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Abstract
We implemented a parallel version of the multicanonical algorithm and applied it to a variety of systems with

phase transitions of first and second order. The parallelization relies on independent equilibrium simulations that only

communicate when the multicanonical weight function is updated. That way, the Markov chains efficiently sample

the temporary distributions allowing for good estimations of consecutive weight functions.

The systems investigated range from the well known Ising and Potts spin systems to bead-spring polymers. We

estimate the speedup with increasing number of parallel processes. Overall, the parallelization is shown to scale quite

well. In the case of multicanonical simulations of the q-state Potts model (q ≥ 6) and multimagnetic simulations of

the Ising model, the optimal performance is limited due to emerging barriers.
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Umbrella sampling algorithms like the multicanonical method [1, 2] and the Wang-Landau method [3] have been

applied to a variety of complex systems over the last two decades. They are well suited for the investigation of phase

transitions, especially of first order and may be applied to systems with rugged free-energy landscapes in physics,

biology, and chemistry [4].

For complex systems, a carefully chosen set of Monte Carlo update moves is usually the key to a successful simu-

lation. But with computer performance increasing mainly in terms of parallel processing on multi-core architectures,

it is of advantage when the algorithm can be parallelized. This has been done recently for the Wang-Landau recur-

sion [5, 6] and for the standard multicanonical recursion [7, 8]. While the former implementation relies on shared

memory, introducing racing conditions and frequent communication, the latter benefits from independent Markov

chains with occasional communication.

After a short summary of the parallel multicanonical method, we will proceed with a demonstration of its perfor-

mance for several spin systems and a flexible polymer.

The multicanonical (MUCA) method can be applied to a variety of ensembles. Still, it is probably easiest to

understand using the example of the canonical ensemble. For a fixed temperature, all configurations that the system

may assume are weighted with the Boltzmann weight P(E) = exp[−βE], resulting in a temperature dependent energy

distribution. The idea is to replace this Boltzmann weight by an arbitrary weight function W(E), which may be

modified iteratively such that the resulting energy distribution covers the full range of canonical distributions, hence

it is called multicanonical. In terms of the partition function, this may be written as

Zcan =
∑

E

Ω(E)e−βE → ZMUCA =
∑

E

Ω(E)W(E), (1)
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Figure 1: Scheme of the parallel implementation of the multicanonical algorithm on p cores. After each iteration with independent Markov chains

(but identical weights), the histograms are merged, the new weights are estimated and distributed to all processes again.

where Ω(E) is the density of states. The canonical distributions and expectation values are recovered by reweighting:

〈O〉β = 〈Oie−βEi W−1 (Ei)〉MUCA

〈e−βEi W−1 (Ei)〉MUCA

. (2)

The most difficult task is the weight modification, which requires some effort. The easiest way is to construct consecu-

tive weights from the last weights and the current energy histogram: W (n+1)(E) = W (n)(E)/H(n)(E). More sophisticated

methods use the full statistics of previous iterations for a stable and efficient approximation of the density of states [2].

All our simulations use the latter version implemented with logarithmic weights in order to avoid numerical problems.

The basic idea of the parallel implementation is shown in Fig. 1. The system is initialized in p independent real-

izations with the same weight function, which are distributed onto different cores. After each iteration, the individual

histograms are merged and provide an estimate of the distribution H(n) belonging to the current weight function W (n).

This is used to determine the consecutive weight function W (n+1), which is again distributed to all p cores. The whole

procedure is repeated until the weight function results in a flat energy distribution. Since the weight modification is

usually very fast compared to a single iteration, communication is kept to a bare minimum.

Moreover, the parallelization may easily be applied to other ensembles, for example multimagnetic (MUMA)

simulations. In this case, the coefficients of the partition function are modified by a correction weight function, which

depends for example on the magnetization and is again modified iteratively in order to yield a flat histogram in the

parameter:

Zcan =
∑

E

Ω(E)e−βE → ZMUMA =
∑

E,M

Ω(E,M)e−βEW(M). (3)

The parallelization is completely analogous to the standard case and the performance of the parallel multimagnetic

simulation will be demonstrated below.

For a fair comparison of the performance of this parallel implementation, we need to consider a few aspects. First

of all, the parallelization relies on independent Markov processes, which leads to different simulations for different

degrees of parallelization. Consequently, we may only compare the average performance per degree of parallelization.

Furthermore, a number of parameters can influence the results and need to be fixed. One example is the number of

sweeps per iteration. In order to provide a proper estimate of the performance, we determined the optimal number of

sweeps per iteration Mopt for all degrees of parallelization in the cases of the Ising model and the 8-state Potts model.

A detailed description can be found in [8]. The results of this analysis are

M(Ising)
opt (L, p) = 5.7(5) × L2+0.51(4) 1

p

M(8Potts)
opt (L, p) = 24(4) × L2+0.67(6) 1

p
.

(4)

We extrapolated this result for the remaining spin systems. Another factor to consider is the thermalization time. In

order to remove additional parameters in our investigation, we decided to thermalize only in the beginning and not in

between iterations.
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Figure 2: Performance in case of the Ising model for different system sizes: (left) the speedup in real time and (right) the speedup in statistics.

Since the parallelization changes the outcome of the simulation, also the number of iterations until convergence

is influenced. This allows us to consider two different measures of the performance. One is given by the speedup in

convergence time, comparing the time tp a p-core simulation needs until convergence of the MUCA weights with the

time t1 a single-core simulation needs:

S p =
t1
tp
. (5)

Obviously, this answers the question of required simulation time with increasing parallelization but depends strongly

on the involved hardware. Thus, the result may differ if investigated on different compute clusters. Another possibility

is to consider a time-independent statistical speedup by comparing the total number of sweeps per core until conver-

gence. As the optimal number of sweeps per iteration Mopt(p) is fixed for all realizations, this results in measuring the

average number of iterations until convergence N̄iter.

S ∗p =
[N̄iterMopt(1)]1

[N̄iterMopt(p)]p
, (6)

In the following, we will use the Ising model to demonstrate the differences. Afterwards we will restrict ourselves to

the time-independent statistical speedup for simplicity.

We consider the two-dimensional Ising system as a first test case. This spin model with nearest-neighbor interac-

tion exhibits a temperature driven second-order phase transition. The Hamiltonian is defined as H = −J
∑
〈i, j〉 sis j.

Figure 2 shows the performance of the method. It can be seen that the statistical speedup scales nicely for all system

sizes, in fact S ∗p � p. This means that the total statistics is efficiently distributed onto all cores. The time speedup also

scales well, except for the small system sizes where the duration of a single iteration was of the order of milliseconds

for which our network communication is insufficient.

The two-dimensional q-state Potts model is described by H = −J
∑
〈i, j〉 δ(si, s j), where si ∈ {0, . . . , q − 1} and

interaction is restricted to nearest neighbors. The system shows a temperature driven first-order phase transition for

q ≥ 5 and a second-order phase transition otherwise. Applying the parallel multicanonical method to the 8-state Potts

model demonstrates its effect on systems with first-order phase transitions. Indeed, also in this case the parallelization

works well, but with increasing degree of parallelization the speedup seems to saturate (see Fig. 3). A similar effect

is observed when applying the parallelization to a multimagnetic simulation of the Ising system, also shown in the

figure. In this case, the Ising system is simulated at fixed temperature T = 2
3
TC , while it is attempted to achieve a flat

distribution of the magnetization. The occurring field-driven phase transition is of first order. The saturation of the

speedup may be explained by large integrated autocorrelation times accompanying concealed barriers. Thus, when

reducing the number of sweeps per core with increasing degree of parallelization this might reach a point where the

individual sweeps are too short in order to efficiently cross emerging concealed barriers. For a detailed description we

refer to [8].
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Figure 3: Statistical speedup of selected spin systems.

The q-state Potts model is furthermore well suited to take a look at the performance of the parallelization in the

crossover regime from a second-order phase transition to a first-order phase transition. To this end, we considered

extrapolated Mopt for different q values. The result is shown in Fig. 4. For q ≤ 4 the temperature-driven phase

transition is of second-order and the scaling of the performance is very well. This still holds for q = 5 where a

so-called weak first-order phase transition occurs. Already for q = 6, we can see the drop in performance for large

degrees of parallelization, as before.
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Figure 4: Statistical speedup for different q-state Potts models on a 64 × 64 square lattice. For q ≤ 4 the Potts model exhibits a second-order phase

transition, while for q > 4 the phase transition becomes first order.

Leaving the constraint of a lattice, we applied the parallel multicanonical method to a more complex system,

a single flexible bead-spring polymer. It consists of N identical monomers, which are connected to their bonded

neighbors by a FENE spring potential and which interact with other monomers via a Lennard-Jones potential. The

Hamiltonian is given by

H = 4

N−2∑

i=1

N∑

j=i+2

(
(σ/ri j)

12 − (σ/ri j)
6
)
−

N−1∑

i=1

K
2

R2 ln
(
1 − [(ri,i+1 − r0)/R]2

)
, (7)

where r0 is the average bond length, σ = 2−1/6r0, R2 = (rmax − r0)2, and K is the spring constant. The parameters

where chosen K = 40, r0 = 0.7, and rmax = 1 according to [10]. As mentioned above, the choice of updates is

crucial. Here, we used a combination of single monomer shift, spherical rotation, and double-bridging moves. Using
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Figure 5: Statistical speedup for single bead-spring homopolymers of length N = 40, 80.

the example of a polymer system, we want to show the general applicability of the parallel multicanonical method.

Thus, we took an existing code of a multicanonical simulation with a fixed number of sweeps per iteration and some

thermalization between iterations. The total number of sweeps per iteration was distributed onto the cores. While

we considered the full energy range for the spin systems, we restricted the multicanonical simulation of the homo-

polymer to an energy range around the collapse transition. Figure 5 shows that the straightforward parallelization

works also well for complex off-lattice systems, which involve computationally more expensive energy calculations.

Moreover, this shows that the parallelization may be applied straightforwardly without taking too much care about the

involved parameters.

In summary, the application of the parallel multicanonical method presented here is straightforward and very

efficient for a range of systems. We studied the performance on the example of the Ising model, the q-state Potts

model and a coarse-grained polymer model. Furthermore, we showed that the parallelization may easily be adapted

to flat histogram simulations in other ensembles. Overall, we could demonstrate a good performance yielding a

close-to-perfect scaling S ∗p � p for up to p = 64 cores.
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