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Abstract

Experimental evidence for the existence of strictly higher-order phase transitions (of order three o
in the Ehrenfest sense) is tenuous at best. However, there is no known physical reason why such tr
should not exist in nature. Here, higher-order transitions characterized by both discontinuities an
gences are analysed through the medium of partition function zeros. Properties of the distributions
are derived, certain scaling relations are recovered, and new ones are presented.
 2005 Elsevier B.V. All rights reserved.

1. Introduction

In its original format, the Ehrenfest classification scheme identifies the order of a
transition as that of the lowest derivative of the Helmholtz free energy which displays a d
tinuity there[1]. Typical transitions which fit to this scheme are first-order solid–liquid–vap
transitions and second-order superconducting transitions. There are, however, many tra
characterised by divergent rather than discontinuous behaviour. Examples include fer
netic transitions in metals and the spontaneous symmetry breaking of the Higgs field in p
physics, which display power-law or logarithmic divergent behavior as the transition i
proached. The classification scheme has, in practice, been extended to encompass these
and the order of a transition is commonly given by the order of the lowest derivative in w
any type of non-analytic behaviour is manifest.
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It has long been suspected that transitions of Ehrenfest order greater than two (with a
tinuity at the transition point) do not exist in nature. However there is no obvious physical r
why this should be the case. In fact, recent experimental observations of the magnetic pro
of a cubic superconductor have been ascribed to its possessing a fourth-order discontinuo
sition [2] (see also[3] where the existence of well-defined anomalies in the specific heat
transition point was claimed). A theory for higher-order transitions was developed in[4–6] and
found to be consistent with experimental work.

Higher-order phase transitions (with either a discontinuity or a divergence in an appro
free-energy derivative) certainly exist in a number of theoretical models. There are third
temperature-driven transitions in various ferromagnetic and antiferromagnetic spin model[7,8],
as well as spin models coupled to quantum gravity[9,10]. Recent theoretical studies also indic
the presence of third-order transitions in various superconductors[11], DNA under mechanica
strain[12], spin glasses[13], lattice and continuum gauge theories[14] and matrix models linked
to supersymmetry[15]. A fourth-order transition in a model of a branched polymer was stu
in [16] and the Berezinskii–Kosterlitz–Thouless transition is of infinite-order[17].

In this paper, we analyse higher-order transitions through the medium of partition fu
zeros. To set the notation, lett represent a generic reduced even variable andh be the odd equiv
alent so thatt = T/Tc − 1 andh = H/kBT in the notation of the Ising model (i.e.,T is the
temperature, which is critical atTc, andH is the external magnetic field). The critical point
given by(t, h) = (0,0). This may be the end-point of a line of first-order transitions, as is
case in the Ising or Potts models. In the Potts-like case where the locus of transitions is
we may instead assume thatt andh are suitable mixed variables, so thath is orthogonal tot ,
which parameterizes arc length along the transition line[18]. The free energy in the thermod
namic limit is denoted byf (t, h) and itsnth-order even and odd derivatives aref

(n)
t (t, h) and

f
(n)
h (t, h) so that the internal energy, specific heat, magnetization and susceptibility are

(up to some inert factors) ase(t, h) = f
(1)
t (t, h), C(t, h) = f

(2)
t (t, h), m(t,h) = f

(1)
h (t, h), and

χ(t, h) = f
(2)
h (t, h), respectively. In the following, to simplify the notation, we drop the exp

functional dependency on a variable if it vanishes.
One then commonly describes as anmth-order phase transition a situation where the

(m − 1) derivatives of the free energy with respect to the even (thermal) variable are conti
but where themth thermal derivative is singular, with a discontinuity or a divergence a
transition point. The lowest(m′ − 1) derivatives of the free energy with respect to the odd (fi
variable may also be continuous int , with a singularity occurring in them′th derivative. Thus a
continuous specific heat is realized ifm > 2 and the susceptibility is also continuous ifm′ > 2
as well. This situation, which is not normally possible in a ferromagnet,1 is the one analysed i
[4,5], in whichm = m′ > 2. Such higher-order transitions may be possible in branched poly
and diamagnets such as superconductors.

In the more common scenario wherem′ is not necessarily the same asm, the scaling behaviou
at the transition may be described by critical exponents ath = 0:

(1.1)f
(m)
t (t) ∼ t−A, f

(m′)
h (t) ∼ t−G, f

(1)
h (t) ∼ tβ ,

1 One can readily see this by considering the Rushbrooke scaling law(1.5) together with hyperscaling which giv
γ /ν = d − 2β/ν (d being dimensionality andν the correlation-length critical exponent). Since for a system of fi
linear extentL, the magnetisation obeys〈|m|〉 ∝ L−β/ν , and since completely uncorrelated ferromagnetic spins w
lead by the central limit theorem to〈|m|〉 ∝ L−d/2, we obtain the boundβ/ν < d/2, since the actual decay in th
correlated case is slower. From this, one obtains the restriction thatγ /ν cannot be negative for a ferromagnet.
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while, for the magnetization in field att = 0, we write

(1.2)f
(1)
h (h) ∼ h1/δ.

In the familiar case of a second-order transition (m = m′ = 2), the exponentsA andG become,
in standard notation,α andγ , associated with specific heat and susceptibility, respectively.

In the theoretical work of[5], the following scaling relations were derived for the case o
diverging higher-order transition in whichm′ = m:

(1.3)(m − 1)A + mβ + G = m(m − 1),

(1.4)G = β
(
(m − 1)δ − 1

)
.

In the second-order case(1.3) and (1.4)become equivalent to the standard Rushbrooke and
fiths scaling laws,

(1.5)α + 2β + γ = 2, γ = β(δ − 1),

as one would expect.
Since the seminal work by Lee and Yang[19] as well as by Fisher[20], the analysis of zero

of the partition function has become fundamental to the study of phase transitions. Fishe
in the complex temperature plane pinch the real axis at the physical transition point. The
of Lee–Yang zeros, in the complex magnetic-field plane, is controlled by the (real) tempe
parameter and in the high-temperature phase, where there is no transition, it ends at the Ya
edge. Denoting the distance of the edge from the real axis byrYL , one has the generic behavio

(1.6)rYL (t) ∼ t∆/2,

at a second-order transition. The exponent∆ is related to the other exponents through∆ =
2γ δ/(δ − 1).

In the remainder of this paper, a number of results concerning the locus and density o
are presented. Higher-order transitions controlled by a single parameter are analysed in S2
where the locii and densities of the corresponding Fisher zeros are determined. Various
tions on the properties of such transitions are established and simple quantitative meth
analysing them are suggested. In Section3, the focus is on the zeros of the Lee–Yang vari
where even and odd control parameters come into play. Here, the scaling relations(1.3) and (1.4)
are recovered and elucidated and a number of other ones are presented. Finally, conclus
drawn in Section4.

2. Fisher zeros

In the bulk of physical models the locus of Fisher zeros is linear in a suitable parameu,
which is a function oft and can be parameterized near the transition point,uc, by [21–24]

(2.1)u(r) = uc + r exp
(
iφ(r)

)
.

This singular line in the upper half-plane has 0< φ(r) < π , while that in the lower half is its
complex conjugate.

In the thermodynamic limit, the (reduced) free energy is

(2.2)f (t) = 2 Re

R∫
ln

(
u − u(r)

)
g(r) dr,
0
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whereg(r) is the density of zeros andR is a cutoff. We are interested in the moments given

(2.3)f
(n)
t (t) = 2(−1)n−1(n − 1)!Re

R∫
0

g(r)

(u − u(r))n
dr,

and consider the cases of discontinuous and divergentmth-order temperature-driven transitio
separately.

The difference in free energies on either side of the transition can be expanded asf+(t) −
f−(t) = ∑∞

n=1 cn(u − uc)
n, where+ and− refer to above and belowuc. For a discontinuou

transition,cn = 0 for n < m, while cm �= 0 and the discontinuity in themth derivative of the free
energy is

(2.4)
f
(m)
t = m!cm.

Now, the real parts of the free energies must match across the singular line (otherwise the
tion would be of order zero) which, from(2.1), means

∑∞
n=m cnr

n cosnφ(r) = 0. Therefore the
impact angle (in the upper half-plane),φ = limr→0 φ(r), is

(2.5)φ = (2l + 1)π

2m
for l = 0, . . . ,m − 1.

It is now clear that, under these conditions, vertical impact is allowed only at any disconti
transitions of odd order. A discontinuous second-order transition with impact angleπ/2 is for-
bidden. Similarly an impact angle ofπ/6, for example, is only allowed at a transition of orde
or 9 or 15, etc. This recovers disparate results for first-, second- and third-order transitions[19,
25] and[10] which are associated with impact anglesπ/2 (corresponding tol = 0), π/4 (l = 0)
andπ/2 (l = 1), respectively. The question now arises as to the mechanism by which the s
selects itsl-value. One expects that further studies of higher-order transitions will be requi
provide an answer.

Let t = u − uc, τ = te−iφ and assume that the leading behaviour of the density of zer
g(r) = g0r

p , whereg0 is constant. Ifp is an integer, analytical extension of the integration(2.3)
to the complex plane yields the following result for thenth derivative:

(2.6)f
(n)
t (t) = −2(n − 1)!g0 Re

p+1∑
j=1

e−inφTj

∣∣∣∣∣
R

δ

,

whereδ is a lower integral cutoff and

(2.7)Tj = p!τp+1−j (r − τ)j−n

(j − 1)!(p + 1− j)!(j − n)
for j �= n,

(2.8)Tn = p!τp+1−n ln (r − τ)

(n − 1)!(p + 1− n)! .
One finds that allTj terms vanish as the transition is approached from above or below, e

the term for whichj = p + 1. If n � p this term is constant and there is no discontinuity inf
(n)
t

across the transition, while forn = p + 1 it leads to a discontinuous transition with
f
(p+1)
t =

2πg0p!sin(p + 1)φ. Therefore the firstp derivatives are continuous across the transition w
the(p + 1)th derivative is not. In other words, to generate a discontinuous transition of orm

under these assumptions, it is necessary and sufficient thatp = m− 1, i.e., the leading behaviou
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(2.9)g(r) = g0r
m−1.

From(2.4) and (2.5), one now hascm = (−1)l2πg0/m, and the discontinuity in themth deriva-
tive of the free energy is related to the density of zeros as

(2.10)
f
(m)
t = (−1)l(m − 1)!2πg0.

This recovers the well known result that the latent heat or magnetization is related to the d
of zeros at a first-order transition through
f

(1)
t = 2πg0 [19].

We next consider anmth-order diverging transition where

(2.11)f
(m)
t (t) ∼ |t |−A,

for 0< A < 1. If A = 0, we are back to the discontinuous case or the case of a logarithmic
posed to power-law divergence (see the discussion below), while ifA > 1, it is more appropriate
to consider the transition as(m − 1)th order.

Considerations similar to those in[23,24] may be used to show that in order to obtain
appropriate divergence it is necessary and sufficient that

(2.12)g(r) = g0r
m−1−A.

Indeed, from the general expression(2.3), the form(2.11)is obtained provided (withr = tr ′)

(2.13)Re

R∫
0

tAg(r)

(reiφ − t)m
dr = Re

R/t∫
0

tA−m+1g(tr ′)
(r ′eiφ − 1)m

dr ′

is independent oft as t → 0. The further condition thatg(0) = 0 givesA < m − 1. If m = 1,
this violates the condition that 0< A < 1, leading to the requirement thatm � 2 for a diverging
transition. On this basis, there are no diverging first-order transitions. This is consisten
experience.

To demonstrate sufficiency, we put(2.12)into (2.3)and use the substitutionw = r exp(iφ)/|t |,
to find, for thenth derivative of the free energy,

(2.14)f
(n)
t (t) = g0(n − 1)!|t |m−n−Ae−i(m−A)φI±,

in which

(2.15)I± = 2 Re

Reiφ/|t |∫
0

wm−1−A

(1± w)n
dw for t ≶ 0.

If n < m, this vanishes ast → 0, establishing the continuity of thenth derivative there, while i
n = m, one finds

(2.16)f
(m)
t (t) = −2g0|t |−AΓ (m − A)Γ (A) ×

{
cos(m − A)φ if t < 0,

cos((m − A)φ + Aπ) if t > 0.

In the case of a second-order transition,(2.16) recovers a result derived in[23,26]. Note that
(2.16) provides a direct relationship between the impact angle and the critical amplitud
either side of the transition. These critical amplitudes coincide if the impact angle isφ = (2N −
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A)π/2(m−A) whereN is any integer. In particular, ifm is even an impact angle ofπ/2 results in
the symmetry of amplitudes around the transition. This result was already observed in the s
order case in[23]. The implications of(2.16)are that, while this symmetry may be extended
all even-order diverging phase transitions, it does not hold for odd ones.

If A = 0 in (2.12), the singular part of themth derivative of the free energy becomes

(2.17)f
(m)
t (t) = 2(m − 1)!g0 ×

{
cos(mφ) ln |t | if t < 0,

(cos(mφ) ln |t | + π sin(mφ)) if t > 0.

This recovers a result in[23] if m = 2. Moreover, the discontinuity in themth moment across th
transition is consistent with(2.5) and (2.10).

From(2.9) and (2.12), the integrated density of Fisher zeros isG(r) ∼ rm−A (whereA = 0
in the case of a discontinuous transition). For a finite system of linear extentL, the integrated
density is defined asGL(tj ) = (2j − 1)/2Ld [27]. EquatingG(tj ) to GL(tj ) leads to the scalin
behaviour

(2.18)|tj | ∼ L− d
m−A .

In the diverging case where hyperscaling (f (t) ∼ ξ(t)d ) holds, andm − A = 2 − α = νd , this
recovers the usual expression,|tj | ∼ L−1/ν , for finite-size scaling of Fisher zeros. In the disco
tinuous case, whereA = 0, (2.18)yields

(2.19)ν = m

d
.

This is a generalization of the usual formal identification ofν with 1/d , which applies to a
first-order transition. Such a generalized identification was observed at the third-order (m = 3)
discontinuous transition present in the spherical model in three dimensions[7] as well as in the
Ising model on planar random graphs if the Hausdorff dimension is used ford [10].

3. Lee–Yang zeros

In the Lee–Yang case, where there is an edge,rYL (t), to the distribution of zeros, the fre
energy is

(3.1)f (t, h) = 2 Re

R∫
rYL (t)

ln
(
h − h(r, t)

)
g(r, t) dr,

where the density of zeros is written asg(r, t) to display itst-dependency and where the loc
of zeros ish(r, t) = r exp(iφ(r, t)). (If the Lee–Yang circle theorem holds,φ = π/2 andR = π

[19].) Them′th field derivative of the free energy ath = 0 is

(3.2)f
(m′)
h (t) = 2(−1)m

′−1(m′ − 1)! cos(m′φ)

rYL (t)m
′−1

R/rYL∫
1

g(xrYL , t)

xm′ dx,

having used the substitutionr = xrYL (t). As in the second-order case, we assume thatrYL (t) is
sufficiently small near the transition point (t = 0) so that the upper integral limit diverges a
compare with the limiting scaling behaviour in(1.1) to find [21,22]

(3.3)g(r, t) = t−GrYL (t)m
′−1Φ

(
r

)
,

rYL (t)
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whereΦ is an unknown function of its argument. Similar considerations yield, for the mag
zation,

(3.4)f
(1)
h (t, h) = 2t−GrYL (t)m

′−1 Re

∞∫
1

Φ(x)

h
rYL (t)

− xeiφ
dx,

which we may write as

(3.5)f
(1)
h (t, h) = t−GrYL (t)m

′−1Ψφ

(
h

rYL (t)

)
.

Comparison with(1.2) now givesΨ (h/rYL (t)) ∼ (h/rYL (t))
1/δ . The t-dependence must ca

cel in (3.5) as t → 0, giving the small-t scaling behaviour of the Yang–Lee edge under th
circumstances to be

(3.6)rYL (t) ∼ t
Gδ

(m′−1)δ−1 .

Whenm′ = 2 andG = γ , this recovers the second-order transition behaviour of(1.6). Further-
more,(3.3)now reads

(3.7)g(r, t) = t
G

(m′−1)δ−1 Φ

(
r

rYL (t)

)
,

and the expression for the magnetization in (3.5) gives

(3.8)f
(1)
h (t, h) = t

G
(m′−1)δ−1 Ψφ

(
h

rYL (t)

)
.

Strictly, this equation of state has been derived fort > 0, where there is an edge. However
may assume it can be analytically continued into the low temperature regime, where, tak
h → 0 limit and comparing with the magnetization in(1.1), it yields the scaling relation

(3.9)β = G

(m′ − 1)δ − 1
.

In the situation wherem′ = m, this recovers the Griffiths-type scaling relation(1.4), derived
in [5].

Integrating(3.1)by parts gives, for the singular part of the free energy,

(3.10)f (t, h) = 2 Re

R∫
rYL (t)

G(r, t)

he−iφ − r
dr,

whereG(r, t) is the integrated density of zeros. From(3.3) and (3.6), the latter isG(r, t) =
tG(δ+1)/((m′−1)δ−1)F (r/rYL (t)) in which F(x) = ∫ x

1 Φ(x′) dx′. Again using r = xrYL (t)

in (3.10), and taking the upper integral limit to infinity, one has, for the free energy,

(3.11)f (t, h) = t
G δ+1

(m′−1)δ−1Fφ

(
h

rYL (t)

)
,

whereFφ(w) = 2 Re
∫ ∞

1 F(x)/(we−iφ −x)dx. Themth temperature derivative of the zero-fie

free energy is therefore of the formf (m)
t (t) ∼ tG(δ+1)/((m′−1)δ−1)−m. Comparison with(1.1)then
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yields the scaling relation

(3.12)A = m − G
δ + 1

(m′ − 1)δ − 1
.

Together,(3.9) and (3.12)recover all four scaling relations derived in[5] in the more restrictive
case wherem′ = m. In the second-order case (m = 2), they recover the standard Rushbrooke
Griffiths scaling laws of(1.5).

In fact, these laws also hold in the present case, albeit with negativeα (and possiblyγ ). To
see this, letf (n)

t (t) ∼ t−αn andf
(n)
h (t) ∼ t−γn (so thatα2 = α andγ2 = γ ). Sincef (m)

t (t) ∼ t−A,
one has, directly, thatn − αn = m − A. Differentiating(3.11)with respect to field, now gives

(3.13)f
(n)
h (t) ∼ tβ−(n−1)βδ = tnβ−(n−1)(m−A),

having used(3.9) and (3.12)and seth = 0. Now, one has

(3.14)γn = (n − 1)βδ − β, (n − 1)αn + nβ + γn = n(n − 1),

which recover(1.5)whenn = 2.2

The formulae(1.1) describe the behaviour of various moments as the critical point is
proached tangential to the transition line (i.e., alongh = 0). One may also be interested in t
orthogonal behaviour, namely, theh-dependence att = 0. In the case of theh-derivatives of
free energy, this comes directly from(1.2). For thet-derivatives, we may assume the power-l
behaviour (att = 0),

(3.15)f
(j)
t (h) ∼ hsj .

In the second-order case,(3.15)gives theh-dependency of the internal energy and the spe
heat att = 0 ase(h) = f

(1)
t (h) ∼ hε andC(h) = f

(2)
t (h) ∼ h−σ . These exponents are related

δ andγ through (see[21] and references therein)

(3.16)ε = 2− (δ − 1)(γ + 1)

δγ
, σ = (δ − 1)(γ + 2)

δγ
− 2.

Following the reasoning of[21], we may argue that because there should be no phase tran
away fromh = 0 for anyt , the free energy,f (t, h) in (3.11)must be a power series int there. So
if Fφ(w) involves a term,wq , the free energy involvest−G+(m′−q)Gδ/((m′−1)δ−1)hq which must
be an integral power,N , of t . This givesq = m′ − [(m′ − 1)δ − 1](G + N)/Gδ, or the power
series

(3.17)f (t, h) =
∞∑

N=0

ant
Nhm′− (m′−1)δ−1

Gδ
(G+N).

Differentiating appropriately, puttingt = 0 and comparing with(3.15)yields the scaling laws

(3.18)sj = m′ − (m′ − 1)δ − 1

Gδ
(G + j).

In the second-order case withm′ = 2 this recovers(3.16)with s1 = ε ands2 = −σ .

2 It is interesting to note the restrictions imposed onδ at a higher-order transition coming from the first equation
(3.14). For n < m′, γn should be negative, so, ifβ is positive, the best bound onδ is δ < 1/(m′ − 2). Also, the second
formula in(3.14)gives, for 2� n � m−1 and henceαn < 0, δ > (m−1)/β −1 orβ > (m−1)(m′ −2)/(m′ −1). These
are no restraints in the familiar second-order case (wherem = m′ = 2 and largeδ is common), but are severe constrai
at higher order.
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4. Conclusions

Different types of higher-order phase transitions have been analysed using the zeros
partition function. In the Fisher case, the impact angle is restricted by the order and na
the transition. For a transition with a discontinuity inf

(m)
t (t), it is unclear how the system s

lects from them permissible angles. For a divergent transition, the impact angle determin
relevant amplitude ratios. Finite-size scaling is seen to hold at higher-order transitions and
miliar formal identification ofν with 1/d that is used at first-order transitions extends toν = m/d

for discontinuous transitions ofmth order.
Lee–Yang zeros, on the other hand, are appropriate to the case where two parameter

the system. Here, they have been used as a route to derive scaling relations between as
even and odd exponents, which recover well-known formulae in the second-order case, in
the Rushbrooke and Griffiths laws.

One of the main points of[2] is that many higher-order transitions may exist which h
not yet been identified as such. Indeed determination of critical exponents or latent-he
discontinuities is notoriously difficult from numerical work on finite systems where there
true transition and signals are smoothed out. There, amplitude ratios are often more dis
and here we see impact angles even more so, at least in theory. From the results herein,
appear that analysis of the impact angle provides a very robust way to recognise the o
transitions.
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