x+i)] to the form (3). For
Ising loops, the fugacity is v=tanh ;.

#3 This must not be confused with the usual Ising variables s(x)
which live on sites.
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[T[1+0U(x)U(x+i))
=114 ¥ [+/vU)s(0)]

X0 si(x)==%1
X [1+/v U(x+i)s;(x)]
=2-""[1 ¥ [1+/oU)sx)]

x4 si(x)==*1

X [1+/v U(x)s; (x=i)], (4)

where D is the space dimension and N is the total
number of lattice sites. The product over i can be
carried out most easily by introducing the notation
s_;(x)=s;(x—1i) and numbering the 2D Ising vari-
ables around each site by s,(x)=s_p(x), ..., sp(x).
If s(x)=X2__p s,(x) denotes the sum over these
then

D
[T (142 U@)sa(®)]

a=—

2D
=1+ 3 (V1) U (x)cq (s(x)) , (5)

where

e (8)= ‘)Lbsasb=%(s2—2D),

Ca(8)= z

a>b>c>d

SaSpScSa

- % [s*— (12D—8)s2+6D(2D—2)] ,

- é [56— (30D —40)s%+ (180D*—420D

+184)s2-30D(2D-2)(2D-4)],
(6)

Performing now the integrals over @(x) in eq. (2),
we see that for self-avoiding loops only c,(s) con-
tributes and we are left with the simple expression

Z=2—NDH(A(:[1H)HZ(-¥), (N
where
z(x)=1+wvc, (s)=1—vD+4vs?(x) . (8)
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For the Ising model, the “local partition functions”
in (7) become

z(x)=14vc, (5) +v2cs () +3ce (s) +...+vPcyp (5) .
(9)

Hence, a simple interpolating model can be obtained
by multiplying the last D—1 terms by a parameter &
(=0 self-avoiding, =1 Ising) [8].

3. The Monte Carlo simulation

We have simulated the interpolating spin-model
(7)-(9) for both ¢=0 and ¢=1 via standard Monte
Carlo methods (heat-bath algorithm) [9] on three-
dimensional simple cubic lattices with periodic
boundary conditions. In this note we report on mea-
surements of the total length of all loops and its fluc-
tuations. The total length is found from

(Ly=vd,log Z= ¥ <M> (10)

T \z(x)

where z(x) is given in (8) and (9), respectively,
z=vd,z, and the average { ) on the r.h.s. has to be
taken with respect to the partition function (7). The
length fluctuations are

(L?e=(L?y —(LY?=1d,(L) = (13,)* log Z

(=) - (38 + - (§)2>(-m

Notice that these geometrical guantities are related
to the internal energy and specific heat of the loop

gas (1) by

U=~ log Z=evd, log Z=€(L) (12)
and
C=—p*0pU=€p*(vd,)* log Z=€*p>(L?),

(13)
where f=1/T.

For low temperature we can check our simulations
against the low-fugacity (v—0) series for (L) and
{L?), which can easily be derived from the expan-
sion (for details of graph counting see ref. [10])
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For £=1 this expansion agrees with the well-known
high-(Ising)-temperature series of the Ising model
[11] (where +... in the last bracket means + 22304
X (7)+ 47616(2)).

4. Numerical results

Let us start with a quantitative comparison of the
self-avoiding (£=0) and Ising (&=1) loop gas
models. Our results on a 8 lattice are shown in figs.
2a, 2b where we plot the mean total loop length cor-
responding to the internal energy (a) and the length
fluctuations corresponding to the specific heat (b)
versus v=exp(—e¢/T). As a check of the £=1 case,
we have also included data from a simulation of the
ordinary Ising model with spins on the sites. The
agreement is excellent. Up to the transition around
v~0.22, self-avoiding and Ising loops are practically
indistinguishable, in agreement with the remarks of
Cordery [12]. This is also seen in the low-fugacity
(v—0) expansions derived from (14) which are al-
most identical for =0 and £=1. The curves labeled
“LTS” are the usual low-(Ising )-temperature expan-
sions [13] of the Ising model.

Let us now turn to the critical behavior of the self-
avoiding loop gas model. To this end, we have sim-
ulated the £=0 model on lattices with linear sizes
L=6, 8, 10, 16 and 20 and analyzed the data using
finite-size scaling techniques [14,9]. Our raw data
for the length fluctuations ( = specific heat) are dis-
played in fig. 3. For most of these points we have used
200000 Monte Carlo sweeps through the lattice, after
discarding 50000 sweeps for thermalization. To im-
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Fig. 2. The mean loop length per site (a) and the length fluctua-
tions per site {b) of self-avoiding (Q) and Ising (+ ) loops on a
83 lattice versus the fugacity v=exp( —¢/T). For comparison, we
also have plotted data from a Monte Carlo simulation of the or-
dinary Ising model (@ ). The v—0 curves are derived from the
low-fugacity expansion (14), and the curves labeled “LTS” are
the usual low-(Ising)-temperature expansions [13] of the Ising
model.

prove the accuracy near the peaks, we have averaged
two such runs with different start configurations
(typically completely ordered or completely
random).

Finite-size scaling theory predicts that the loca-
tions of the peaks, v.(L), scale on finite lattices of
linear size L as

v (L)=v.(c0)+al ", (15)

where v is the universal critical exponent of the cor-
relation length (&oc |1 —v/v.| =*), and a is a non-uni-
versal constant. The extrapolation to v.(co) is not
very sensitive to the precise value of v (in a reason-
able range, say v=0.58, ..., 0.64), and we find the
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Fig. 3. Length fluctuations (=specific heat) per site
(L?y/N=({L?) —{L»?)/N of self-avoiding loops in three di-
mensions near the phase transition point for various lattice sizes.
The curves are only to guide the eye.

almost unbiased estimate #
v.=1.(c0)=0.222+0.001 . (16)

Note that this critical value is only 1.8% larger than
the corresponding one of the Ising model, vi*=
0.218090(5) [16]. (The number in parentheses is
the error in the last digit. See also ref. [24].)

Another important prediction of finite-size scaling
theory is the scaling relation for the length fluctua-
tions ( =specific heat) in the vicinity of v,

L=*P[{L?)o(t, L)/N=b§ 1=f(x), (17)

where t=|1—v/v.| and x=¢L'/". The critical ex-
ponent o (=2—Dv) controls the singularity of the
specific heat in the infinite system ((L2)./N«x
C/N=(A*/a)t~%), and by account for regular
background terms above (+) and below (—) ..
Consistency requires that for large x (in the sense
tx 1 fixed, L—o0)

£(x) = (4% fa)x—e. (18)

Thus if one expects, on theoretical grounds, certain

#4 We have confirmed this value by other means to be reported
in a future publication [15].
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values of the critical exponents v and «, then plot-
ting the Lh.s. of (17) versus x, the data of lattices
with different sizes should fall onto a single curve.
Here we perform this analysis, expecting that the self-
avoiding loop gas should fall into the same univer-
sality class as the Ising model, having the exponents
(the number for » is the average of field-theory es-
timates using resummed g- and e-expansions, re-
ported in ref. [17])

2 T T
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Fig. 4. Finite-size scaling plot (see eq. (17)) of the length fluc-
tuations ( = specific heat) for v<v,=0.222 (a) and v>y, (b) in
log-log representation. The data are the same as those in fig. 3.
For the critical exponents, we have chosen Ising values, ¥==0.6305,
a=0.1085, and the background parameters are by =1.5,—
bd = —2.3. The straight lines oc|1—v/v.|~%'%%% confirm the
expected x—co behavior (18).
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»=0.6305, «=0.1085. (19)

This is suggested by the fact that both types of loop
gases follow the same field theoretic model [6], with
the only difference being the numerical value of the
parameter & We judge the quality of the values (19)
by monitoring the degree of clustering of our data.
By “trial and error” we have found that with
by =~ —1.5, b ~ —2.3 the above expectations are
indeed reasonably satisfied. This is demonstrated in
the log-log plots in fig. 4. In this representation, the
asymptotic laws (18) are given by the straight lines
with slope — . Notice that, for v<v “(fig. 4a), one
must be careful not to misinterpret an apparent
asymptotic behavior for intermediate x, indicated by
the dashed straight line with slope —0.216. As a fur-
ther test of the scaling properties, from the ordinates
of the asymptotic straight lines at x=1, we can read
off the ratio of the leading amplitudes below (—)
and above (+) .
A* 1.33

~ 555 =0.48. (20)
Also this ratio is consistent with estimates for the Is-
ing universality class, which are, from series anal-
yses, 0.51 [18] and, from e-expansions, 0.54 (up to
€), 0.38 (up to €2), 0.44 ([1,1] Padé) [19].

5. Summary and discussion

We have rewritten the self-avoiding loop gas as a
spin model with Ising variables on links and given
the explicit form of the interaction in general di-
mensions. A parameter & allows interpolation to the
well understood Ising loop gas. In three dimensions,
Monte Carlo simulations show that below the phase
transition both models are even quantitatively very
similar. For self-avoiding loops, we find a critical
temperature v.=exp(—¢/7.)=0.222+0.001 which
lies only 1.8% above that for Ising loops. For large
volumes, these results are in agreement with a direct
Monte Carlo simulation of loops [20], where the self-
avoiding constraint was enforced by hand. (For fi-
nite volumes, there are differences due to boundary
conditions different from our purely periodic ones. )

A finite-size scaling analysis of the length fluctua-
tions ( =specifc heat) shows that the critical behav-
ior of self-avoiding loops is consistent with the
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universality hypotheses based on Ising exponents. It
must be pointed out, however, that using this tech-
nique with the presently available computer facili-
ties and reasonable operating times, it is very hard
to exclude possible other exponents of nearby uni-
versality classes such as the n=0 exponents
(v=0.5880, ®=0.2360) [21] (see also ref. [17])
of a single self-avoiding loop [22]. This is not as-
tonishing if one keeps in mind that similar finite-size
scaling analyses [23] of Monte Carlo data of the
Ising model, the best known model of statistical me-
chanics, provide at most a consistency check of crit-
ical exponents with numbers already known from
large order series expansions. Only very elaborate
Monte Carlo simulations on special purpose com-
puters [16], or extremely time consuming Monte
Carlo renormalization group studies {24] have pro-
vided independent results of comparable accuracy.
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