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We present a Monte Carlo study of a 2D gas of crystal dischnations and find a first-order melting transition. 

In recent years there has been considerable progress in understanding the phase transitions of crystal melting 
via the statistical mechanics of crystalline defects ,1. At sufficiently high temperatures these can proliferate, there- 
by destroying the translational and rotational order. In three dimensions, it was found that the first order of the 
melting transition is caused by an interplay of dislocations and disclinations [2]. In a crystal, disclinations are 
bound permanently in pairs by a linear potential, and such pairs can be observed as dislocations. Above a certain 
temperature, these bound pairs proliferate. The proliferation causes a screening of the elastic forces (a crystalline 
version of the Meissner effect [3]) which weakens the attraction between the constituent disclinations from R to 
I[R and allows them to unbind. The joint process, proliferation of pairs plus unbinding, is what makes the transi- 
tion first order [2]. The theoretical analysis was confirmed by a Monte Carlo study of a three-dimensional model 
on a simple cubic lattice (with spacing a) 

Z =  "~-exp  ~ cos(ViA/ + V/Ai)+ 2~ ~ cos(ViAl) , (1) 
-*r " x i<] x,i 

where 13 = pa3/(2,r)2T with # = shear module. We neglect the Lam6 constant ~ for simplicity and allow for a non- 
isotropic crystal via the elastic constant ~. At t imer = 0.76 there is a first-order transition with a transition entropy 
As = 1.4/site. This/3melt corresponds to a Lindemann parameter L ~ 14 fl3X/'ff~melt ~ 125 in good agreement with 
experimental values. 

That this model describes an ensemble of  crystal defects had been shown previously by duality transformations 
[5,6]. 

In two dimensions, a similar study is still missing. According to Halperin and Nelson [7], defect melting should 
be a sequence of two continuous Berezinskii-Kosterlitz-Thouless [8] transitions. The crystalline phase contains 
bound pairs of dislocations. At a certain critical temperature, these become separated and the crystal enters into a 
mesophase with no translational but orientational order ("hexatic phase"). If heated further, there is another tran- 
sition in which dislocations split up into disclinations. 

Unfortunately, these conclusions were found to contradict Monte Carlo simulations of two-dimensional atom- 
istic models which always display a first-order transition [9]. This stimulated a direct Monte Carlo study of a gas 
of dislocation vectors, by Saito, with the partition function [10] 

Z =  ~ exp(-(21r)2/~ ~ , b i ( x ) V i / ( x - x ' ) b , ( x ' ) - e  c ~xbl(X)2) (2) 
(hi(x)} ~ x,x 

* 1 This view dates Back to Shoekley [ 1]. 
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where Vii(x - x ' )  is the lattice version of the transverse Coulomb potential 

(8 i /V V - V iv i ) / (V V )2 m _ (410 - 1 (8i/log r - xix/ /r  2) + .... (3) 

Saito found that for a slightly negative core energy ee, the transition was definitely first order. 
At this point it was recognized [11] that there was something unphysical about the core energy E c = e e Zbz(x)2. 

It had been introduced into the model by Halperin and Nelson in order to use the fugacity expansion as in 
Kosterlitz and Thouless' work. In a real crystal, however, all defects may be viewed as superpositions of disloca- 
tions alone. In this case, such a simple core energy cannot by present: In order to see this we observe that the 
gauge field of stress couples only to the transverse projection of b i (b T = (Si" - V iV ' /V  V)b:) This is why linear 

I I / "  
elasticity can give only an energy associated with this projection of b i. Moreover, neither non.linear elastic energies 
which go with higher powers in the stress tensor nor higher derivative energies can produce the above form o f E  e. 
Whatever the short distance forces, they have to respect an elementary property of crystalline defects: When stack- 
ing up a string of  dislocations along the positive x 1 or x 2 axis, 

b l = O ,  b 2 = e O ( X l ) ~ ( x 2 ) ,  (4) 

or 

b l = - e O ( x 2 ) 8 ( X l ) ,  b 2 = 0 ,  (5) 

the two configurations are physically indistinguishable. They correspond to a single disclination sitting at the origin, 
once created by a Volterra cut along the x 1 and once along the x 2 axis. Both cuts yield the same disclination. This 
is analogous to the physical irrelevance of the Dirac string emerging from a magnetic monopole which can be chosen 
to lie anywhere in space [12]. A simple core energy ~b 2 would give an infinite energy t o  either string and thus 
prevent the pileup of dislocations to disclinations which is essential to the melting process [11 ]. Saito's choice of 
a very small negative core energy removed this unphysical feature of Halperin and Nelson's ansatz for E e and this 
explains why he was able to observe a proper first-order melting transition into an isotropic liquid. 

In the new model of melting, eq. (1), the interrelation between dislocations and disclinations is automatically 
incorporated. In order to see this, let us perform a Villain approximation 

x I1 :c , (0 {nil  'n12'n 22} -lr x,i 

where/3 v = - { 2  log[I1(13)/I0([3)]} -1 and 2~v/~ v = - { 2  log[I1(2~)/10(2~)]}-1 and nil are integer numbers. 
A quadratic completion gives then the integrand 

~" d°12X/~vv d°'lld°'22 exp ( - 0 " 2 2 4 , t r ~ j v ~ v  2/J--'v °"214~v[Jv +0.22 J - + i ° 1 2 ( V l A 2 +  V2A1 - 27rn12) + i ~-7- Oii(v iAi - 2~rnii)] ' ~ (7) 

which after a sum over nil and andntegral over A 1 ,A  2 becomes a sum over integer valued stress field Oil 

(2Vr~v4~v/3v)-I (a~-~ 8v/°"fl'0exp [ 022 -2 -2 
- "  2~v 4~v~v d 

The conservation law XYjaii : 0 is enforced by in trodu~g  a stress gauge field ×'2 w~th aij -- ¢ik ¢ j ~ k ~ ×  which is 

*2 Actually, the case ofD = 2 dimensions is degenerate in that x is not really a gauge field. Only in higher dimensions it is. For ex- 
ample, ifD = 3, aq = e~leimn~k~mXin and Xln is a proper gauge field with 8¢ being gauge invariant under xt,, - '  x~n + v ~ , ,  + 
Vn~ I. 
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made integer by a sum over integer numbers m. This gives 

- ) ( f ~xdXexp(-(2{3v)-l~(v1V2X)2-(43v~v)-1~[(V~×)2+(~72×) 2] ~ exp i~2rrm×}. (9) 
-** X x {m (x)} x , 

Integrating out the gauge fields shows that re(x) interact via a Boltzmann factor 

exp (_(4rt)2{Jv~v ~_i m(x)o(x - x')m(x')) , (10) 
X,X' 

with 

O(X - X') = [ (VV) 2 + 2(~j v - 1)VlV'lV2~2 ] - l ( x ,  x ' ) .  

Hence the ensemble o f  integer charges m(x) behaves like a gas of  disclinations in an anisotropic crystal. 
Some qualitative features of  such a gas were discussed recently by Nelson [14]. For low temperatures, the dis- 

clinations are bound together in quartets which can be interpreted as pairs o f  dislocations. I f  quartets split into 
doublets, each doublet looks like a single dislocation. These dislocations can spi t  further into individual disclina- 
tions. Guided by the analysis o f  Nelson and Halperin, Nelson concluded that these processes should take place in 
a sequence o f  two continuous phase transitions. This would contradict our qualitative analysis [12]. 

In order to fred out what really happens, we have investigated the gas o f  defects via Monte Carlo techniques us- 
hag directly our model eq. (1), with lattices varying in size from 30 X 30 to 60 X 60 sites with periodic boundary 
conditions. The continuous variables A1,  A 2 E ( - n ,  ~r) were approximated by 16 equidistant points. The thermo- 
dynamic behavior was studied in the same way as in the three-dimensional model [4]. We started out from a small 
value of  3 in the crystalline phase and established equilibrium by going through a few iterations. Then we decreased 
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Fig. 1. The internal energy of the model (1) on a 60 X 60 square lattice, u = -N -1 (a/aft) log Z, as a function of# as obtained in 
a thermal cycle and after long equilibration tuns close to  #mel t .  For the equilibration procedure see the t ex t .  W e  see that ,au 
0.26 + 0.05 and ~s = #meltAU = 0.3 ± 0.05. 
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Fig. 2. The behavior of the internal energy on a 60 X 60 square lattice in the immediate neighborhood of #melt = 1.15 for many 
Iterations starting with a mixed state. 

successively the inverse temperature by steps A/3 = 0.05 and repeated at each step the equilibriation process 20 

times after which we measured the internal energy averaging over 40 further iterations. After reaching the disor- 
dered state at very high temperature, we run backwards to low temperatures. The energy curve obtained in this 
way shows a pronounced hysteresis with considerable undercooling suggesting a first-order transition (see fig. 1) ,3. 

The precise behavior in the neighborhood of the transition was studied via the development of  a mixed state 
over many iterations (5000), as shown in fig. 2 for the special case ~ = 1. This led to the internal energy plotted as 

,3 This result Is m agreement with a first independent exploratory Monte Carlo run by H. Bohr who also found a hysteresis. 
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Fig. 3. The entropy jump A~ = #meltZ~u as a function of the 
anisotropy parameter ~. 
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the continuous line in fig. 1 and permitted a precise localization of  the transition temperature. On the 60 X 60 lat- 
tice, we fred flmelt ~ 1.15 with a jump in the internal energy Au ~ 0.26 -+ 0.05. The corresponding transition en- 
tropy As = flmeltZ~ ~- 0.3 + 0.05 per atom (in units OfkB) is of  the same size as in atomistic simulations [9]. For 

~ 1 the curves are quite similar. The entropy jump depends on ~ as shown in fig. 3. 
It is interesting to point out that, at the mean field level, the point ~ = 1 is tricritical [15], with the transition 

being first order for ~ < 1 and second order for ~ > 1. This is due to the quartic term in the field theory changing 
sign at that point. The fluctuation corrections, however, generate (from the higher powers in the field) a negative 
quartic potential for all physically acceptable ~ values, such that the transition does remain first order, just as an- 
ticipated by the general analysis in ref. [11 ]. 
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