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Numerical extension of CFT amplitude
universality to three-dimensional systems
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Abstract

Conformal �eld theory (CFT) predicts universal relations between scaling amplitudes and
scaling dimensions for two-dimensional systems on in�nite length cylinders, which hold true
even independent of the model under consideration. We discuss di�erent possible generalizations
of such laws to three-dimensional geometries. Using a cluster update Monte Carlo algorithm we
investigate the �nite-size scaling (FSS) of the correlation lengths of several representatives of
the class of three-dimensional classical O(n) spin models. We �nd that, choosing appropriate
boundary conditions, the two-dimensional situation can be restored. c© 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Augmenting the scale invariance of a system of statistical mechanics at a critical
point, which leads to the theory of the renormalization group (RG), by the additional
symmetries of rotational, translational and inversion invariance is a powerful tool for the
understanding of critical systems, especially in two dimensions (2D), where the group
of those conformal symmetry transformations becomes in�nite dimensional [1,2]. As a
consequence, conformal �eld theory (CFT) provides a complete (continuum) solution of
critical systems in 2D, in particular comprising �nite-size scaling (FSS) laws including
the amplitudes. As an example of the latter, consider the logarithmic map

w =
L
2� ln z; z ∈ C (1)

in the complex plane z = (z; �z), which wraps the plane around a cylinder of in�nite
length and circumference L, i.e. the geometry S1 × R. Since this map is conformal,
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it gives the transformation of the critical two-point correlation function of a primary
operator � [3,4]. In the limit of large distances in the in�nite direction this implies a
longitudinal correlation length of

�|| =
L
2�x ; (2)

with x being the scaling dimension of �. Note the triple universality in this relation:
(i) within a certain conventional universality class and for a �xed operator the scaling
amplitude of the corresponding correlation length should be the same for all models; (ii)
moreover, for a certain model all operator-dependent information should be condensed
in the corresponding scaling dimension with an overall �xed amplitude of 1=2�; (iii)
�nally, relation (2) is meant to hold for models of an arbitrary universality class, as long
as they exhibit critical behavior (and have short-ranged interactions). In the case of the
lattice Ising model Eq. (2) has been numerically checked [5] and, moreover, coincides
with the leading term of the Onsager solution for ��(L) [6]. Specializing on the local
densities of magnetization and energy, which are the only primary operators in the 2D
Ising universality class, their correlation length ratio becomes ��=�� = x�=x�. Changing
the periodic boundary conditions (pbc) along the strip to an antiperiodic boundary
(apbc) destroys most of this “hyper” universality: for the case of a nearest-neighbor
Ising model one ends up with ��=4�L=3, ��=�L=4 [1,2]. Thus, the universality aspects
(ii) and (iii) above get lost and (i) gets restricted.
A direct generalization of these results to physically more appealing higher-

dimensional systems is hindered by the fact that the conformal group becomes �-
nite dimensional for spacial dimensions d¿3; however, since the logarithmic map (1)
does not make use of the full CFT theory, some generalization to higher dimensions
is possible. In polar coordinates it only a�ects the radial part, but leaves the angular
part of the coordinates invariant. Thus, mapping Rd to the space Sd−1 ×R, Cardy [2]
arrived at the relation

�=
R
x
; (3)

where R is the radius of Sd−1. This generalized mapping is still conformal; it has to
be noted, however, that it connects di�erent geometries for d¿3 instead of being a
meromorphism acting on the Riemann sphere. Thus, for dimensions greater than two
the meaning of a primary operator in this context is not clear, so that this result
should be considered a conjecture. Numerical studies of this problem are hampered
by the di�culty to regularly discretize the curved spaces Sd−1. A �rst attempt to
establish this result numerically for d = 3 and the Ising model in the Hamiltonian
limit used Platonic solids as approximation of S2 and was inconclusive due to the
very limited size of these polyhedra [7]. Another possible generalization leads to the
geometry S1× · · · × S1×R, which is more easily accessible for numerical studies, but
is not related to a at space via a conformal transformation. In a transfer matrix study
of the Ising model in the Hamiltonian limit on the three-dimensional (3D) manifold
S1 × S1 ×R ≡ T 2 ×R, Henkel [8,9] found for the correlation length ratio of spin and
energy densities the values ��=��=3:62(7) for pbc and ��=��=2:76(4) for apbc, which
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compared to the ratio of scaling dimensions of x�=x� = 2:7326(16) seemed to indicate
that changing the boundary conditions along the torus directions from pbc to apbc could
restore the 2D result, in qualitative agreement with a Metropolis Monte Carlo (MC)
study [10]. These 3D observations form a possible starting point for a generalization
of CFT methods to higher-dimensional systems. Here, we discuss numerical analyses
focusing on the inuence of boundary conditions on the validity of scaling laws of
the form (2) and the question, which degree of universality according to the above
described classi�cation scheme can be retained for 3D systems.

2. Systems with spherical cross section

2.1. Model and lattice

We consider an O(n) symmetric classical spin model with nearest-neighbor, ferro-
magnetic interactions in zero �eld with Hamiltonian

H=−J
∑
〈ij〉
�i �j; �i ∈ Sn−1 ; (4)

specializing on the Ising case n=1 on the 3D geometry S2 ×R. Because the Platonic
solids as triangulations of the sphere contain only up to 20 points, one has to switch
to slightly irregular discretizations of the sphere. The model lattice that suggests itself
in the �rst place is a square mesh on a cube [11], which we call lattice (C). Its
main anomaly consists in the defective coordination numbers of the corner points and
the concentration of the curvature of the lattice around the cube edges. The former
could be amended by the insertion of triangles in place of the cube corners, while a
smearing out of the spherical curvature can be accomplished by projecting the cube
on the sphere, resulting in geometry (S). As found in Ref. [11] for bulk quantities,
however, di�erences in the scaling behavior between lattices (C) and (S) are quite
small. Furthermore, there is evidence to believe that ratios of correlation lengths of
primary operators are universal [8,9,12–14], so that we can expect good agreement
regardless of the lattice used if Cardy’s conjecture, Eq. (3), holds. Finally, choosing
lattices with di�ering sorts and degrees of defects might function as an explicit test
of universality. Here we concentrate on the cube discretization (C) of the sphere,
which consists of six Lx × Lx square lattices. Discretization (S) will be considered
elsewhere [15]. For the approximate sphere discretizations there is some ambiguity in
the de�nition of the radius R of the sphere a given cube lattice with edge lengths Lx
should correspond to. De�ning the sphere radius through R=

√
S=4�, the lattice surface

S could be de�ned by counting the number of sites, bond pairs or elementary squares,
respectively, leading to areas

S =
{
6Lx(Lx − 2) + 8 “sites” ;
6Lx(Lx − 2) + 6 “bonds”; “squares” (5)
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and thus generating two di�erent sorts of pseudo radii, which only di�er by the constant
shift in Eq. (5), thus leading to slightly di�erent FSS approaches.

2.2. Simulation and results

We used a single cluster update MC algorithm for all of the simulations reported.
Motivated by the fact that the densities of magnetization and energy are primary in
the case of the 2D Ising model we concentrated on those two observables for the
3D systems also. Thus, candidates for measurements are their connected correlation
functions Gc�(x1; x2) and G

c
� (x1; x2). Since we are interested in the correlations along

the in�nite R-direction (the z-direction in the discrete case) only, the variance of these
estimators can be reduced by averaging over estimates Ĝ

c
(x1; x2) such that (x1−x2) || ê z

and i ≡ |x1−x2|=const, resulting in estimates Ĝc; ||(i). A further improvement can be
achieved by considering a zero-momentum projection, i.e., using averages over layers
z = const and evaluating correlation functions of these layer variables [5]. Due to the
statistical character of a MC simulation, one has to assume a long-distance behavior

of the correlation functions of the form Ĝ
c; ||
(i) = a exp(−i=�) + b; including a residual

term b. Since extracting the correlation length from this relation involves an intrinsically
unstable non-linear three-parameter �t, we decided instead to use an estimator for the
correlation length that systematically eliminates the multiplicative and additive constants
a and b:

�̂i = �

[
ln
Ĝ
c; ||
(i)− Ĝc; ||(i − �)

Ĝ
c; ||
(i + �)− Ĝc; ||(i)

]−1

; (6)

the distance �¿1 forming an additional free parameter of the estimation. Given Eq. (6),
�nal estimates for the correlation lengths are formed by averaging over the estimates
�̂i within a regime of distances i that is con�ned by short-distance lattice artifacts and
the e�ect of the �nite length Lz. Final error estimates are evaluated using the jackknife
resampling technique [16], which was also used to check for and reduce the statistical
bias of estimators (6) [5]. Traversing the above described steps in the determination
of correlation lengths one arrives at a FSS sequence of estimates ��=� for the Ising
model as depicted in Fig. 1(a). Since Fig. 1(b) reveals that corrections to scaling are
resolvable one has to use non-linear �ts of the form

�(R) = AR+ BR� ; (7)

including the e�ective correction exponent � as a free parameter. We thus arrive at �nal
estimates for the leading FSS amplitudes of A�=1:996(20) and A�=0:710(38), which
agree quite well with the conjectured amplitudes of Aconj� =1=x�=1:9324(19) and A

conj
� =

1=x�=0:70711(35). Finally, comparing the measured amplitude ratio of A�=A�=2:81(15)
with the conjectured one of x�=x�=2:7326(16) we �nd nice agreement as well. So, our
results imply that for the S2 × R-geometry the same degree of universality as in 2D
is obeyed. The fact that the quite crude approximation (C) to the sphere gives correct
results even for the amplitudes, is quite strong evidence for their universality. It would
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Fig. 1. (a) FSS plot for the spin correlation length ��(R). (b) Scaling of the amplitudes ��=R. The horizontal
line indicates the conjectured amplitude.

Table 1
Correlation length amplitudes of the Ising, XY, and Heisenberg models on T 2 × R

n A� A� A�=A� x�=x� A

pbc 0.8183(32) 0.2232(16) 3.666(30)
1 2.7326(16)

apbc 0.23694(80) 0.08661(31) 2.736(13) 0.12262(43)

pbc 0.75409(59) 0.1899(15) 3.971(32)
2 2.923(7)

apbc 0.24113(57) 0.0823(13) 2.930(47) 0.12486(47)

pbc 0.72068(34) 0.16966(36) 4.2478(92)
3 3.091(8)

apbc 0.24462(51) 0.0793(20) 3.085(78) 0.12625(49)

be interesting to test this universality with even more distorted discretizations like the
“pillow”-geometry of Ref. [11] and to check if it also holds for other universality
classes.

3. Systems with toroidal cross section

The e�ect of boundary conditions on the behavior of the scaling law was studied in
the geometry T 2 ×R, which in contrast to S2 ×R is not conformally at. Simulations
were done on Lx × Ly × Lz lattices with Lx = Ly and pbc or apbc in the x and y
directions applied. To be able to check for the most general universality (iii) above
we choose di�erent dimensions of the order parameter in Eq. (4), thus analyzing the
Ising (n=1) model as well as the XY (n=2) and Heisenberg (n=3) models [13,14].
Fitting the estimates for the correlation lengths with ansatz (7), we arrive at the scaling
amplitudes listed in Table 1. In all three cases we obtain excellent agreement between
A�=A� and x�=x� in the case of the apbc systems and a clear divergence when choosing
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Fig. 2. (a) Amplitudes A of the relation �=Ax−1L versus the inverse dimension of the order parameter 1=n.
(b) Ratio of the scaling amplitudes A� and A�.

pbc. This underscores type (iii) universality for this relation. Furthermore, an analytical
study for the case of the spherical model, whose partition function coincides with the
n → ∞ limit, also obeys Eq. (2) in the case of apbc [13]. Since the systems with
apbc obey a scaling law of the form �(Lx) = A=x · Lx, it is of further interest to study
the behavior of the operator independent “meta”-amplitude A, which is 1=2� in the
case of the systems with spherical cross section in 2D and 3D (with Lx = 2�R). This
amplitude is inaccessible for the transfer matrix approach since the corresponding quan-
tum Hamiltonian is only de�ned up to an overall normalization. Using the amplitudes
A�=A=x� to determine A and x�=0:5175(5); 0:5178(15) and 0:5161(17) for the Ising,
the XY and the Heisenberg model, respectively, we arrive at the values listed in Table
1. Plotting these amplitudes as a function of the order-parameter dimension n reveals
that they, in contrast to the 2D case, in fact vary with n and thus universality of type
(iii) is lost for the T 2×R systems, cf. Fig. 2(a). Notice that the amplitude A ≈ 0:13624
[17–19] for the spherical model �ts well into the variation encountered for �nite n.
Plotting the amplitude ratios A�=A�, on the other hand, shows the expected behavior
for �nite n, but an astonishing jump between the eye-ball extrapolation for n → ∞
and the spherical model result, cf. Fig. 2(b). Since we know from the 1=n expansion
that critical exponents vary smoothly and monotonically with n, for the n→ ∞ limit it
is neither plausible that the amplitude ratios of the systems with pbc and apbc should
coincide, nor that one of the two ratios should approach the value 2 of the spherical
model. Instead one would expect the ratios to converge to a value around 4 in the
case of the apbc and about 6 for pbc. This view is supported by further results for the
n=10 case [15], which match the eye-ball extrapolation. Comparing Fig. 2(a) with (b)
it becomes clear that this discontinuous behavior must be entirely due to the variation
of the energy amplitude A�. And indeed, directly evaluating the scaling dimension of
the energy density in the spherical model results in x�=1 [17–19], which together with
x� = 1

2 makes up a ratio of 2; using the scaling relation x� = (1 − �)=�, on the other
hand, with � = 1 and � = −1 suggests x�=x� = 4, coinciding with the expectation for
the n → ∞ limit. This behavior might be connected to the asymmetry of the speci�c
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heat around the critical point in the spherical model [20]: below Tc a constant Cv
(�=0) suggests x�=1, while above Tc a cusp singularity with �=−1 would result in
x� = 2. Thus, the discontinuity could be explained with a vanishing amplitude of the
speci�c-heat singularity below Tc that could be interpreted as e�ectively resulting in a
vanishing exponent � = 0. More analytical work is necessary to fully understand this
subtle point.

4. Conclusions

Using a high-precision single-cluster MC method, we examined possible extensions
to 3D geometries of a prominent scaling law involving the amplitudes that can be
proven analytically in 2D. For the 3D geometry S2×R we �nd Cardy’s conjecture (3) to
hold for the Ising model, specializing on the operators primary in 2D. There is no reason
to believe for this 3D case in a deviation from the full degree of “hyper”-universality
found in 2D. Dropping the condition of conformal atness and thus loosing any direct
connection to CFT methods, scaling law (2), nevertheless, can be retained on the
geometry T 2 × R when changing the boundary conditions from the usual pbc case
to apbc, as explicitly checked for the Ising, XY and Heisenberg models. The degree
of universality in this case, however, is restricted to the aspects (i) and (ii) above
(aspect (i) is discussed in Refs. [8,9,12]). The overall “meta”-amplitude A gets, in
contrast to the 2D case, model dependent as shown for the class of O(n) spin models.
Comparing this variation with an analytical result for the spherical model we encounter
a discrepancy that makes it unplausible that the n → ∞ limit of the O(n) model
coincides with the spherical model in this respect. Thus, the widely used notion of
“equivalence” between those two models is reduced to the identity of partition functions
as originally stated by Stanley [21,22], while observables that cannot be written as
derivatives of the partition function do not coincide in all cases. We want to emphasize
that there is up to now no theoretical explanation for why changing the boundary
conditions from pbc to apbc should be essential, but in view of the lack of exact
results for 3D systems we consider it a rewarding task to explain these observations.
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