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We show that it is possible to determine the locus of Fisher zeroes in the thermodynamic limit for the Ising 
model on planar ("fat") ~b 4 random graphs and their dual quadrangulations by matching up the real part of the 
high- and low-temperature branches of the expression for the free energy. Similar methods work for the mean-field 
model on generic, "thin" graphs. Series expansions are very easy to obtain for such random graph Ising models. 

1. I N T R O D U C T I O N  

0ne  of the more remarkable results to emerge 
from the study of various statistical mechani- 
cal models coupled to two-dimensional quantum 
gravity is a solution of the Ising model in field [1]. 
In discrete form the coupling to gravity takes the 
form of the spin models living on an annealed en- 
semble of triangulations or quadrangulations, or 
their dual planar graphs. The parti t ion function 
for the Ising model on a single graph G n with n 
vertices 

Zsingle(Gn,t3, h) = E e  B~'i,j) °'i«j+hEi#i (1) 
{«} 

is promoted to a parti t ion function which incor- 
porates a sum over some class of graphs {G n } by 
the coupling to gravity, 

Zn(~, h) = E Zslngle(Gn' 13, h). (2) 
{G-} 

The solt~tion to the Ising model in [1] proceeded 
by first ,forming the grand canonical parti t ion 
function 

Z = E Zn(,6, h) (3) 
n----1 

and then noting that  this could be expressed as 
the free energy / ( [1 .  
Z = - l o g  79¢1 :D¢2 exp - T r  ~(¢1 +¢~)  
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"(o~~1' + o-~~~)]) (4) - c ¢ 1 0 2  + 

of a matr ix model, where we have written the 
potential tha t  generates ¢4 graphs. In the above 
¢1,2 are N × N Hermitian matrices, c = exp ( -2~)  
and the N --+ c~ limit is performed in order to 
pick out planar graphs. The graphs of inter- 
est are generated as the Feynman diagrams of 
the "action" in equ. (4), which is constructed so 
as to weight each edge with the correct Boltz- 
mann weights for nearest-neighbour interaction 
Ising spins. Since the edges carry matrix indices 
the graphs in question are "fat" or ribbon graphs. 

The integral of equ. (4) can be evaluated using 
the results of [2] to give (when h = 0) 

1 ( g ) 1  ao ]-fzdt 1 
Z = ~ log - g  2-~ g(t) 2, (5) 

where g is defined by [1 ] 
g(z)=3c2z 3 + z  ( 1 - - 3 z )  2 c 2 . (6) 

2. Z E R O E S  

The idea that  the zeroes of the parti t ion func- 
tion could determine the phase structure of a spin 
model first appeaxed in Lee and Yang's work [3]. 
They  considered how the non-analyticity charac- 
teristic of a phase transition appeared from the 
parti t ion function on finite lattices or graphs, 
which was a polynomial 

Z =  E m n Dmnc y (7) 
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for a lattice with m edges and n vertices, again 
with c -- exp(-2/3),  y -- exp( -2h) .  They (and 
Fisher [4]) showed that  the behaviour of the ze- 
roes of this polynomial in the complex y or c 
plane, in particular the limiting locus as m, n --~ 
0% determined the phase structure. For temper- 
ature driven transitions, in zero external field for 
simplicity, the thermodynamic limit of the free 
energy on some class of lattices or graphs {G n) 
becomes 

F ( G  ~,/3) ..~ - fL  dcp(c)ln(c - c(L)), (8) 

where L is some set of curves, or possibly regions, 
in the complex c plane on which the zeroes have 
support and p(c) is the density of the zeroes there. 

The general question of how to extract  the lo- 
cus of zeroes analytically has been considered by 
various authors, notably Shrock and collabora- 
tors [5] for Ising and Potts  models. It was first 
observed in [6] that  such loci could be thought 
of as Stokes lines separating different regions of 
asymptotic behaviour of the parti t ion function in 
the complex temperature  or field planes. More 
recently, the case of models with first-order tran- 
sitions has been investigated by Biskup et al. [7] 
who showed that  the partit ion function of a statis- 
tical mechanical model defined in a periodic vol- 
ume V which depends on some complex parame- 
ter such as c o r  y can be written in terms of com- 
plex functions Fl describing k different phases, 
where the various Ft are the metastable free en- 
ergies per unit volume of the phases, ~Ft = F 
characterises the free energy when phase l is sta- 
ble. The zeroes of the partit ion function are then 
determined from the solutions of the equations 

~b] = ~F,~ < ~Fk, Vk ¢ l, m, 

ÔV(~Fl -- .~Fm) = r mod 2~r. (9) 

The equations (9) are thus in perfeet agreement 
with the idea that  the loci of zeroes should be 
Stokes lines, since the zeroes of Z lie on the com- 
plex phase coexistenee eurves ~Fl = ~Frn in the 
complex parameter  plane. 

The specific Biskup et al. results apply to mod- 
els with first-order transitions, but we are inter- 
ested hefe in an Ising model with a third-order 
transition, so it might initially seem that  these 

results were inapplicable. We are saved by the 
fact that  when considered in the complex tem- 
perature plane the transition is continuous only at 
the physical point itself (and possibly some other 
finite set of points). 

3. F A T ( A N D  T H I N )  Z E R O E S  

The determination of the locus of Fisher zeroes 
for the Ising model on random graphs in the ther- 
modynamic limit using the ideas of the previous 
section turns out to be rather straightforward, as 
we now describe. Since we wish to match ~ F  
between the various solution branches to obtain 
the loci of Fisher zeroes and F , log(g(c)) for 
the Ising model on planar graphs, the equation 
which determines the loci of zeroes in the ther- 
modynamic limit is 

log [9L (c)[ = log [9tt, (c) l, (10) 

where the low-temperature solution gL(C) and 
the various high-temperature solutions gH~ (c) are 
given by solving g'(z) = 0 in equ. (6) for z. 

The resulting eurve is shown in the c plane in 
Fig. 1 where it ean be seen that  in addition to the 
physieal phase transition at e -- 1/4, an unphys- 
ical transition with the same KPZ [8] exponents 
appears at c = - 1 / 4 .  The interior of the curve 
is the ferromagnetic region and the exterior the 
paramagnetic and unphysieal phases, separated 
by euts on the imaginary axis whieh we have not 
plotted. 

The points plotted in Fig. 1 are generated from 
a series expansion of Z in equ. (5), which is ar- 
rived at by reverting the expression for g(z) and 
substituting the resulting z(g ) into equ. (5). Ear- 
lier work reported in [9] obtained similar results 
at lower orders. The form of the expression for 
Z means that  the contributions from eaeh of the 
terms in equ. (5) are proportional [10], so the full 
series for Z ean be generated from ½ log (z /g) .  

The loci of Fisher zeroes are highly non- 
universal, and we also show the zeroes on "thin", 
generic random ¢3 graphs for comparison in 
Fig. 2. These models ean be thought of as the 
N --+ I limit of the matr ix models, rather than 
the N -~ oo planar limit. Similar methods to 
those diseussed above also serve in this ease where 
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Figure 1. The Fisher zeroes on rat ¢4 graphs in 
the complex c plane. 

Figure 2. The Fisher zeroes on thin ¢3 graphs in 
the complex c plane. 

one has mean-field behaviour [11]. For the Ising 
model on thin graphs F ,~ log S, where S is the 
saddle point action for either the low- or high- 
temperature phase. The equivalent of equ. (10) 
is then 

12(1 - c)3l  = I(1 + c )2(1  - 2c) l .  (11)  

Potts zeroes and chromatic zeroes are also acces- 
sible on the thin graphs. 

In summary, we have seen that an analytic de- 
termination of Fisher zeroes for the Ising model 
on both fat and thin random graphs is possi- 
ble, and that series expansions are easily ob- 
tainable. The general form of the solution also 
holds on (planar) random quadrangulations and 
¢3 graphs, and in non-zero field, so all of these 
can also be investigated. 
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