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Abstract

The compact Abelian Higgs model is simulated on a cubic lattice where it possesses vortex lines and
pointlike magnetic monopoles as topological defects. The focus of this high-precision Monte Carlo study is
on the vortex network, which is investigated by means of percolation observables. In the region of the phase
diagram where the Higgs and confinement phases are separated by a first-order transition, it is shown that
the vortices percolate right at the phase boundary, and that the first-order nature of the transition is reflected
by the network. In the crossover region, where the phase boundary ceases to be first order, the vortices
are shown to still percolate. In contrast to other observables, the percolation observables show finite-size
scaling. The exponents characterizing the critical behavior of the vortices in this region are shown to fall in
the random percolation universality class.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Abelian Higgs model with a compact gauge field formulated on a three-dimensional (3D)
lattice possesses an intriguing phase structure [1–3]. In addition to the Higgs state where the
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photon acquires a mass, it exhibits a state in which electric charges are confined. The richness
of the model, which serves as a toy model for quark confinement, stems from the presence of
two types of topological excitations, viz. vortex lines and magnetic monopoles. The latter are
point defects in three dimensions which arise because of the compactness of the U(1) gauge
group. In the pure 3D compact Abelian gauge theory, monopoles are known to form a plasma
that physically causes confinement of electric charges for all values of the inverse gauge coupling
β [4]. Being the only parameter present, the pure model therefore possesses only a confinement
phase. The coupling to the scalar theory preserves this confinement state and gives in addition
rise to a Higgs state. For sufficiently small values of the Higgs self-coupling parameter λ, the
two ground states are separated by a first-order transition [5,6] as sketched in Fig. 1. For λ

larger than a critical value λc, which depends on the value of the gauge coupling, the two states
are no longer separated by a phase boundary across which thermodynamic observables become
singular, as was first shown by Fradkin and Shenker [1] in the limit λ → ∞ where fluctuations
in the amplitude of the Higgs field become completely suppressed. In other words, it is always
possible to cross over from one ground state to the other without encountering a thermodynamic
singularity. Because of this, the Higgs and confinement states were thought to constitute a single
phase, despite profound differences in physical properties.

This conclusion is supported by symmetry arguments [7]. The relevant global symmetry group
of the compact 3D Abelian Higgs model (cAHM) is the cyclic group Zq of q elements, where
the integer q denotes the electric charge of the Higgs field. For the doubly charged case (q = 2),
the relevant symmetry group is Z2, which is in agreement with the known result that the model
undergoes a continuous phase transition belonging to the 3D Ising universality class [1,8]. For
q = 1, this argument excludes a phase transition characterized by a local order parameter in
the spirit of Landau because the group Z1, which consists of only the unit element, cannot be
spontaneously broken. Stated differently, there exist no local order parameter which distinguishes
the Higgs from the confinement state.

In Ref. [9], we argued that the phase diagram is more refined than implied by this picture.
We conjectured that although analytically connected, the two ground states can be considered
as two distinct phases. The nature of the phase boundary is intimately connected to the distinct
physical properties of the Higgs and confinement phase. For the latter phase to confine electric
charges, the monopoles must form a plasma. This in turn can only happen when the line tension
of the vortex lines, or flux tubes, connecting monopoles and antimonopoles vanishes, so that
they are no longer tightly bound in pairs as in the Higgs phase (for typical configuration plots see
the snapshots in Fig. 1). Since the vortex line tension is finite in the Higgs phase and zero in the
confinement phase, we argued that the phase boundary is uniquely defined by the vanishing of the
vortex line tension, irrespective of the order of the phase transition. The confinement mechanism
operating in the 3D cAHM is essentially the dual superconductor scenario [10,11].

In addition to open vortex lines, each having a monopole and an antimonopole at its endpoints,
the system also possesses closed vortex lines. These are expected to be characterized by the
same line tension as the open lines. Because of the finite line tension, large vortex loops are
exponentially suppressed in the Higgs phase. Upon approaching the phase boundary, the line
tension becomes smaller so that the vortex network can grow larger and the overall line density
increases. Finally, at the phase boundary where the line tension vanishes, vortices can grow
arbitrarily large at no energy cost. The phase boundary between the Higgs and confinement
phase is therefore expected to be marked by a proliferation of (open and closed) vortex lines, as
was first proposed by Einhorn and Savit [12]. The vortices proliferate both in the region where
the transition is first-order and in the region where it is not. A line along which geometrical
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Fig. 1. Sketch of the phase diagram of the Abelian lattice Higgs model as a function of the Higgs self-coupling para-
meter λ and the hopping parameter κ at fixed inverse gauge coupling β . For λ < λc the transition from the confined
to the Higgs phase is of first-order. For λ > λc ordinary observables show no singular behavior and signal a crossover
between the two ground states indicated by the dark region emanating from the point where the first-order transition line
terminates.

objects proliferate, yet thermodynamic quantities and other local gauge-invariant observables
remain nonsingular has become known as a Kertész line [13]. Such a line was first discussed in
the context of spin clusters in the 2D Ising model in an applied magnetic field.

The same deconfinement transition driven by the proliferation of vortices with a phase bound-
ary consisting of a first-order line which ends in a critical point and then continues as a Kertész
line was originally proposed by Langfeld for the SU(2) counterpart of the Abelian Higgs model
defined on a 4D lattice [14]. The relevant vortices, forming surfaces in 4D, are center vortices
which carry a flux related to the nontrivial element of the Z2 center of the SU(2) gauge group.
The presence of the Kertész line in this non-Abelian model has been further numerically investi-
gated and confirmed in Ref. [15]. While the concept of a Kertész line was originally introduced in
the context of lattice gauge theories in Ref. [16], the interpretation of a deconfinement transition
as driven by percolating vortices was previously put forward in the context of the SU(2) lattice
Higgs model [17–19], and the pure SU(2) lattice gauge theory [20–22].

The purpose of this Monte Carlo study is to investigate the vortex proliferation scenario sug-
gested in Refs. [9,23] by studying the behavior of the vortex network directly. Because vortices
are geometrical objects, their analysis is amenable to the methods developed in percolation the-
ory [24]. We conjectured in Refs. [9,23] that along the Kertész line, percolation observables have
the usual percolation exponents. In addition, we expect that the vortex network displays discon-
tinuous behavior in the region where the phase boundary consists of a first-order transition. For
other recent Monte Carlo studies focusing on various aspects of the model see Refs. [25–27] and
references therein.

A similar high-precision Monte Carlo study of the behavior of a vortex network was recently
carried out of the 3D XY and the |φ|4 lattice model [28,29], respectively. The latter model, whose
critical temperature on a cubic lattice is known to high precision, corresponds to taking β → ∞
in the Higgs model so that the gauge fields become completely ordered. An important observa-
tion made in that study was that the overall vortex line density behaves similar to the energy,
and the associated susceptibility similar to the specific heat. The vortex percolation threshold
estimated through finite-size scaling analysis of the overall line density data was found to be
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perfectly consistent with the critical temperature. However, estimates based on any of the vor-
tex percolation observables used, while being close to that temperature, never coincided with it
within error bars. Possibly, the mismatches are related to the way the vortex networks are traced
out, or to the absence of a stochastic element as present in, for example, the Fortuin–Kasteleyn
definition of spin clusters in the Potts model [30]. In any case, since we use the same percolation
observables and the same (imperfect) rules to trace out vortex networks, we expect to find a sim-
ilar mismatch, at least in the region where the transition is no longer discontinuous. To remind
the reader of these qualifications, we will sometimes refer to the estimated percolation threshold
as “apparent percolation threshold”.

The rest of the paper is organized as follows. In the next section, the observables used to in-
vestigate the model are introduced. In Section 3, the simulation methods as well as the numerical
tools used to analyze the data are discussed. In that section, also a new tool to effectively collapse
data gathered on lattices of different size is presented. Sections 4 and 5 contain the Monte Carlo
results in the vicinity of the phase boundary for the two regions where it consists of a first-order
transition and a Kertész line, respectively. In Section 6, the dependence of the location of the per-
colation threshold is investigated as a function of the parameters of the model. Finally, Section 7
contains a discussion of the Monte Carlo results and our conclusions.

2. Definitions and observables

The Abelian lattice Higgs model with compact gauge field at the absolute zero of temperature
is defined by the action S = Sg + Sφ , with the gauge part

(1)Sg = β
∑

x,μ<ν

[
1 − cos θμν(x)

]
,

where β is the inverse gauge coupling parameter, β = 1/aq2 with a the lattice spacing and q the
electric charge of the Higgs field. We exclusively consider the case q = 1. The doubly charged
Higgs field (q = 2), which has an even richer topological structure than the q = 1 case, has
recently been investigated in Ref. [31], where it was found that the monopoles form chains. The
sum in Eq. (1) extends over all lattice sites x and lattice directions μ, and θμν(x) denotes the
usual plaquette variable θμν(x) = �μθν(x) − �νθμ(x) with the lattice derivative �νθμ(x) ≡
θμ(x + ν) − θμ(x) and the compact link variable −π � θμ(x) < π . The matter part Sφ of the
lattice action is given by

(2)Sφ = −κ
∑
x,μ

ρ(x)ρ(x + μ) cos
[
�μϕ(x) − qθμ(x)

] +
∑
x

{
ρ2(x) + λ

[
ρ2(x) − 1

]2}
,

where polar coordinates are chosen to represent the complex Higgs field φ(x) = ρ(x)eiϕ(x), with
the compact phase −π � ϕ(x) < π . In Eq. (2), κ is the hopping parameter, and λ the Higgs self-
coupling. We study the theory on a cubic lattice, which either is taken to represent a 3D space
or spacetime box, depending on whether one of the dimensions of the lattice is interpreted as
(Euclidean) time.

In addition to measuring field observables such as the total action or energy S, the hopping
energy

(3)Eh ≡ 1

L3

∑
x,μ

ρ(x)ρ(x + μ) cos
[
�μϕ(x) − qθμ(x)

]
,
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the square Higgs amplitude, and coslink energy

(4)C ≡ − 1

3L3

∑
x,μ

cos
[
�μϕ(x) − qθμ(x)

]
,

we especially probe for topological excitations. A gauge invariant vortex line segment jλ(x)

pointing in the λ = 1,2,3 direction is given by

(5)jλ(x) = ελμν∇μlν(x) − nλ(x),

where lμ(x) is the integer-valued field related to the electric current along the links of the lattice
via

(6)lμ(x) = 1

2π

{∇μϕ(x) − qθμ(x) − [∇μϕ(x) − qθμ(x)
]

2π

}
,

and nλ(x) measures the multiples of 2π with which the plaquette variable is shifted away from
the interval [π,π):

(7)nλ(x) = 1

2π
ελμν

{
θμν(x) − [

θμν(x)
]

2π

}
.

Here, we use the usual modulo operation [a]2π ≡ α − 2πn which subtracts n multiples of 2π

from the variable α such that [a]2π takes values in the interval [π,π). While lμ(x) measures the
quantized vorticity, nλ(x) gives the number of elementary Dirac strings piercing the plaquette
with its normal pointing in the λ direction.

Monopoles are detected by taking the divergence of jμ, m(x) = ∇μjμ(x), where m(x) takes
on integer values only. Using these definitions, we record the vortex line and monopole densities

(8)v ≡ 1

L3

∑
x,μ

∣∣jμ(x)
∣∣, M ≡ 1

L3

∑
x

m(x).

As already mentioned in the Introduction, in the |φ|4 theory, v behaves similar to the energy and
the associated susceptibility similar to the specific heat [29]. A short summary of results for the
observables not involving vortices can be found in Ref. [9].

The main focus in this paper is on the vortex networks formed by individual vortex lines (see
Fig. 2). Tracing out such a network is ambiguous. We restrict ourselves to the simplest conven-
tion by defining a vortex line, which can be either open or closed, as a set of connected vortex
line segments. Line segments are said to be connected if they enter or leave the same lattice
cube. With this convention, four or six line segments entering and leaving a single cube are not
further resolved into separate vortices, but are lumped together into one, self-intersecting vortex.
The size n of a vortex is just the number of links forming the vortex. Vortex line segments with
|jμ| � 2 are not split into distinct segments and are only counted once in the vortex density. The
vortex networks found with the help of these tracing rules are therefore only an approximation
to the true networks. And the observed, or apparent percolation threshold will in general differ
from the true one. We trace out the vortex networks by using a recursive algorithm and employ
standard percolation observables to probe them [24]. Specifically, we determine the percolation
probability P1D by recording when a vortex spans the lattice in an arbitrary direction. This defini-
tion is such that a vortex is already said to percolate when it spans the lattice in just one, arbitrary
direction. We also determine the probability P3D that a vortex spans the lattice in all directions,
and the percolation strength P∞, defined as the size of the largest vortex per lattice site. We have
in addition considered the average vortex size, but this data is not well suited for analyses as we
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Fig. 2. Networks formed by vortex lines. The small spheres represent monopoles and antimonopoles. Left: Higgs phase,
characterized by a few short vortex lines which can either be closed or open. Right: Confinement phase, characterized by
a large percolating vortex network.

also found in previous studies on simpler models [32]. Finally, we use the susceptibility

(9)χ(O) = (〈
O2〉 − 〈O〉2)L3

(without the L3 for P1D and P3D) and the Binder parameter

(10)B(O) = 1 − 〈O4〉
3〈O2〉2

of an observable O to probe the phase boundary.

3. Simulation and data analysis techniques

3.1. Monte Carlo

A variety of Monte Carlo methods are applied to efficiently simulate the system in the differ-
ent parts of the phase diagram. In the first-order transition region, primarily the multicanonical
algorithm (MUCA) [33] is used with a weight iteration as described in Ref. [34]. Weights are
rendered flat in the hopping term (3) of the action to enhance tunneling. In addition to local up-
dates, the Higgs amplitude and the gauge angles are also updated globally [35] to allow for larger
jumps in phase space and thus for shorter tunneling times between the two metastable states. In
the vicinity of the Kertész line, the gauge fields are updated using the Metropolis algorithm,
while the Higgs field is updated by means of heat-bath and overrelexation algorithms [36].

Measurements are typically taken after each sweep of the lattice and the entire time series
is recorded to allow for error analysis and post-simulation data processing. Table 1 provides an
overview of parameters used in the simulations. An integral part of our analysis are Ferrenberg–
Swendsen reweighting techniques [37,38]. These techniques are applied in two distinct flavours.
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Table 1
Number of sweeps of the lattice of linear size L and the number of different values of κ considered for each lattice used
in the simulations

β λ L Sweeps Different κ values

1.1 0.2 10,12,14,16,18,20,22,24,26,30,32,42 105–106 20
0.75 8,10,12,16,20 105 20
0.025 8,10,12,14,16,18,20 107 1 (MUCA)

2.0 0.2 8,10,12,14,16,20,24,28,36 106 10

Fig. 3. Data points for the susceptibilities χ(P1D) and χ(C) (multiplied by 400) for β = 2.0, λ = 0.2 and different values
of κ and their interpolating lines obtained through reweighting. The measurements are taken on a cubic lattice of linear
size L = 36.

In the Kertész region, we use the multihistogram reweighting form, which means that we com-
bine simulations at different parameters in an optimal way. Standard reweighting with MUCA
weights is applied in the first-order transition region. To apply these techniques in the best pos-
sible way we use optimization routines such as the Brent method [39,40] to search for maxima
in susceptibilities or crossing points of Binder parameters. The use of the Jackknife method [41]
on top of these methods allows for error estimation of the results so determined.

As an example of this approach, we show in Fig. 3 the susceptibilities of the percolation
probability P1D and the coslink energy C. Note that the peak height of χ(P1D) is exactly 1/4,
since 〈P 2

1D〉 = 〈P1D〉 and hence χ(P1D) = 〈P1D〉(1 − 〈P1D〉) is maximal at 〈P1D〉 = 1/2. The
points in the plot correspond to individual simulations and the lines through the data points are
obtained by reweighting. Different lines in the figure correspond to having different Jackknife
blocks (but the same block in each time series) omitted. Notice that the peak in the percolation
susceptibility is well defined whereas the peak in the coslink susceptibility is rather broad. The
flatness of the peak is reflected in larger error bars on the estimated peak location. We have
carefully checked our methods against known results for limiting cases such as the London limit
λ → ∞, where fluctuations in the Higgs amplitude are completely frozen, and the XY model,
obtained by setting in addition β = ∞. A good check whether vortex lines and monopoles are
correctly identified is to perform a gauge transformation under which their locations are invariant.
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3.2. Finite-size scaling methods

We estimate critical exponents through finite-size scaling analyses. The scaling Ansatz for an
observable O states that in the vicinity of a continuous phase transition, the data obtained for
different values of the tuning parameter κ and for different lattice sizes L fall onto a (weakly)
universal scaling function fO defined through

(11)OL(κ) = LλO/νfO
(
tL1/ν

)
, t ≡ (κ − κc)/κc.

Here, κc denotes the critical point, ν the correlation length exponent, and λO is the critical
exponent characterizing the observable O. The variable t is the reduced coupling and measures
the distance from the critical point.

Data collapse is usually a good check whether the right critical exponents and critical cou-
plings are found by other means. With the correct values, the measured data should fall on the
universal curve given by Eq. (11). Here, we reverse this idea. Starting from an initial guess for the
critical exponents and couplings, we compute the rescaled observable ÔL(x) = OL(κ)L−λO/ν

with x = tL1/ν and judge the quality of the collapse in the interval [xmin, xmax] by introducing
the weight function

(12)σ 2
O ≡

xmax∫
xmin

dx
[
Ô2

L(x) − {ÔL}2(x)
]
,

with ÔL(x) ≡ ∑
L ÔL(x)/nL and nL the number of different lattice sizes included in the sum∑

L. A perfect collapse in the window [xmin, xmax] would correspond to σ 2
O = 0, whereas a bad

collapse has a large σ 2
O . This approach qualifies for implementation as an automated method

when combined with optimization algorithms to minimize σ 2
O by adjusting the values of the

critical parameters. The method requires that data in each point in the interval [xmin, xmax] of the
rescaled x-axis be compared, most of which has not been measured. A possibility is to interpolate
between data points by using a polynomial expansion of the function fO and to fit its coefficients
to the data OL [42]. The fit then allows for calculating σ 2

O . We use a different approach in that
we apply the standard reweighting techniques mentioned above to calculate OL at every point
κ and hence ÔL at every point x. We feel that this approach is more natural and does not add
further degrees of freedom to the process.

In practice our implementation is as follows. We first reweight the measured data on all system
sizes. We then start with initial values for the exponents and couplings, and apply a minimization
algorithm, such as the simplex method [39,43], that varies the parameters until σ 2

O is minimized.
Since the algorithm can become locked in a local minimum, the procedure must be repeated
for many starting points. We find that for our purposes, where only three parameters need to be
determined, the routine gives reliable and consistent results. To obtain error estimates, we apply
the Jackknife method on top of the whole process. The effect of correction terms to scaling is
minimized by repeating the procedure for increasingly smaller intervals [xmin, xmax] around the
point where collapse is attempted. We expect our tool to be useful in other simulation studies as
well. An idea similar to our implementation was recently presented in Ref. [44].

4. First-order transition region

We start our numerical study by investigating the behavior of the vortex network in the first-
order transition region of the phase diagram sketched in Fig. 1. We choose to simulate at β =
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Fig. 4. Left: Time series of a MUCA simulation showing the hopping energy Eh (upper curve) and percolation strength
P∞ (lower data points) for L = 16. The two observables are seen to be intimately connected. To fit in one plot, the
hopping energy is shifted upwards. Right: Correlation histogram of the number of configurations without a percolating
network over hopping energy Eh for system sizes L = 10 and 16. Note the logarithmic scale used on the vertical axis.

1.1 and λ = 0.025 where the first-order transition is strong enough already on small lattices
so that time consuming simulations on larger systems are not needed. The left plot in Fig. 4
shows time series of the hopping energy Eh and the percolation strength normalized by the
volume as measured in a typical MUCA simulation [33]. Changes in the energy, which reflect the
more or less random walk through the metastable region, are seen to occur jointly with changes
in the percolation strength. The right plot shows the correlation histogram of the number of
configurations without a percolating network versus hopping energy Eh. Larger negative energies
are seen to strongly correlate with the absence of a percolating vortex network while smaller
negative energies strongly correlate with the presence of such a network.

The central thesis we put forward in Ref. [9] is that the phase diagram of the model can
be understood in terms of proliferating vortices. In the first-order region, the location of the
phase transition has been determined to high precision with the help of observables not involving
vortices such as the hopping energy. To determine the location of the percolation threshold in
the infinite-volume limit, we consider the vortex percolation probability P1D and percolation
strength P∞, and analyze the scaling of the locations κper(L) of the maxima in the associated
susceptibilities and Binder parameters with lattice size L. At a first-order transition, κper(L) is
expected to scale as

(13)κper(L) = κper + cL−3 +O
(
L−6),

with c a constant. We reweight the MUCA time series to obtain the susceptibilities and Binder
parameters in the vicinity of κper(L), and use the methods presented above to search for the
peak locations and its error bars. Fig. 5 summarizes our results. It shows the scaling of the per-
colation thresholds κper(L) obtained from the percolation probability P1D and the percolation
strength P∞ together with the critical points κc(L) obtained from the hopping energy Eh and the
monopole density M . The κper(L)’s obtained from the network observables are seen to strongly
depend on the system size, while the κc(L)’s obtained from χ(M) are almost independent of
volume. The results for χ(Eh) are not included in Fig. 5 as they cannot be distinguished from
those for M on the scale of the figure. For lattice sizes larger than L = 12, all curves converge to
the same point within error bars. This brings us to the important conclusion that the vortex per-
colation threshold is located precisely at the first-order transition point. Our best estimate for the
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Fig. 5. Left: Binder parameters B(Eh) (upper curves) and B(P∞) (lower curves) as a function of κ in the first-order
transition region at β = 1.1, λ = 0.025 measured on lattices of linear size L = 10,12,14,16,20 (from broad to sharp
peaks). The Binder parameter B(P∞) has been divided by 100 so that both parameters fit into one plot. Right: Scaling
plots of the extrema of the various Binder parameters and susceptibilities. The Binder parameters show larger finite-size
corrections. All curves converge within error bars to the same infinite-volume value of κper = κc = 0.424570(3).

Table 2
Results of fitting the data in Fig. 5 to Eq. (13). The fits starting at L = 8 and L = 10 also include the correction term
1/L6. Those starting at L = 12 include only the leading term 1/L3, except for B(P∞), where the correction term is still
needed to obtain reasonable results. The number in square brackets denotes χ2 per degree of freedom (DOF), χ2/DOF.
Results are grouped according to percolation and non-percolation observables

Observable L � 8 L � 10 L � 12

χ(P1D) 0.424569(5) [1.6] 0.424569(5) [2.0] 0.424570(6) [2.3]
χ(P∞) 0.424572(6) [1.9] 0.424572(5) [2.2] 0.424573(6) [2.5]
B(P∞) 0.424608(10) [10.7] 0.424608(10) [13.1] 0.424577(6) [1.1]
χ(M) 0.424567(3) [2.4] 0.424566(5) [3.1] 0.424567(6) [4.2]
χ(Eh) 0.424564(5) [2.52] 0.424564(6) [3.1] 0.424564(6) [3.2]
B(M) 0.424558(5) [2.6] 0.424558(8) [3.5] 0.424555(5) [3.2]
B(Eh) 0.424565(6) [3.3] 0.424568(5) [3.9] 0.424566(6) [4.0]

transition point, based on both percolation and non-percolation observables, is κc = 0.424570(3)

which is determined from the average of the fit results summarized in Table 2. Averaging the esti-
mates for percolation and non-percolation observables separately, we obtain κper = 0.424572(4)

and κc = 0.424565(4), respectively. The absence of a mismatch between the critical temperature
and the vortex percolation threshold, as was found in the |φ|4 theory using the same percola-
tion observables [29], is probably because the phase transition is discontinuous here. An abrupt
change in the ground state apparently washes out any inaccuracy caused by an imperfect tracing
out of the vortex network. To establish in an unbiased fashion that the vortex network reflects
the first-order nature of the transition at β = 1.1 and λ = 0.025, we assume nothing about the
transition and apply standard finite-size scaling to the vortex percolation probability P1D as for a
continuous transition. According to Eq. (13), we then expect to find νper = 1/d = 1/3. To obtain
an estimate for the percolation threshold κper on the infinite lattice and νper, we reweight the data
points from the MUCA time series and subsequently apply our collapsing routine with κper and
νper as free parameters. Fig. 6 shows the input and the result of this procedure. The extracted
values, κper = 0.424568(6), νper = 0.325(10), are perfectly consistent with a first-order transi-
tion precisely at the expected location. For comparison, Fig. 6 also shows the hopping energy
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Fig. 6. Left: Reweighted hopping energy Eh and percolation probability P1D for various lattice sizes as a function of
the hopping parameter close to the first-order phase transition. The crossing points should provide a second method to
estimate the transition point. The estimates obtained using the two observables agree within error bars. Right: Collapse
of the P1D data with κper = 0.424568, νper = 0.325. An optimal collapse of the Eh data (not shown) is achieved for
κc = 0.424563 and ν = 0.338.

which is seen to display the same behavior as the percolation probability. Repeating this proce-
dure for the hopping energy data, we obtain κc = 0.424563(6) and ν = 0.338(10). Both these
estimates based on the data collapse analysis are perfectly consistent with the previous estimates
from finite-size scaling. The raw data in Fig. 6 suggest as in [45] that the crossing points of the
curves measured on lattices of different size provide a second method to estimate the transition
point.

5. Kertész line

We continue our analysis of the vortex network in the region where the transition ceases to
be of first order. In Ref. [9], we postulated that in this part of the phase diagram the Higgs
and confinement phases are separated by a Kertész line. Along this line vortices proliferate, yet
thermodynamic quantities remain nonsingular across it. The conjecture is based on the numerical
observation that in the Higgs phase, the monopoles are tightly bound in monopole–antimonopole
pairs. The magnetic flux emanating from a monopole is squeezed into a magnetic flux tube (vor-
tex) which ends on an antimonopole. The finite line tension forces the vortex lines to be short. In
the confinement phase, the monopoles are no longer bound in pairs, but form a plasma. For this to
arise, the vortex line tension must vanish. Vortex lines, both open and closed, can then grow arbi-
trarily long at no energy cost and proliferate. To facilitate comparison with our previous work [9],
we choose the parameters β = 1.1 and λ = 0.2. Fig. 7 (left) shows our results for the vortex line
density as a function of the hopping parameter κ for lattices of linear size varying from L = 12
to L = 26. The inset gives the corresponding susceptibilities, which display the same remarkable
behavior first observed in the London limit λ → ∞ for other observables [8,25]. Namely, the
susceptibility data obtained on lattices of different sizes is seen to collapse without rescaling.
In particular, the maxima of the susceptibilities do not show any finite-size scaling. From these
data we obtain the estimate κ× = 0.5615(7) for the location of the phase boundary. Applying the
same analysis to the hopping energy, we arrive at the estimate κ× = 0.5655(7) which is close, but
does not agree within error bars with the previous estimate. To further investigate this issue, we
consider the monopole density to see if it leads to the same estimate as does the hopping energy.
The results of our initial study [9] indicated that both estimates agree within error bars. However,
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Fig. 7. Left: Vortex line density and susceptibility (inset) as a function of the hopping parameter κ for systems of linear
size L = 12, 16, 18, 26, and β = 1.1, λ = 0.2. Right: The susceptibility χ(P∞) as a function of the hopping parameter κ

for systems of linear size L = 22, 26, 32, 42.

the high-precision Monte Carlo simulations carried out in the present work show that this is not
the case for the monopole density yields κ× = 0.5639(1). In evaluating these results, it should
be kept in mind that none of these susceptibilities diverge in the infinite-volume limit, so that
small discrepancies were to be expected. The change in the ground state is for this reason usually
referred to as a crossover (×). The discrepancy between the peak locations of these observables
is shown in Fig. 9.

In Ref. [9], we argued that the phase diagram is more refined than just showing a crossover
between the Higgs and confinement ground states in that a sharp boundary between the two
phases does exist in the form of a Kertész line across which the vortices proliferate. Moreover,
as we argued partly on the basis of symmetry, the percolation observables in the vicinity of the
Kertész line should be characterized by the usual percolation exponents. Unlike the observables
previously studied, these observables are expected to show finite-size scaling. Fig. 7 (right) shows
the susceptibility χ(P∞) of the percolation strength as a function of the hopping parameter κ for
lattices of linear size varying from L = 22 to L = 42. It is indeed observed that this percolation
observable depends on the lattice size even though we considered system sizes larger than those
for which the other observables already reached the infinite-volume limit. That is, in contrast to
the other observables, percolation observables allow for a precise location of the phase boundary.

To estimate the percolation exponents, we study the behavior of the percolation probability
P1D and P3D as well as the percolation strength P∞ in the vicinity of the percolation threshold
κper (see Fig. 8). On the infinite lattice, the percolation strength vanishes on approaching the
threshold as P∞ ∼ (κ − κper)

βper , while χ(P∞) diverges as χ(P∞) ∼ |κ − κper|−γper . Finally, the
correlation length ξper, which provides a typical length scale of the vortex network, diverges as
ξper ∼ |κ − κper|−νper . Given the discrepancy found in the context of the |φ|4 theory, we do not
expect the estimate of the percolation threshold using percolation observables to coincide with
the one based on the vortex line density. We therefore determine the location of the percolation
threshold anew together with the exponent νper by studying the finite-size behavior of the suscep-
tibilities of percolation observables. Fig. 9 shows the scaling of the locations of the susceptibility
maxima with 1/L. The observables considered are the percolation probabilities P1D and P3D,
and the percolation strength P∞. For comparison, also the data for the hopping energy, which
was used in Ref. [9] to estimate the location of the phase boundary, and the data for the monopole
and vortex densities are included. The percolation data in Fig. 9 are fitted to the function
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Fig. 8. Percolation probability P1D and percolation strength P∞ as a function of the hopping parameter κ for systems of
linear size L = 22,26,30,42 at β = 1.1, λ = 0.2.

Fig. 9. Locations of the susceptibility maxima of the percolation probabilities P1D and P3D, and the percolation strength
P∞ as a function of 1/L for β = 1.1. The dashed line is a fit of χmax(P∞) to Eq. (14). The horizontal line is through
the corresponding data for the vortex density, while the two sets of data points above this line pertain to the monopole
density and hopping energy.

(14)κper(L) = κper + cL−1/νper,

using the standard least-squares method. Unfortunately, this approach does not give reliable and
consistent values for κper and νper when repeated for the different observables and lattice sizes.
The most stable results are obtained from the susceptibility of P∞, giving κper = 0.54141(18)

and νper = 0.87(6). Results for P1D and P3D depend too much on the fitting regime and we
conclude that Eq. (14) for these observables is only fulfilled for large lattice sizes. As expected,
the estimate of the location of the percolation threshold does not agree with κ× obtained from
the vortex line density. To improve these estimates, we now apply our collapsing routine, rather
than carrying out additional simulations for other lattice sizes. The method has the advantage that
much more data is used as input for not only the locations of the peak maxima but all the data in
the vicinity as well as the interpolated values obtained from reweighting are included. We take
the Binder parameter B(P∞) of the percolation strength together with the scaling Ansatz

(15)B(P∞) = h
(
tL1/νper

)
, t ≡ (κ − κper)/κper,

where h is a scaling function. Fig. 10 shows the raw data together with the data collapse for
κper = 0.54145 and νper = 0.881. The good quality of the data collapse is apparent from the 3D
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Fig. 10. Top left: Binder parameter of the percolation strength P∞ as a function of the hopping parameter κ . Top right:
Collapse of the data for κper = 0.54145 and νper = 0.881. The data is obtained on lattices of linear size L = 22,26,30,42.
Bottom: Landscape of the quality of the data collapse over a range of values of κper and νper. The peak corresponds to
the best collapse and yields our estimates κper = 0.54145(2) and νper = 0.881(2).

Table 3
Critical exponents of the percolating vortex network across the Kertész line for β = 1.1 and λ = 0.2 compared with the
standard percolation exponents

Model κper νper βper γper

cAHM 0.54145(2) 0.881(2) 0.43(2) 1.76(2)
Percolation [46] (see also [47,48]) – 0.8765(16) 0.4522(8) 1.7933(85)

plot in the same figure. Given these estimates for κper and νper, we next apply the collapsing
routine to determine the exponents βper and γper from the scaling relations

(16)P∞ = L−βper/νperf
(
tL1/νper

)
, χ(P∞) = Lγper/νperg

(
tL1/νper

)
,

with f and g scaling functions. Table 3 summarizes our results and compares them with the
random percolation exponents. In agreement with our conjecture [9], the estimates, which as
shown in Fig. 11 lead to a good data collapse, are consistent with standard percolation exponents.
Notice that, in contrast to the findings in the |φ|4 theory, the vortices appear to proliferate in the
confinement phase after passing through the crossover region (κper < κ×). We expect this to be
related to the presence of monopoles which can act as sources for the vortices. To assess this, we
study in the next section how the relative positions of the percolation threshold and the crossover
region vary with changes in the parameters λ and β .
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Fig. 11. Left: Collapse of the percolation strength P∞ yielding an exponent βper = 0.43(2). Right: The same for the
susceptibility χ(P∞) yielding γper = 1.76(2).

6. Fine tuning

Since the vertex percolation threshold κper and the phase boundary κc coincide in the first-
order transition region, it is expected that as we approach this region, the discrepancy found
in the previous section at β = 1.1 and λ = 0.2 becomes smaller. To verify this, we repeat our
analysis at β = 1.1 and λ = 0.075, which is closer to the first-order transition region. We find that
the difference between the locations of the percolation threshold and the crossover determined
using the overall vortex line susceptibility χ(v) indeed becomes smaller, changing from about
0.018 at λ = 0.2 to 0.007 here. Moving in the opposite direction of increasing λ, we observe
the discrepancy to increase, becoming as large as about 0.1 in the London limit λ → ∞. The
percolation threshold still appears in the confinement phase after passing through the crossover
region. That is, changes in the Higgs self-coupling λ seem to leave the relative positions of the
crossover and the apparent vortex proliferation threshold unchanged.

We next vary β and set β = 2.0 and λ = 0.2. By increasing β , one suppresses the monopoles.
They completely disappear in the limit β → ∞, where the theory looses its compactness. Un-
fortunately, simulations at β = 2.0, λ = 0.2 are computationally much more challenging than
at β = 1.1, λ = 0.2 as autocorrelation times are much longer. We therefore restrict ourselves to
lattice sizes up to L = 36. Moreover, observables other than percolation observables become less
useful as can be seen from our example in Fig. 3. Whereas the susceptibility of the percolation
probability has a pronounced peak and a clear maximum, the maximum in the coslink suscepti-
bility χ(C) would be difficult to identify without reweighting. The large error bars obtained for
the peak location of χ(C) reflect the absence of a pronounced peak.

Our main conclusion of the simulations at β = 2.0 and λ = 0.2 is that the locations of the
apparent percolation threshold and the crossover determined using the overall vortex line sus-
ceptibility χ(v) have changed relative positions. This conclusion is based on Fig. 12 in which
κper(L), estimated using different percolation observables, is plotted as a function of 1/L to see
their tendency for L → ∞. The first observation is that the data points are much closer to each
other than was the case at β = 1.1 (see Fig. 9). As before, κper(L) obtained from the suscep-
tibility of the percolation strength (lowest set of data points) shows the largest corrections but
increases monotonically for L → ∞. The values κper(L) obtained from the percolation probabil-
ity P1D show less drastic corrections but are more difficult to extrapolate to the infinite-volume
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Fig. 12. Locations of the susceptibility maxima of various observables as a function of 1/L for β = 2.0.

limit. The two sets of data points both extrapolate to a value around κper ≈ 0.4748 which follows
from fitting χ(P∞) to Eq. (14).

Fig. 12 displays in addition to the locations of the susceptibility maxima of the vortex line
density, also those of the coslink energy and the hopping energy. For L > 16 the heights and
locations of these susceptibilities remain constant, so that, as far as these observables are con-
cerned, the infinite-volume limit is reached. The location of the crossover in the infinite-volume
limit determined using these observables is below all estimates of the percolation threshold. In
other words, while for β = 1.1, λ = 0.2, κper < κ×, here the relative positions have changed,
κper > κ×, and the vortices proliferate already in the Higgs phase before entering the crossover
region. By continuity we then expect at some value of β in the interval 1.1 < β < 2.0 the per-
colation threshold of the vortices to coincide with the location of the crossover. Since varying
β physically changes the monopole density, it is tempting to conclude that monopoles impede
the formation of percolating vortex lines, and that by adjusting the monopole density, the loca-
tion of the apparent vortex percolation threshold can be fine-tuned to coincide with that of the
crossover. The use of the word “apparent” here is to underscore that vortex networks identified
with our tracing rules are only an approximation to the true networks. The element of impedi-
ment introduced by the monopoles possibly plays a similar role as the stochastic element in the
Fortuin–Kasteleyn construction of spin clusters in the Potts model [30].

We finally estimate the critical exponent νper for β = 2.0. Using the percolation probabil-
ity as input observable for our collapsing routine, we arrive at the value νper = 0.88(1) and
κper = 0.4748(1). As a crosscheck we fit the scaling of χ(P∞) with the lattice size L to Eq. (14)
giving νper = 0.88(8) and κper = 0.47484(15) with a χ2/DOF = 2.1. This is again consistent
with the standard percolation exponent. Although the relative positions of the apparent percola-
tion threshold and the crossover have changed, variations in the inverse gauge coupling parameter
β appear not to change the value of this critical exponent.

7. Conclusions

The vortices arising in the compact Abelian Higgs model have been investigated by means
of Monte Carlo simulations on a cubic lattice, and analyzed with the help of observables known
from percolation theory. Because their behavior is more pronounced, percolation observables are
better suited than other observables to probe the phase boundary, both in the first-order transition
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region as well as in the crossover region of the phase diagram. In the region where the Higgs
and confinement phases are separated by a first-order transition, the vortices percolate right at
the phase boundary. Since the rules applied to trace out the vortices result in networks that are in
general only an approximation to the true ones, it is concluded that the discontinuous first-order
transition is forgivable of the resulting inaccuracies. The vortex network reflects the first-order
nature of the transition in this region of the phase diagram. In the crossover region, the vor-
tices still percolate. The percolation observables show second-order critical behavior along the
Kertész line that is characterized by the usual percolation exponents. The location of the vor-
tex percolation threshold estimated using percolation observables does not coincide with that of
the crossover estimated using the vortex line density. Ideally, one would expect both to coin-
cide. Also the |φ|4 theory in 3D, which undergoes a continuous phase transition, shows a similar
behavior [29]. Whereas the estimate based on the line density coincides with the critical temper-
ature, the estimates based on any of the percolation observables considered do not agree within
error bars. This discrepancy may arise because the vortex networks are not correctly traced out
or because a stochastic or impeding element in the construction of a network is missing. The
monopoles appear to play such a role.
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