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Abstract

Experimental evidence for the existence of strictly higher-order phase transitions (of order three or above
in the Ehrenfest sense) is tenuous at best. However, there is no known physical reason why such transitions
should not exist in nature. Here, higher-order transitions characterized by both discontinuities and diver-
gences are analysed through the medium of partition function zeros. Properties of the distributions of zeros
are derived, certain scaling relations are recovered, and new ones are presented.

0 2005 Elsevier B.V. All rights reserved.

1. Introduction

In its original format, the Ehrenfest classification scheme identifies the order of a phase
transition as that of the lowest derivative of the Helmholtz free energy which displays a discon-
tinuity there[1]. Typical transitions which fit to this scheme are first-order solid—liquid—vapour
transitions and second-order superconducting transitions. There are, however, many transitions
characterised by divergent rather than discontinuous behaviour. Examples include ferromag-
netic transitions in metals and the spontaneous symmetry breaking of the Higgs field in particle
physics, which display power-law or logarithmic divergent behavior as the transition is ap-
proached. The classification scheme has, in practice, been extended to encompass these scenari
and the order of a transition is commonly given by the order of the lowest derivative in which
any type of non-analytic behaviour is manifest.
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It has long been suspected that transitions of Ehrenfest order greater than two (with a discon-
tinuity at the transition point) do not exist in nature. However there is no obvious physical reason
why this should be the case. In fact, recent experimental observations of the magnetic properties
of a cubic superconductor have been ascribed to its possessing a fourth-order discontinuous tran-
sition [2] (see alsd3] where the existence of well-defined anomalies in the specific heat at the
transition point was claimed). A theory for higher-order transitions was develogdd&hand
found to be consistent with experimental work.

Higher-order phase transitions (with either a discontinuity or a divergence in an appropriate
free-energy derivative) certainly exist in a number of theoretical models. There are third-order
temperature-driven transitions in various ferromagnetic and antiferromagnetic spin fifo8lels
as well as spin models coupled to quantum gra@t$0]. Recent theoretical studies also indicate
the presence of third-order transitions in various superconduldtb}sDNA under mechanical
strain[12], spin glassefl3], lattice and continuum gauge theorj&d] and matrix models linked
to supersymmetrj15]. A fourth-order transition in a model of a branched polymer was studied
in [16] and the Berezinskii—Kosterlitz—Thouless transition is of infinite-ofti&}.

In this paper, we analyse higher-order transitions through the medium of partition function
zeros. To set the notation, letepresent a generic reduced even variable/abe the odd equiv-
alent so that =T7/T. — 1 andh = H/kgT in the notation of the Ising model (i.€T, is the
temperature, which is critical &, and H is the external magnetic field). The critical point is
given by (¢, k) = (0, 0). This may be the end-point of a line of first-order transitions, as is the
case in the Ising or Potts models. In the Potts-like case where the locus of transitions is curved,
we may instead assume thaand/ are suitable mixed variables, so thats orthogonal ta,
which parameterizes arc length along the transition [if8. The free energy in the thermody-
namic limit is denoted byf (¢, ) and itsnth-order even and odd derivatives eyf,@')(t, h) and
fh(")(t, h) so that the internal energy, specific heat, magnetization and susceptibility are given
(up to some inert factors) ast, h) = ft(l)(t,h), C(t,h) = f,(z)(t,h), m(t, h) = fh(l)(t, h), and
x(t, h)= fh(z) (t, h), respectively. In the following, to simplify the notation, we drop the explicit
functional dependency on a variable if it vanishes.

One then commonly describes as rath-order phase transition a situation where the first
(m — 1) derivatives of the free energy with respect to the even (thermal) variable are continuous,
but where thenth thermal derivative is singular, with a discontinuity or a divergence at the
transition point. The lowestn’ — 1) derivatives of the free energy with respect to the odd (field)
variable may also be continuouszinwith a singularity occurring in the:'th derivative. Thus a
continuous specific heat is realizedsif> 2 and the susceptibility is also continuoussif > 2
as well. This situation, which is not normally possible in a ferromagdrigthe one analysed in
[4,5], in whichm = m’ > 2. Such higher-order transitions may be possible in branched polymers
and diamagnets such as superconductors.

In the more common scenario whetéis not necessarily the samermasthe scaling behaviour
at the transition may be described by critical exponenis=aD:

M@~ fMay~ G By~ (1.1)

1 One can readily see this by considering the Rushbrooke scalingll@jtogether with hyperscaling which give
y/v=d — 2B/v (d being dimensionality and the correlation-length critical exponent). Since for a system of finite
linear extentL, the magnetisation obeyn|) o« L=#/¥, and since completely uncorrelated ferromagnetic spins would
lead by the central limit theorem t@m|) o L=9/2 we obtain the boun@/v < d/2, since the actual decay in the
correlated case is slower. From this, one obtains the restrictiony fhatannot be negative for a ferromagnet.
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while, for the magnetization in field at= 0, we write
Fil ) ~h°. (1.2)

In the familiar case of a second-order transition=€ m’ = 2), the exponentsA andG become,
in standard notatiorny andy, associated with specific heat and susceptibility, respectively.

In the theoretical work of5], the following scaling relations were derived for the case of a
diverging higher-order transition in whieh' = m:

m—-—DA+mB+G=m(@m—1), 1.3)
G =pB((m—15—1). (1.4)

In the second-order cagk.3) and (1.4pecome equivalent to the standard Rushbrooke and Grif-
fiths scaling laws,

a+28+y=2y=B@G-1), (1.5)

as one would expect.

Since the seminal work by Lee and Yafi@] as well as by Fishg0], the analysis of zeros
of the partition function has become fundamental to the study of phase transitions. Fisher zeros
in the complex temperature plane pinch the real axis at the physical transition point. The locus
of Lee—Yang zeros, in the complex magnetic-field plane, is controlled by the (real) temperature
parameter and in the high-temperature phase, where there is no transition, it ends at the Yang-Lee
edge. Denoting the distance of the edge from the real axigbyone has the generic behaviour

ryL(t) ~ 1472, (1.6)
at a second-order transition. The expongnis related to the other exponents through=
2y8/(8 —1).

In the remainder of this paper, a number of results concerning the locus and density of zeros
are presented. Higher-order transitions controlled by a single parameter are analysed in2Section
where the locii and densities of the corresponding Fisher zeros are determined. Various restric-
tions on the properties of such transitions are established and simple quantitative methods for
analysing them are suggested. In SecBotthe focus is on the zeros of the Lee—Yang variety
where even and odd control parameters come into play. Here, the scaling refat®)remd (1.4)
are recovered and elucidated and a number of other ones are presented. Finally, conclusions are
drawn in Sectior.

2. Fisher zeros

In the bulk of physical models the locus of Fisher zeros is linear in a suitable parameter,
which is a function of and can be parameterized near the transition peintyy [21-24]

u(ry=uc+rexp(ig(r)). (2.1)

This singular line in the upper half-plane has<@® (r) < =, while that in the lower half is its
complex conjugate.
In the thermodynamic limit, the (reduced) free energy is

R
f@) :2Re/|n (u —u(r))g(r)dr, (2.2)
0
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whereg(r) is the density of zeros an is a cutoff. We are interested in the moments given by

A, (2.3)

R
) =2(-1)""1(n - DIRe / ( £)
0
and consider the cases of discontinuous and divergémorder temperature-driven transitions
separately.

The difference in free energies on either side of the transition can be expanded: ps-
f=() =312 ¢n(u —uc)", where+ and — refer to above and below,. For a discontinuous
transition,c, = 0 for n < m, while ¢,,, # 0 and the discontinuity in theth derivative of the free
energy is

AF™ =mlcy,. (2.4)

Now, the real parts of the free energies must match across the singular line (otherwise the transi-
tion would be of order zero) which, fro2.1), means) o> c¢,r" cosng (r) = 0. Therefore the
impact angle (in the upper half-plane)=lim,_.o¢ (r), is

2 +1
¢=% forl=0,....m—1 2.5)

It is now clear that, under these conditions, vertical impact is allowed only at any discontinuous
transitions of odd order. A discontinuous second-order transition with impact ariglées for-
bidden. Similarly an impact angle af/6, for example, is only allowed at a transition of order 3
or 9 or 15, etc. This recovers disparate results for first-, second- and third-order transifiths in
25] and[10] which are associated with impact angte® (corresponding té=0), 7/4 ({ =0)
andn/2 (I = 1), respectively. The question now arises as to the mechanism by which the system
selects itg-value. One expects that further studies of higher-order transitions will be required to
provide an answer.

Letr =u —u., T = te”'? and assume that the leading behaviour of the density of zeros is
g(r) = gor?, wheregg is constant. Ifp is an integer, analytical extension of the integrai{i@3)
to the complex plane yields the following result for thth derivative:

p+1 R
() = =200 - DigoReY e MT;| (2.6)
j=1 B

wheres is a lower integral cutoff and
plePtmi(r — )i
BRSSP e Ty
plePt I n G — 1)
T h-Dip+1-n!
One finds that alll’; terms vanish as the transition is approached from above or below, except

the term for whichj = p + 1. If n < p this term is constant and there is no discontinuity‘,fﬁ)

across the transition, while far= p + 1 it leads to a discontinuous transition wimf,("7 D _

2 gop!sin(p + 1)¢. Therefore the firsp derivatives are continuous across the transition while
the (p + 1)th derivative is not. In other words, to generate a discontinuous transition of mrder
under these assumptions, it is necessary and sufficient that — 1, i.e., the leading behaviour

for j #n, (2.7)

(2.8)

n
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of the density is

g(r)=gor™ L. (2.9)

From(2.4) and (2.5)one now has,, = (—1)'27go/m, and the discontinuity in theith deriva-
tive of the free energy is related to the density of zeros as

AF™ = (=1 (m — D127 go. (2.10)

This recovers the well known result that the latent heat or magnetization is related to the density

of zeros at a first-order transition throug}ft(l) =2mgo [19].
We next consider amth-order diverging transition where

£ @) ~ 1117, (2.11)

forO< A < 1.1f A =0, we are back to the discontinuous case or the case of a logarithmic as op-
posed to power-law divergence (see the discussion below), while-ifL, it is more appropriate
to consider the transition ds: — 1)th order.

Considerations similar to those [83,24] may be used to show that in order to obtain the
appropriate divergence it is necessary and sufficient that

g(r) = gor™ 174, (2.12)

Indeed, from the general expressi@ai3), the form(2.11)is obtained provided (with = ¢r’)

R R/t
tg(r) A g (1)
Re/md}":Re/ md?‘/ (213)

is independent of ast — 0. The further condition thag(0) = 0 givesA <m — 1. If m = 1,
this violates the condition that9 A < 1, leading to the requirement that> 2 for a diverging
transition. On this basis, there are no diverging first-order transitions. This is consistent with
experience.

To demonstrate sufficiency, we g@t12)into (2.3)and use the substitutian = r exp(i¢)/|¢|,
to find, for thenth derivative of the free energy,

£ = go(n — DYje " AeTH =0 (2.14)
in which
i
ke /‘tlwm—l—A
IiZZRe / mdw fOI‘t§0. (215)
w

If n < m, this vanishes as— 0, establishing the continuity of theh derivative there, while if
n =m, one finds

cos(im — A)¢ if r <O,
cos((m — A)¢p + Armr) ift >0.
In the case of a second-order transiti¢2,16) recovers a result derived {23,26] Note that

(2.16) provides a direct relationship between the impact angle and the critical amplitudes on
either side of the transition. These critical amplitudes coincide if the impact angjle iIQN —

£ (1) = —2g0lt| 74T (m — A)T(A) x { (2.16)
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A)r/2(m — A) whereN is any integer. In particular, ifi is even an impact angle af/2 results in
the symmetry of amplitudes around the transition. This result was already observed in the second-
order case if23]. The implications of2.16)are that, while this symmetry may be extended to
all even-order diverging phase transitions, it does not hold for odd ones.
If A=0in(2.12) the singular part of the:th derivative of the free energy becomes

cos(ma¢)In|z| if r <0,

(cos(me) In|t| + 7 sin(me)) if 1 > 0. (2.17)

£ (6) = 20m — 1)1go x {
This recovers a result ii23] if m = 2. Moreover, the discontinuity in theth moment across the
transition is consistent witf2.5) and (2.1Q)
From (2.9) and (2.12)the integrated density of Fisher zerosdgr) ~ =4 (whereA =0
in the case of a discontinuous transition). For a finite system of linear ektethe integrated
density is defined a6 (t;) = (2j — 1)/2L4 [27]. EquatingG(¢;) to G (¢;) leads to the scaling
behaviour
It ~ L7, (2.18)
In the diverging case where hyperscaling) ~ £(r)?) holds, andn — A = 2 — « = vd, this
recovers the usual expression] ~ L~/", for finite-size scaling of Fisher zeros. In the discon-
tinuous case, wherg = 0, (2.18)yields
m
=—. 2.19
V= (2.19)
This is a generalization of the usual formal identificationvolith 1/d, which applies to a
first-order transition. Such a generalized identification was observed at the third-ardeB)
discontinuous transition present in the spherical model in three dimer{Zipas well as in the
Ising model on planar random graphs if the Hausdorff dimension is uset[id)].

3. Lee-Yang zeros

In the Lee—Yang case, where there is an edgge(r), to the distribution of zeros, the free
energy is

R
f(t,h):ZRe/ In(h — h(r,1))g(r,t)dr, (3.1)
ryL (1)

where the density of zeros is written @&, r) to display itst-dependency and where the locus
of zeros ish(r,t) = rexp(i¢(r,t)). (If the Lee—Yang circle theorem holdg,= /2 andR =
[19].) Them'th field derivative of the free energy &t=0 is

R/rvL

cos(m /qb) / g(xrvljyf) dx. (3.2)
ryL ()™t

£ @) =2(=1" A’ — 1!

xm

having used the substitution= xry (¢). As in the second-order case, we assumerpatr) is
sufficiently small near the transition point-£ 0) so that the upper integral limit diverges and
compare with the limiting scaling behaviour(h.1)to find [21,22]

gr,t)y=1t"%ry (t)’”/‘lcb( d ) (3.3)

ryL (1)
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where® is an unknown function of its argument. Similar considerations yield, for the magneti-
zation,

/ )

Py =2 )" Re | —; @) dx, (3.4)
—L~ — xel®
1 ryL (1)
which we may write as
&) -G m'-1 h

f @ h)=1""ryL (1) W( ) 3.5
fu YL "\ o (3.5)

Comparison with(1.2) now givesw¥ (h/ryL (1)) ~ (h/rYL(,))l/‘s. The t-dependence must can-
cel in (3.5)ast — 0, giving the smalk scaling behaviour of the Yang-Lee edge under these
circumstances to be

Gé§
ryL (f) ~ ¢ o' =Di-1, (3.6)

Whenm' = 2 andG = y, this recovers the second-order transition behaviol @&). Further-
more,(3.3) now reads

—G_ r
glr,r) =1 -b-19 < ) (3.7)
ryL ()
and the expression for the magnetization3rb) gives
@ et h )
t,h) =t -Dé-1y . 3.8
20 (s 38)

Strictly, this equation of state has been derivedsfor 0, where there is an edge. However we
may assume it can be analytically continued into the low temperature regime, where, taking the
h — 0 limit and comparing with the magnetization(th 1), it yields the scaling relation

G
= 3.9

p m-15-1 (3.9)
In the situation wheren’ = m, this recovers the Griffiths-type scaling relati¢h4), derived
in [5].

Integrating(3.1) by parts gives, for the singular part of the free energy,
¢ G
f(t,h)=2Re/ G (3.10)
he~i¢ —r
ryL(t)

where G(r, t) is the integrated density of zeros. Frqf3) and (3.6) the latter isG(r,t) =
GOV =DV (r /i (1)) in which F(x) = [; @(x')dx’. Again usingr = xry( (1)
in (3.10) and taking the upper integral limit to infinity, one has, for the free energy,

§+1
fah) = tG<m’+1>“F¢< ) (3.11)

ryL(?)

whereFy(w) = 2Re [ F(x)/(we™'? — x) dx. Themth temperature derivative of the zero-field
free energy is therefore of the forfif™ (1) ~ ¢ G@+D/(m'~Di=D-m Comparison wit{1.1)then
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yields the scaling relation

5+1
A=m G(m’—l)&—l' (3.12)

Together(3.9) and (3.12)ecover all four scaling relations derived[] in the more restrictive
case wheren’ = m. In the second-order case & 2), they recover the standard Rushbrooke and
Griffiths scaling laws of1.5).

In fact, these laws also hold in the present case, albeit with negatfaad possiblyy). To
see this, let,"” (1) ~ 1~ andfh(")(t) ~ 177 (s0 thatwy = & andy, = y). Sincef,"™ (1) ~ t=4,
one has, directly, that — o, = m — A. Differentiating(3.11)with respect to field, now gives

f;n)(t) ~ (B=(1=DBS _ ynB—(n=1)(m—A) (3.13)
having used3.9) and (3.12and set: = 0. Now, one has
=@n—-DBs—B, (n— Doy +np+yn=nn—1), (3.14)

which recover(1.5)whenn =22

The formulae(1.1) describe the behaviour of various moments as the critical point is ap-
proached tangential to the transition line (i.e., aldng 0). One may also be interested in the
orthogonal behaviour, namely, tiedependence at= 0. In the case of thé-derivatives of
free energy, this comes directly frofh.2). For thez-derivatives, we may assume the power-law
behaviour (at = 0),

£y ~ b (3.15)
In the second-order cas@.15) gives theh-dependency of the internal energy and the specific
heat att = 0 ase(h) = f,(l) (h) ~ h€ andC(h) = ft(z) (h) ~ h™?. These exponents are related to
§ andy through (se¢21] and references therein)
G-y +1 a_(5—1)(y+2)
Sy ’ B 8y
Following the reasoning dR1], we may argue that because there should be no phase transition
away fromh = 0O for anyz, the free energyf (¢, i) in (3.11)must be a power series irthere. So
if F4(w) involves a termw?, the free energy involves ¢+ ~G3/(("'=1d-D pa \which must
be an integral powety, of t. This givesq = m’ — [(m’ — 1)§ — 1](G + N)/GS$, or the power
series

c=2— _2 (3.16)

f(t,h) = Zan N RGN, (3.17)

Differentiating approprlately, putting= 0 and comparing witl§3.15)yields the scaling laws

;) (m —-15—-1
G$

In the second-order case witli = 2 this recover$3.16)with s; = ¢ andss = —o.

sj=m (G +)). (3.18)

2 It is interesting to note the restrictions imposedsat a higher-order transition coming from the first equation of
(3.14) Forn < m’, y, should be negative, so, jf is positive, the best bound dnis § < 1/(m’ — 2). Also, the second
formula in(3.14)gives, for 2<n <m —1and hence;,, <0,8§ > (m—1)/B—10rB > (m —1)(m’ —2)/(m’ — 1). These
are no restraints in the familiar second-order case (wietem’ = 2 and larges is common), but are severe constraints
at higher order.
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4. Conclusions

Different types of higher-order phase transitions have been analysed using the zeros of the
partition function. In the Fisher case, the impact angle is restricted by the order and nature of
the transition. For a transition with a discontinuityfﬁm)(t), it is unclear how the system se-
lects from then permissible angles. For a divergent transition, the impact angle determines the
relevant amplitude ratios. Finite-size scaling is seen to hold at higher-order transitions and the fa-
miliar formal identification ofv with 1/d that is used at first-order transitions extends tom /d
for discontinuous transitions afth order.

Lee-Yang zeros, on the other hand, are appropriate to the case where two parameters control
the system. Here, they have been used as a route to derive scaling relations between associate
even and odd exponents, which recover well-known formulae in the second-order case, including
the Rushbrooke and Griffiths laws.

One of the main points of2] is that many higher-order transitions may exist which have
not yet been identified as such. Indeed determination of critical exponents or latent-heat-like
discontinuities is notoriously difficult from numerical work on finite systems where there is no
true transition and signals are smoothed out. There, amplitude ratios are often more discerning
and here we see impact angles even more so, at least in theory. From the results herein, it would
appear that analysis of the impact angle provides a very robust way to recognise the order of
transitions.
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