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Abstract

The tricritical behavior of the two-dimensiongistate Potts model with vacancies focQ; < 4 is
argued to be encoded in the fractal structure of the geometrical spin clusters of the pure model. The
known close connection between the critical properties of the pure model and the tricritical properties
of the diluted model is shown to be reflected in an intimate relation between Fortuin—Kasteleyn and
geometrical clusters: the same transformation mapping the two critical regimes onto each other also
maps the two cluster types onto each other. The map conserves the central charge, so that both cluster
types are in the same universality class. Tleergetrical picture isigpported by a Monte Carlo
simulation of the high-temperature representation of the Ising m@del2) in which closed graph
configurations are generated by means of a Metropolis update algorithm involving single plaquettes.
0 2004 Elsevier B.V. All rights reserved.

PACS 02.70.Lg; 05.50.+q; 75.10.Hk

1. Introduction

The two-dimensionaj-state Potts mode[d] can be equivalently formulated in terms
of Fortuin—Kasteleyn (FK) clusters of like spif]. These FK clusters are obtained from
the geometrical spin clusters, which consist of nearest neighbor sites with their spin vari-
ables in the same state, by laying bonds with a certain probability between the nearest
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neighbors. The resulting FK, or bond clusters ar general smaller than the geometri-

cal ones and also more loosely connected. The FK formulation of the Potts models can be
thought of as a generalization of (uncorrelated) bond percolation, which obtains in the limit
g — 1. The geometrical clusters themselvesaiisthe low-temperature representation of

the pure mod€[3].

For ¢ < 4, where the model undergoes a continuous phase transition, the FK clusters
percolate at the critical temperature and tifigictal structure encodes the complete critical
behavior. The thermal critical exponents afgtained using the cluster definitions from
percolation theory4]. With clusters and their fractal pperties taking the central stage,
the FK formulation provides a geometrical description of the Potts model.

The concept of correlated bond percolation has been turned into a powerful Monte Carlo
algorithm by Swendsen and Waf&], and by Wolff[6], in which not individual spins are
updated, but entire FK clusters. The main advantage of the nonlocal cluster update over
a local spin update, like Metropolis or heat haththat it drastically reduces the critical
slowing down near the critical point.

Although it was known from the relation with other statistical models that the phase
transition of the Potts models chandesn being continuous to first order@t= 4 [7], ini-
tial renormalization group approaches failed to uncover the first-order nature fordarger
Only after the pure model was extended to include vacant sites, this feature was observed
[8]. In a Kadanoff block-spin transformatiotihe vacant sites represent blocks without a
majority of spins in a certain state, i.e., they represent disordered blocks. In addition to the
pure Potts critical behavior, the site diluted model also displays tricritical behavior, which
was found to be intimately connected with the critical beha{@)r With increasingg,
the critical and tricritical fied points move together until at= 4 they coalesce and the
continuous phase transition turns into a first-order one.

Recently, the cluster boundaries of two-dims@nal critical systems have been inten-
sively studied by means of a method dubbed “stochastic Loewner evolu&iE; )—a
one-parameter family of random conformal maps, introduced by Schrgghnin this
approach, the Brownian motion of a random walker is described by Loewner’s ordinary
differential equation, containing a random term whose strength is specified by a parameter
i > 0. Different values ofc define different universality classes. Various results previ-
ously conjectured on the basis of the Coulomb gas fh@pl2]and conformal invariance
[13] have been rigorously established by this method. The interrelation between SLE
traces and the Coulomb gas description &de explicit by observing that the Coulomb
gas coupling parameter can be simply expressed k= 1/k [14]. The nature of the
SLE; traces changes with: for 0 < ¥ < 1 the path is simple (nonintersecting), while for
1<k < 2 it possesses double points (46g. 1); and fork > 2 it is space-filling[15,

16]. This change reflects a change in the critical systems described by thetfices
[14]: for 1 < k < 2 they represent the hulls of FK clusters of thatate Potts model with

4> g >0, while for% < k < 1 they represent the closed graphs of the high-temperature
representation of the @] model with—2 < n < 2 and at the same time also the external

1 The parametef we use is related to the labelin Ref.[9] throughi = « /4. The reason for our convention
will become clear when we proceed (see, e.g.,(28)).
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Fig. 1. Trace possessing a double point.

perimeters of FK clusters with dual parametgz 114,17] For a recent overview from the
mathematical point of view, see R¢17].

In this paper, the tricritical regime of the two-dimensional (annealed) site dijuttdte
Potts model with &< ¢ < 4 is studied from the geometrical point of view. It will be argued
that the tricritical behavior of these models is encoded in the geometrical clusters of the
pure Potts model in the same way that the critical behavior is encoded in the FK clusters.
The relation between geometrical clusters #iicritical behavior was first established by
Stella and Vanderzand&8,19]for the special casg = 2, i.e., for the Ising model. Using
arguments based on renormalization group, conformal invariance, and numerical simula-
tions, they showed that the geometrical cluster dimensions of the Ising model at criticality
are determined by the= 1 tricritical Potts model, as was earlier conjectured by Temesvari
and Herény[20]. The values of two of the three leading tricritical exponents characteriz-
ing the geometrical clusters were alrgatbtermined before by Coniglio and Kleja1].

The distinctive feature of the = 1 tricritical model is that it is in the same universality
class as the Ising model defined by the central chaﬁge}. In addition, it has the same
correlation length exponemnt= 1 as the Ising model. The boundaries of geometrical Potts
clusters were also already known to be in the same universality class as the tricritical model
with the same central char{e?2,22] Formulated in terms of SLEraces, the hulls of geo-
metrical clusters are described at criticality by traces \éiﬂg ic <1, thereby forming the
geometrical counterpart of the FK hulihich are described by the traces witk(k < 2.

It will be shown here that not just the boundary dimensions, but all the relevant fractal
dimensions characterizing FK clusters are in one-to-one correspondence with those of the
geometrical clusters, thus providing a physical picture for the close connection between
the critical and tricritical behaviors just mentioned. The important aspect of the map is that
it leaves the central charge unchanged, so that both cluster types and their boundaries are
in the same universality class, characterized by the same central charge.

To support this geometrical picture, we carry out a Monte Carlo study of the high-
temperature representation of the 2-state Potts, or Ising model. We generate the high-
temperature graphs by using a Metropolis update algorithm involving single plaquettes
[23]. By duality, the high-temperature graphs, which are closed, form the hulls of geo-
metrical spin clusters on the dual lattice. We thus simulate the geometrical hulls directly
without first considering the clusters. From the geometrical properties of these graphs,
such as their distribution, the size of the largest graph, and whether or not a graph spans
the lattice, the fractal dimension of thellsuof geometrical clusters can be determined
immediately. Our numerical result agrees with the analytic prediction by Duplantier and
Saleurf24], which was derived using the Coulomb gas map.
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The paper is organized as follows. In Sect@nthose aspects of the dilutedstate
Potts model are reviewed that are of relevance for the following, in particular its cluster
properties. SectioB.1discusses the various fractal dimems characterizing FK clusters.

In Section3.2, the results for FK clusters are transcribed to geometrical clusters, which in
Section4 are shown to encode the tricritical Potts behavior. The Monte Carlo results for
the high-temperature representation of the Ising model are presented in Setitowed

by a summary in Sectio6.

2. Diluted ¢-state Potts model

The diluted Potts model can be defined by the Hamiltof2&h

—BH=KY Goro; =D+ J Y (Grit; = Do, —H Y (81— D), (1)
(i) (i) i

where denotes the inverse temperature and the doublegqm extends over nearest
neighbors only. The first term at the right hand with coupling conskai the pureg-
state Potts model with spin variakdle=1, 2, ..., ¢ at theith site. On this a second Potts
model with auxiliary spin variable; = 1,2, ..., s, coupling constant/, and ghost field
H is superimposed. The reasons for this extension of the pure Potts model are twofold.
First, in the limits — 1, thes-state Potts model describes (bond) percold@nwhich is
naturally formulated in terms of clusters. The extension thus allows for the investigation of
cluster properties of the original model when the limit> 1 is taken. Second, the diluted
model has two fixed points for < 4. In addition to the pure Potts critical point, it also has
a tricritical point, depending on the value of the coupling constanAdding vacancies
therefore leads to two distinct scaling megs, each with its ownrtical exponents. Note
that the limits — 1 is subtle as precisely far= 1, the Hamiltoniar(1) is independent of
J andH, so that it reduces to the standard Potts model.

The second term in the Hamiltonidh) connects nearest neighbors of like spins (for
which é,; -, = 1) with bond probability

p:l_e_‘]’ (2)

while the ghost fieldd in the last term acts as a chemical potential for the auxiliary spins in
the first stater; = 1. A configuration of auxiliary bond$us obtained can be represented
by a graph on arestricted lattice, consisting of those sites of the original lattice that have at
least one nearest neighbor with like spins (Big 2).

Following Fortuin and Kasteleyj2], we can rewrite the partition function of the model
(1) as[25]

z=>Y" exp[K > Boi0; — 1)] S pPa-p? [ [1+ 6 — e tine], 3)
(ij)

{o} {r} cu

where{I"} denotes the set of bond configurations specifietl bynds and broken bonds
between like spins, whilé€(I") denotes the clusters in a given bond configurafiorfi-
nally, n. is the number of sites contained in thi cluster, where an isolated single site
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Fig. 2. Left panel: original lattice with the spin variables taking three different valpes3) indicated by differ-

ent grey scales. Right panel: reduced lattice consisting of sites having at least one nearest neighbor with like spin,
i.e., of the same shading. Auxiliary bonds, taking two different values 2), are laid with a certain probability

within clusters of like spins. The resulting bond clustegresent sites which are all in the same spin (indicated

by dots with the same shading) and auxiliary spin statgi¢ated by bonds with the same shading). The broken
bonds within a spin cluster are indicated by broken lines.

counts as a cluster, irrespective of whetheision the restricted or the original lattice.
This last observation follows from the absence of any reference to the spin variable in the
last term of the Hamiltonial). In the partition function, the limiting case= 1, where
the Hamiltonian(1) is independent off and H, can be recovered by noting that, for a
given spin configuration the SUE{F} p?(1— p)? of the probailities of all possible bond
configurations adds up to unity.

As mentioned above, cluster properties can be extracted from the partition fu¢®tion
of the diluted model by taking the limit— 1. Specifically{25],

%dglz ‘ T %<Zp”(1 -»'J] e‘H"<>> _Y et @

{r) )

whereN denotes the total number of lattice sites @pds the cluster distribution giving
the average number density of clusters:cfites. The thermal average indicated by angle
brackets in Eq(4) is taken with respect to the pugestate Potts model, i.e., the first factor

in the Hamiltoniar(1). The right hand is seen to be the generating function for clusters. By
differentiating it with respect to the ghost field higher momenta in the cluster sizes can
be obtained.

The pure Potts part of the theory is easily dealt with by noting that, for a given spin
configuration, it gives a factae™ %)%, wherea denotes the number of nearest neighbor
pairs of unlike spin.

The two fixed points of the diluted model correspond to two specific choices of the
coupling constany [21,26]with K fixed at the critical temperaturg. of the pure Potts
model (seeFig. 3). The first choice is obtained by taking= K. This case is special
because the factors & arising from the first term in the Hamiltoniafl) can now be
related to the bond probabili{) as

ef=1-p, (5)
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Fig. 3. Phase diagram of the diluted mog#) in the K—p plane, withp = 1 — exp(—J) the bond probability.
The arrows indicate the renormalization flow in the inéih The FK fixed point governs the critical behavior
described by the FK clusters, while the geometrical figetht governs the tricriticabehavior described by the
geometrical clusters.

and the partition function becomes

Ze=)_ p"A=p) P[] [1+ G —De™]q, (6)
{r} cr)

whereB is the total number of bonds on the lattide= b+ b +a. The sump_,,, produced
the factorg since each cluster can be in any of thepin states. For = 1, this partition
function reduces to the celebrated Fortuin—Kasteleyn representation of the Pott§2hodel

Zrk =Y pP(1—p)B g, (7
)

where N¢ is the number of clusters, including isolated sites, contained in the bond con-
figuration I'. The clusters seen in the limit— 1 encode the complete thermal critical
behavior of the model and are frequently referred to as Fortuin—Kasteleyn (FK) clusters.
For ¢ — 1, the partition functior{7) describes standard, uncorrelated percolation, where
the FK clusters coincide with the usual percolation clusters.

The second choice is obtained by taking the lithit> oo where the bongbrobability
p tends to unity. The only clusters surviving this limit are those without any broken bonds
between like spingb = 0), which are the geometrical clusters. The partition function can
be written in this limit as

7ZG= Ze‘K“ ]_[ [14 (s — e ] P.(q), (8)
{ry e

where the factoP,(¢) is such that the product over the clustﬂgm P.(q) =: Pr(q)

gives the number of different spin cogfdirations for a given bond configuratidh That
is, Pr(q) is the number of;-colorings of the geometrical clusters containedinwhere
it is recalled that an isolated single site counts as a clustes. £dk, the partition function
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reduces to
Ze=Y e Pr(q). 9)
{r}

which is nothing but the standard low-temperature representation of the pure Potts model
[3]. For the Ising modelg = 2), each graph can be colored in two different was(2) =

2, so that the coloring number becomes irrelevant. For uncorrelated percdlatiod),

Pr(1) =1 anda = 0 trivially, so that only one geometrical cluster remains, representing a
fully occupied latticg26].

3. Pure Pottsmodel
3.1. FK clusters

Adapting similar notation$11], we parameterize the two-dimensiongktate Potts
models as

Vg =—2cosn /i), (10)

with 2 > i > 1 so that the argument of the cosine takes values in the intgryal = ].
Special cases are:

o tree percolationd =0, x = 2);

e uncorrelated percolatiog =1,k = %);
e Ising model § =2, & = 3);

e q=3,k= g;

e g=4,k=1.

The parametet is related to the central chargevia [13]

6(1— k)2
c=1— g’ (11)
K
while the correlation length exponemntand the Fisher exponeng are given by[10]
2 1 1 3.
Vzgﬁ, ?’]CZZ—E—ZK (12)

The latter determines the algebraicdy of the cluster correlation functig@gic(x) at the
critical point

Ge(x,x) ~1/|x — x'|9=2tne, (13)

with d the number of space dimensions. Physically(x, x’) gives the probability that
sitesx andx’ belong to the same cluster. The subscript “C” is to distinguish the thus
defined exponent from the standard definiti@séd on the spin—spin correlation function.
The other exponents can be obtained from the two given if{Ejusing standard scaling
relations.
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For ease of comparison with the more oftesed notation where the central charge is
given in terms of a parameter [13]:

6

=1-— 14
¢ m(m + 1) (14)
which in turn is related tg through
T m
=2co§ —— |=-2co 15
va S<1+m> S<1+mﬂ>’ (15)
with 1 <m < oo, we note that the relation with reads for Potts models:
1 1
L S (16)
m K—1

Usually, only the first equation in E¢15) is given, we included the second to clearly see
the relation with ther parameterization.

The critical behavior of the Potts model is also encoded in the FK cluster distril#ytion
given in Eq.(4), which near the critical point takes the form

£, ~n~ " exp(—0n), a7

as in percolation theorf4]. The first factor, characterized by the exponestis an en-

tropy factor, measuring the number of ways of implementing a cluster of given size on the
lattice. The second factor is a Boltzmann weight which suppresses large clusters as long
as the parametet is finite. When the critical tempenate is approached from above, it
vanishes a® « (T — Tc)Y/°c, with oc a second exponent. The cluster distribution then
becomes algebraic, meaning tichusters of all sizes are present. As in percolation theory
[4], the values of the two exponents specifying the cluster distribution uniquely determine
the critical exponents as

c—1 wc—2 3—1c
o= 2 - ) ﬁC == ) VC == )
oc oc oc
c—3 c—1 d
=2+d , = , Dc=——, 18
nc=2+ — V= od c= 1 (18)
where the fractal dimension of the clusters is related to the Fisher expd2gmta
1
Dc=§(d+2—nc)~ (19)

Various exponents are given the subscript “Cfrtdicate that the cluster definition is used
in defining them. For FK clusters, where in termscof

12¢(2 — k) 32+ 24 + 4
= 59 o= . A c= TA—9  a—- . a1
32+ 8c+4 CT B2t 8c+4

the cluster exponents coincide with thertimal ones. The cluster definition not always
yields the thermal critical exponents. For exale, when the critical behavior of a sys-
tem allows for a description in terms of other geometrical objects such as closed particle
worldlines or vortex loops, a related but diféeit definition is required to obtain the thermal
exponents from the loop distributig@7].

oc (20)
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The various fractal dimensins characterizing FK clusts and the leading thermal
eigenvalueyr = 1/v read in terms ok [12,28,29]

1 3
Dc=1+—+ =k 21
c=1+ -+ gk, (21a)
DH:H% (21b)
1
Dep=1+ —, (21c)
2ic
3 k
DRB=1—§+§, (21d)
3_
yr =3— K- (21e)

Here, D¢ is the fractal dimension of the clusters themselves, Bpdthat of their hulls
[30,31] In the context of uncorrelated percolation, the hull of a cluster can be defined
as a biased random walB0]: Identify two endpoints on a given cluster. Starting at the
lower endpoint, the walker first attempts to move to the nearest neighbor to its left. If
that site is vacant the walker attempts tovastraight ahead. If that site is also vacant,
the walker attempts to move to its right. Filyaif also that site is vacant, the walker
returns to the previous site, discards the direction it already explored and investigates the
(at most two) remaining directions in the same order. When turning left or right, the walker
changes its orientation accordingly. The gedure is repeated iteratively until the upper
endpoint is reached. To obtainet other half of the hull, the entire algorithm is repeated
for a random walker that attempts to first move to its right instead of to its left. The hull
of FK clusters is a self-intersecting path. As remarked in the Introduction, these hulls for
4> g > 0 correspond to the Sl;Braces with 1< « < 2.

The fractal dimensiorDgp characterizes the external paeter. Its operational defi-
nition [30] in the context of uncorrelated percolation is similar to that for the hull with
the proviso that the random walker only W$s(nearest neighbor) vacant sites around the
hull of the cluster. From the resulting trad®se sites not belonging to the perimeter, i.e.,
without an occupied site as nearest neighbor, are deleted (such sites can, for example, be
visited by the walker when it makes a right or left turn on a square lattice). This leads to
nonintersecting traces.

These algorithms have recently been used in a numerical study carried out on fairly
large lattices [ = 212 = 4096) to determine the fractal dimensions of FK clusters of the
q-state Potts models with= 1, 2, 3, 4[32].

By construction, the external perimeter is smoother than the hull, or at least as smooth,
so thatDep < Dy . The two are equal when the fractal dimensiogg of the so-called red
bondg[33] is negative. (A red bond denotes a bdhdt upon cutting leads to a splitting of
the cluster.) For FK clusterd)gp is strictly smaller thanDy for all 1 < i < 2, while for
i =1 (g = 4), the fractal dimension of the red bonds becomes zero, and the hull and the
external perimeter have identical dimensions.

The two boundary dimensions are seen to satisfy the relf2R@jn

1
(Dep— 1D (Dy—1) = 7 (22)
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An analogous relation, this time also involving the fractal dimension of the FK clusters
themselves reads

3 1 3
(Dc — Dep) (DC - é_lDH - Z) = 1—6 (23)

In addition, the fractal dimensions satisfy the linear relation
1
Dc — Dn = 7 (Dep— Dra)- (24)

The dimensionD¢ of the FK clusters approaches the number of available dimensions,
Dc — 2 wheng — 0 (k — 2). In this limit, also the hulls of the FK clusters become
space-filling,Dy — 2.

As in percolation theory33], the fractal dimensions can be identified with renormal-
ization group eigenvalues of certain optera. For example, the fractal dimensidg of
the FK clusters coincides with the magnetic scaling expopgnt

Dc =y =d— fc/v, (25)
while that of the red bond9)rg, coincides with the eigenvalug in the J direction,
Dre =1y, (26)

and therefore describes the crossdatween FK and geometrical clustéts,28] Specifi-
cally, 1/y, determines the divergence of the correlation lerggé the critical temperature
K¢ when the bond probabilitf2) approaches the critical valyg = 1 — exp(—J¢), i.e.,

g~ (pc—p) .
3.2. Geometrical clusters

Starting from the FK cluster dimensioi@1), we next wish to obtain the analog ex-
pressions for the geometrical clusters of the Potts model at criticality. As argued by Van-
derzandg?26], both cluster types are charadted by the same central chargeFrom
Eq.(11)it follows that a given value of does not uniquely determire Indeed, inverting
that equation, we obtairwvo solutions fori:

_183—ct(c—29(c-1)

i 27

K 1 (27)
with i > 1 andi— < 1. The solutions satisfy the constraint

kyk— =1. (28)

Since the right hand is independentfreplacingic with 1/i leaves the central charge
unchanged; (k) = c(1/x).

As an aside, note that the fractal dimensions of the hull and external perimeter of FK
clusters are related by precisely this nja8], which is called duality in SLE studies. This
duality, which in the Coulomb gas language corresponds to the earlier observed correspon-
denceg — 1/g (recall thatg = 1/ic) [14,17] is also at the root of the relatid@2) between
the two boundary dimensions.
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Applying the duality mapge — 1/k to the FK cluster dimensions listed in E@1), we
obtain

D8:1+§+%, (29a)
Di=1+ % (29b)
DSy =1+ % - ;E, (29¢)
=3~ (290)

wherek = icy. These dimensions precisely match those conjectured by Vanderzande for
geometrical cluster6]. We therefore conclude that the geometrical clusters of the Potts
model are images of the FK clusters under the map 1/i for giveni. Since this trans-
formation at the same time maps the critical onto the tricritical regime (see below), it
follows that the geometrical clusters (of the pure Potts model) describe the tricritical be-
havior in the same way as the FK clusters describe the critical behavidr.Fdr(g = 4),

the dimensions of the FK and geometrical clusters become degenerate, and the critical and
tricritical behaviors merge. Far > 4, the phase transition is discontinudég. The frac-

tal dimension(29a)was first given by Stella and Vanderzard8] for the Ising case, and
generalized to arbitrary & k < 2 by Duplantier and Sale(i84].

The external perimeter dimensiddep of FK clusters has no image under the map
i — 1/k. To understand this, recall that by smioiog the hull of a FKcluster one obtains
its external perimeter. For geometrical clusters, on the other hand, the fractal dimension of
the red bonds is negativerg < 0 as follows from Eq(29¢)with 1 < ik < 2, so thatDS =
DEP and the hull of a geometrical cluster is already nonintersecting. This is also reflected
by the SLE traces. Under the transformati@n— 1/, the self-intersecting traces with
k > 1, representing the hulls of FK clusters are mapped onto simple traces with,
representing the hulls of geometrical clustdr4).

For givenk, the fractal dimension of the external perimeters of FK clusters coincides
with that of the hulls of geometrical clusterBgp = DS(: DEP). Since FK clusters are
obtained from geometrical clusters by breaking bonds between nearest neighbors with like
spins, the smoothing of the FK hulls apparently undoes this process again (as far as the
boundaries are concerned).

Table 1summarizes the various fractal dimensions appearing in the Potts models. Note
that for g = 0, the geometrical cluster dimension is larger than the number of available
dimensionsD((:5 > 2, making the geometrical clusgsaunphysical in thigase. The equality
Dep = Dgg is typical for tree percolation. The valueg =2 for ¢ = 1 agrees with the
observation that in this case the geometrical cluster represents a fully occupied24tice
The cluster dimensio¢ (k) possesses a minimum atli = 2/+/3 < ‘3‘, allowing the
models withg = 4 andg = 2 to have the same dimension.

The physical meaning of the thermal eigenva}t& is related to the existence of a
critical magnetic fieldHs(K), such that in the regiok < K¢, H > Hs(K) a geometrical
cluster spanning the lattice (hence the subscript “s”) is always present. The eigey?/alue
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Table 1
FK and geometrical fractal dimensions characterizinggtstate Potts models, with=0, 1, 2, 3,4
¢ m k& Dc Dy Dep yr Dre DS D§ ¢  Dgg
5 5 35 5 9 7
o -2 1 2 2 a 0 a 16 2 2 ~3
3 91 7 4 3 3 4 11
10 2 7 @ z 3 2 A 2 3 2 —13
2 1 3 4 15 ) 11 1 13 187 11 15 _3
2 3 8 3 8 24 96 8 8 8
3 4 5 6 28 8 17 6 A 153 17 7 _23
5 5 15 5 12 5 20 80 12 1 60
15 3 3 3 15 3 3
4 1 00 1 5 5 5 0 7 5 5 0

namely determines the vanishing of this fieldlspproache&’; from below[18]:

Hs(K) ~ (K¢ — K)'T . (30)

4. Tricritical Potts model

In the traditional represerttan in terms of the parameter determining the central
chargec through Eq(14), theg-state tricritical Potts models is parameterized 18]

JI= 2005(%) =-2 cos(lj;mn), (31)

wherem is restricted to K m < co. As for the Potts models, usually only the first equation
is given. The second one is included becauseamparing with the prameterizatiol5)

of the Potts models, we observe that the two are related by inverijiid) + m). Given

the connectior(16) with the ¥ notation, it follows that this is nothing but the central-
charge conserving map— 1/ic which relates the FK and geometrical clusters of a given
Potts model. Whereas, parameterizes the Potts bran(@®), the solutionc_ of Eq.(27)
parameterizes the tricritical branch,

g =—2cosm/ik_), (32)

with ic_ restricted to the value]§ < k— <1, so that the argument of the cosine now takes
values in the intervdlr, 37]. (From now on, th&’s are given a subscript plus or minus to
indicate the solution larger or smaller than 1. Up to this point only the larger solution was
used and no index was needed to distinguish.) The results obtained for the Potts models
can be simply transcribed to the tricritical models, providedised on the Potts branch is
replaced byc_. This close relation between the two models was first observed by Nienhuis
et al.[8]. Note that for% <k_< % the geometrical cluster dimension exceeds the available
number of dimensions, which is unphysical. The eigenvgiﬁJQQd)with k=Ky+=1/k_

is one of the two leading thermal eigenvalues of the tricritical Potts njadglThe second

one is given by the inverse correlation length expongnt tvith

11
T A1—k_

v

(33)
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Because replacing, with k_ is tantamount to replacing; with 1/k., it follows
that for given central charge, the FK clusteifsthe tricritical model are the geometrical
clusters of the Potts model (anite versa). For example, the fractal dimensidrc of the
FK clusters in the critical regimd)c = 1+ 1/2ic; + 3ic4/8, translates into % 1/2k_ +
3ik_/8=1+k+/2+3/8k for the tricritical regime. This is precisely the fractal dimension
(29a)of the geometrical Potts clusters.

As g increases, the critical and tricritical pasrepproach each other until they annihilate
at the critical valug = 4, where the FK and geometrical clusters coincide and the red bond
dimension vanishes. As stressed by Conif#i8], the vanishing ofDrg signals a drastic
change in the fractal structure, ampiating a first-order phase transition.

5. High-temperaturerepresentation
5.1. Monte Carlo study

To support the picture discussed above we carry out a Monte Carlo simulation of the
high-temperature (HT) representation of the 2-state Potts, i.e., Ising model, adopting a new
update algorithnfi23]. HT, or strong coupling expansions can be visualized by graphs on
the lattice, with each occupied bond reprdsena certain contribution to the partition
function. For the Ising model, defined by the Hamiltonian

—BH=B)_SiS;. Si==%1 (34)
(ij)

where the coupling constant is taken to be unity, the HT representation[B&dds

Z = (coshg)?N 2V Z Wb, (35)
{I'o}

where{Io} denotes the set afosed graphs specified bly occupied bonds, and= tanhg.
Traditionally, HT expansions are carried out exactly up to a given order by enumerating
all possible ways graphs up to that order can be drawn on the lattice. We instead gener-
ate possible graph configurations by means of a Metropolis update algorithm, involving
single plaquetteR3] (seeFig. 4for typical configurations generated in the low- and high-
temperature phases). By taking plaquettes as building blocks, the resulting HT graphs are
automatically closed—as requirg®b]. The update is such that all the bonds of a selected
plaguette are changed, i.e., those that were occupied become unoccupied and vice versa
[23] (seeFig. 5). A proposed update resulting # occupied bonds is accepted with prob-
ability

put = min(1,077?), (36)

whereb denotes the number of occupied bonds before the update./Vdig#moting the
number of bonds on the plaquette already occugiethdd’ are related through

b'=b+4-2. (37)
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Fig. 4. Typical graph configurations, somewhat resembling the oil paiRtigthm of a Russian Dance by De Stijl

artist Theo van Doesburg (1883-1931), generated onxa s square lattice with psdic boundary conditions
in the high- (left panel) and lotemperature (right panel) phase.

selecte'd/plaquette

Fig. 5. Update mechanism at work. Left panel: preggaph with the plaquette selected for updating indicated
by the broken square. Right panel: new graph afterupdate proposal is accepted. Both the old and new graph
consist of 8 bonds, in accordance with E8j7) since two bonds on the plaquette were already occupied.

In the following, we focus exclusively on the graphs and measure typical cluster quanti-
ties, such as the graph distribution, the size of the largest graph, and whether or not a graph
spans the lattice. From this, the temperature where the graphs proliferate as well as their
fractal dimension can be extracted as in peatioh theory. Both the proliferation temper-
ature and the associated correlation length exponent turn out to coincide with their Ising
counterparts.

By the well-known Kramers—Wannier dualif§6], the HT graphs form Peierls domain
walls [37] separating spin clusters of opposite orientation on the dual lattice. Each bond
in a HT graph intersects a nearest neighbor paithe dual lattice of unlike spins perpen-
dicular to it. In other words, the HT graphs are the boundarigearfetrical spin clusters
(albeit on the dual lattice) whose fractal dimension we wish to establish. The advantage
of the plaquette update we use is that these boundaries are simulated directly without first
considering the corresponding cluster. At thigical temperaturethe domain walls lose
their line tensiorand proliferate.

When interpreted as domain walls, the HT graphs should strictly speaking be cut at the
vertices, so that the graphs break down in separate polygons without self-intersections that
only touch at the corners where the verticeseMecated. However, it is expected that this
does not change the universal properties at criticality we wish to determine.

From the duality argument it also followsahthe plaquette update is equivalent to a
single spin update on the dual lattice (§8@. 6). To illustrate this, the internal energyis
computed, using the plaquette update. Onrdimite lattice, the Kramers—Wannier duality
implies that observables calculated at an inverse temperétaréhe original Ising model
can be transcribed to those of the dual model at an inverse tempegatilite relation
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Fig. 6. A plaquette on the original lattice correspondsa eierls domain wall on the dual lattice, separating the
site at its center with reversed spin from the outside.

between the two temperatures follows from noting that, an occupied HT bond represents a
factorv, while a nearest neighbor pair on the dual lattice of unlike spin on each side of the
HT bond carries a Boltzmann weight &x2p3), so thaf36]

tanhg = e 2%, (38)

or sinh28 =1/ sinh 25.

On a finite lattice with periodi boundary conditions, however, a mismatch arises be-
causesingle HT graphs wrapping the (finite) lattice are not generated by the plaquette
update—such graphs always come in pairs. The HT Monte Carlo study will therefore not
exactly simulate the Ising model with pedic boundary conditions, at least not for small
lattice sizes. (For larger lattices, single graphs wrapping the lattice become highly unlikely,
so that their absence will not be noticedyarore, and the HT Monte Carlo simulation
becomes increasingly more accurate.) tmtrast, on the dual side, where the plaquette
update corresponds to a single spin update, this class of graphs is not compatible with the
periodic boundary conditins, so that they should not be included. Hence, the plaquette up-
date simulates the (transcribed) dual rather than the original model Egglf7 gives the
exact internal energy of the original g model on a finite lattie with periodic boundary
conditiong38,39]and that of the dual model transcribed to the original one using§3BYy.

In the figure, also the data points obtained using the plaquette update are included and seen
to indeed coincide with the dual curve. For increasing lattice sizes, the dual and the original
curves approach each other.

5.2. Smulation

To determine the graph proliferation temperature, the probal#i§tipr the presence of
a graph spanning the lattice as functiongo measured for different lattice sizpY§. For
small 8, Pstends to zero, while for largg it tends to unity. We consider a graph spanning
the lattice already when it does so in just one direction. Ideally, the curves obtained for
different lattice sizes cross in a single point, marking the proliferation temperature. It is
seen fronFig. 8that within the achieved accuracy, theasured curves cross at the ther-
mal critical point, implying that the HT graphs (domain walls) lose their line tension and
proliferate precisely at the Curie point.

The data was collected in3x 10° Monte Carlo sweeps of the lattice close to the critical
point and 11 x 10° outside the critical region, with about 10% of the sweeps used for
equilibration. After each sweep, the resulting graph configuration was analyzed. Statistical
errors were estimated by means of binning.
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Fig. 7. Exact internal energy on a 1€ lattice for the Ising and dual model (transcribed to the original model
using Eq.(38)), and the Monte Carlo data obtained using the plaquette update.
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Fig. 8. Probability P for the presence of a spanning graph as functiof afeasured for different lattice sizes
L. Within the achieved accuracy, the curves cross at the thermal critical peinic.

Finite-size scaling4] predicts that the raws data obtained for different lattice sizes
collapse onto a single curve when plotted as functiongfs. — 1)LV with the right
choice of the exponent By duality, the relevant correlation length here is that of the Ising
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Fig. 9. The raw data oFig. 8 replotted as function of8/8c — 1)L/, with the Ising choicer = 1. The data
collapse is satisfactory over the entire temperature range.

model, so that takes the Ising value = 1. With this choice, a satisfying collapse of the

data is achieved over the entire temperature rangeHige8).
Next, the cluster exponenig; andtg specifying the graph distribution,
ty~b7ee 6 oc(B— o)t/ (39)
are determined, wheré&, denotes the average number density of graphs containing
bonds. To this end we measure the so-called percolation stréhgttgiving the frac-
tion of bonds in the largest graph, and as sedoddpendent observable the average graph

size[4] (seeFig. 10

Z;? bsz
X6= —
Z;? bl
where the prime on the sum indicates that grgést graph in each measurement is omit-
ted. Close to the proliferation temperature, these observables obey the finite-size scaling

(40)

relations[40]
Poo=L7PS/"P(LJE),  xo=L"®/"X(L/£), (41)
whereé¢ is the correlation length and the critical exponefts y are related twg, tc

through Eq.(18) written in terms of the variables appropriate for the graph exponents.
Precisely afl;, these scaling relations imply an algebraic dependence on the systefn size

allowing for a determination of the exponent ratios ($able 2andFig. 11).
The data was fitted using the nonlinear least-squares Marquardt—Levenberg algorithm,

giving
Bc = 0.626(7), ye = 0.740(4), (42)
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Fig. 10. The percolation strengiy, (top panel) and average graph sjzg (bottom panel) as function @/ Sc
for different lattice sized..

Table 2

Percolation strengttP., and average graph sizg: at the (inverse) critical temperatue = In(1 + +/2)/2 =
0.440687. .. for various lattice size& (seeFig. 11)

L 16 20 24 32 40 48 64 80 96 128

Pso 0.11296) 0.09867) 0.08766) 0.07447) 0.06428) 0.05698) 0.04619) 0.042611) 0.035310) 0.031212)
xc 8904 1044(4) 1191(5) 1486(8) 17.44(10) 2003(16) 245522 296134 331339 419381
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Fig. 11. Log—log plot of the percolation strength,, (top panel) and average graph sigzg (bottom panel)
at the critical temperature as function of the lattice sizeThe straight lines ®42L~9-626 and 113970740,

respectively are

obtained through two-parameter fits.

with x2/d.o.f.= 1.15 and 0.94, respectively, and where it was used thatl. These
values are perfectly consistent with the fractigas—= g =0.625 yg = % =0.75, leading
to the exponents

(43)
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and the fractal dimension

DS =—= (44)

of the HT graphs we were seeking. By duality, this fractal dimension equals that of the
hull bounding the geometrical spin clustergi@ls domain walls) on the dual lattice. Our
numerical result agrees with E@9b)with i = kising = % appropriate for the Ising model.

The value(44) was predicted by Duplantier and Saleur, using the Coulomb gas map
[24]. Subsequent support for that prediction was provided by Vanderzande and Btlla
who drew on earlier numerical work by Cambier and Nauenpétd A first direct nu-
merical determination was given by Dotsenko e{42]. Employing the Swendsen—Wang
cluster update, these authors analyzed the geometrical spin clusters and their hulls at the
critical temperature. They extracted the fractal dimension from the resulting hull distribu-
tion, which is algebraic at the critical temperature. Apart from directly simulating the hulls
with the plaquette update, another advantage of our approach is the use of finite-size scal-
ing which is generally considered more reliable than the extraction of exponents by fits to
the data obtained for a fixed lattice size.

As argued in Sectiod for the general case, the geometrical Ising clusters correspond to
the tricritical Potts model witlt = k— = 1/kising = %, which according to Eq32) is the
tricritical g = 1 model[18]. In addition to the correlation length exponent 1 which we,
in accordance with E¢33), observed numerically and the second thermal eigen\;@ue
%5, this tricritical behavior is further characterized ] Sc = 9%. This value follows
from the scaling relatiof25) with the fractal dimensio¢ of the FK clusters replaced by
that of their geometrical counterpgB9a)with i = Kising = % [18].

The fact that the two correlationrgth exponents featuring in the critical= 2 and
tricritical ¢ = 1 Potts models are equal is special to this case, being a result of the Kramers—
Wannier duality. Indeed, equating the correlation length expaii&)of the critical Potts
models and that of the tricritical Potts models giver{38) with k_ = 1/k to assure that
both models have the same central charge, yielgscsing= ‘3‘ as only physical solution.

6. Summary

In this paper, it is shown that the geometrical spin clusters of the gptstate Potts
model in two dimensions encode the tricritical behavior of the site diluted model. These
clusters, formed by nearest neighbor sites of like spins, were shown to be mirror images
of FK clusters, which in turn encode the critical behavior. Since the mirror map conserves
the central charge, both cluster types (and thus both fixed points) are in the same univer-
sality class. The geometrical picture waispported by a Monte Carlo simulation of the
high-temperature representation of the Ising model, correspondipg-t8. The use of a
plaguette update allowed us to directly simulate the hulls of the geometrical clusters and to
accurately determine their fractal dimension.
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