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A recently developed technique to determine the order and strength of phase transitions by extracting the den- 
sity of partition function zeroes (a continuous function) from finite-size systems (a discrete data set) is generalized 
to systems for which (i) some or all of the zeroes occur in degenerate sets and/or (ii) they are not confined to 
a singular line in the complex plane. The technique is demonstrated by application to the case of free Wilson 
fermions. 

1. INTRODUCTION 

Lattice regularization of a quantum field the- 
ory renders the system a statistical mechanical 
one. The issues of phase transitions and their 
properties become, therefore, of central impor- 
tance. While a true phase transition can only 
occur for a system of infinite extent, the non- 
perturbative computational approach to lattice 
field theory and statistical physics accesses only 
systems of limited size. The partition function of 
such a system can be written as a polynomial in 
an appropriate temperature-like or field-like vari- 
able and the complex zeroes of such a polynomial 
encode all of the information on the behaviour of 
standard thermodynamic quantities. 

Traditional statistical mechanical techniques 
involving partition function zeroes are mainly 
confined to analysing the zeroes closest to the real 
axis, as these are the strongest contributors to the 
critical or pseudocritical behaviour. However, a 
full understanding of the critical properties of the 
infinite-size system requires knowledge of the den- 
sity of zeroes too. It has long been known that 

*WJ and DJ were partially supported by the EC IHP 
network HPRN-CT-1999-000161: Discrete Random Ge- 
ometries: From Solid State Physics to Quantum Gravity, 
and DJ and RK were partially supported by an Enterprise 
Ireland/British Council Research Visits Scheme. RK also 
wishes to thank the TrinLat collaboration for its hospital- 
ity during an extended stay at Trinity College Dublin. 

the density of zeroes for a finite-size system would 
provide a lucrative source of information but a re- 
liable technique for the extraction of this quantity 
from numerical data proved elusive. 

Recently, however, some of us have succeeded 
in providing just such a technique [1,2]. The gen- 
eral idea is to focus on the integrated density of 
zeroes rather than directly on the density itself, 
which, for a finite system, is a series of delta- 
functions. This new method has been seen to 
be quite reliable and robust and is applicable to 
phase transitions of the temperature-driven [l] 
and field-driven [2] types and to transitions of first 
and higher order. For a comparison between this 
and other approaches, see [3]. 

For systems hitherto analysed, the zeroes of 
the partition function had two special properties, 
which seem to be common to the bulk of standard 
models encountered in statistical physics. These 
are (i) the zeroes are all simple zeroes (zeroes of 
order one) and (ii) they lie on a curve called the 
singular line, which impacts on to the real axis 
at the phase transition point. 

The question now arises as to the generality 
of the techniques developed in [1,2]. Here, we 
show how the methods can indeed be extended 
to systems for which some or all of the zeroes 
occur in degenerate sets and/or they are not con- 
fined to a singular line, but instead form a two- 
dimensional pattern in the complex plane. Such 
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two-dimensional patterns of zeroes have been ob- 
served in various lattice field theory and statis- 
tical physics models [4,5]. Here, we demonstrate 
the extended technique by application to the case 
of free Wilson fermions. The zeroes of this lattice 
field theory display the two new features we wish 
to address. 

The partition function for a lattice of finite 
extent, L, is .ZL(Z) cx flj (z - zj(L)), where z 
is an appropriate coupling parameter. In the 
case where the zeroes, zj, are on a singular 
line impacting on to the real axis at the crit- 
ical point, zC, they can be parameterised by 
zj = Z, + rj exp (icp). The density is then de- 
fined as gL(r) = Lpd Cj 6(r - r-j(L)). The cumu- 
lative distribution function of zeroes is Gr,(r) = 
JigL(s)ds, which is j/Ld if r E (rj,rj+l). At a 
zero one assumes the cumulative density is given 
by the average 

GL(rj) = (2j - 1)/2Ld (1) 

In the thermodynamic limit, for a second-order 
transition, the integrated density is, in fact [6], 

G,(r) cx r2-a , (2) 

where a is the usual critical exponent associated 
with specific heat. Standard finite-size scaling 
emerges quite naturally from this approach [l]. 

2. GENERAL DISTRIBUTIONS OF ZE- 
ROES 

A departure from smooth linear sets of zeroes 
was found in 1984 when it was shown that for 
anisotropic two-dimensional lattices there can ex- 
ist a two-dimensional distribution (area) of zeroes 
[4]. Since then, a host of systems have been dis- 
covered with this feature. A common character- 
istic of all two-dimensional distributions of zeroes 
is that they cross the physically relevant real axis 
at only one point, in the thermodynamic limit, 
corresponding to the phase transition. 

For such two-dimensional distributions, the 
density of zeroes in the infinite-volume limit has 
been shown to be [7] 

9(&Y) = Y1-a-Yf ; ( ) > 

where (z, y) give the location of zeroes with the 
critical point as the origin. Integrating out the 
z-dependence yields [7] 

s 

x2 
9(Y) = g(x, y)dx 0: y’-a . (4) 

XI 
where ICI and 22 mark the extremities of the dis- 
tribution of zeroes at a distance y from the x axis. 
Integrating again, to determine the cumulative 
density of zeroes at the point r in the y-direction, 
yields an expression identical to (2). Thus, the 
strength of the transition, as measured by cr, can 
be determined by similar methods to those pre- 
viously used. Rather than counting the zeroes 
along the singular line, one now counts them up 
to a line y = r within the two-dimensional domain 
they inhabit. 

The second new feature we wish to accommo- 
date is the existence of degeneracies in the set 
of zeroes. If a number of zeroes coincide, GL, 
as defined in (l), is multivalued and is no longer 
a proper function. A more appropriate density 
function is determined as follows. Suppose, in 
general, that z3 = zg+i = . . = ++,-I are n-fold 
degenerate. It is easy to convince oneself that the 
densities to the left and right of an actual zero are 

GL(r) = j + 72 - 1 
j-1 

for r E (rg+n- 1, rj+n) (5) 
for r E (r3-l,r,). 

The density at the n-fold degenerate zero, r3, is 
again sensibly defined as an average: 

Gr.(r,)=&(j+i-1) 

This is the most general formula for extracting 
the density of any distribution of zeroes and deals 
with two-dimensional spreads and degeneracies. 

3. APPLICATION 

We wish to test the above technique in a sit- 
uation with the two new features of interest - 
namely a two-dimensional set of degenerate ze- 
roes. The free Wilson fermion model is an ideal 
testing ground and its zeroes in two dimensions 
are easily generated exactly [S]. The zeroes for a 
system of size L = 40 are depicted in Fig. 1 in the 
complex z = l/2& plane. Here IC is the hopping 
parameter. 
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Figure 1. The partition function zeroes for free 
Wilson fermions on a 40 x 40 lattice, where .z = 
1/2~. is the inverse hopping parameter. 

We generated zeroes for a wide range of lat- 
tices, and their distributions, as given by (6), are 
plotted in Fig. 2. The data collapses onto a uni- 
versal curve which goes through the origin, indi- 
cating that (6) is indeed a suitable form for the 
density of zeroes and indicating the occurence of 
a phase transition. Fits close to the origin yield 
an exponent compatible with the expected value, 
LI: = 0. The error estimates appropriate to such 
a fit are non-trivial and we leave their discussion 
to a separate publication [9]. 

4. CONCLUSIONS 

A new method to extract the (continuous) den- 
sity of zeroes from (discrete) finite-size data has 
been extended to deal with the case of two- 
dimensional distributions of zeroes and systems 
in which the zeroes occur in degenerate sets. The 
method has been demonstrated in an application 
to the free Wilson fermion model and seen to be 
capable of direct determination of the strength of 
the phase transition as measured by the critical 
exponent cy. 
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