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Abstract

The tricritical behavior of the two-dimensionalq-state Potts model with vacancies for 0� q � 4 is
argued to be encoded in the fractal structure of the geometrical spin clusters of the pure mod
known close connection between the critical properties of the pure model and the tricritical pro
of the diluted model is shown to be reflected in an intimate relation between Fortuin–Kastele
geometrical clusters: the same transformation mapping the two critical regimes onto each oth
maps the two cluster types onto each other. The map conserves the central charge, so that bo
types are in the same universality class. The geometrical picture is supported by a Monte Carl
simulation of the high-temperature representation of the Ising model(q = 2) in which closed graph
configurations are generated by means of a Metropolis update algorithm involving single plaq
 2004 Elsevier B.V. All rights reserved.

PACS: 02.70.Lq; 05.50.+q; 75.10.Hk

1. Introduction

The two-dimensionalq-state Potts models[1] can be equivalently formulated in term
of Fortuin–Kasteleyn (FK) clusters of like spins[2]. These FK clusters are obtained fro
the geometrical spin clusters, which consist of nearest neighbor sites with their spi
ables in the same state, by laying bonds with a certain probability between the n
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neighbors. The resulting FK, or bond clusters are in general smaller than the geome
cal ones and also more loosely connected. The FK formulation of the Potts models
thought of as a generalization of (uncorrelated) bond percolation, which obtains in th
q → 1. The geometrical clusters themselves arise in the low-temperature representation
the pure model[3].

For q � 4, where the model undergoes a continuous phase transition, the FK cl
percolate at the critical temperature and theirfractal structure encodes the complete criti
behavior. The thermal critical exponents areobtained using the cluster definitions fro
percolation theory[4]. With clusters and their fractal properties taking the central stag
the FK formulation provides a geometrical description of the Potts model.

The concept of correlated bond percolation has been turned into a powerful Monte
algorithm by Swendsen and Wang[5], and by Wolff[6], in which not individual spins ar
updated, but entire FK clusters. The main advantage of the nonlocal cluster upda
a local spin update, like Metropolis or heat bath, is that it drastically reduces the critic
slowing down near the critical point.

Although it was known from the relation with other statistical models that the p
transition of the Potts models changesfrom being continuous to first order atq = 4 [7], ini-
tial renormalization group approaches failed to uncover the first-order nature for larq .
Only after the pure model was extended to include vacant sites, this feature was ob
[8]. In a Kadanoff block-spin transformation,the vacant sites represent blocks withou
majority of spins in a certain state, i.e., they represent disordered blocks. In addition
pure Potts critical behavior, the site diluted model also displays tricritical behavior, w
was found to be intimately connected with the critical behavior[8]. With increasingq ,
the critical and tricritical fixed points move together until atq = 4 they coalesce and th
continuous phase transition turns into a first-order one.

Recently, the cluster boundaries of two-dimensional critical systems have been inte
sively studied by means of a method dubbed “stochastic Loewner evolution”(SLEκ̄ )—a
one-parameter family of random conformal maps, introduced by Schramm[9]. In this
approach, the Brownian motion of a random walker is described by Loewner’s ord
differential equation, containing a random term whose strength is specified by a par
κ̄ � 0.1 Different values ofκ̄ define different universality classes. Various results pr
ously conjectured on the basis of the Coulomb gas map[10–12]and conformal invarianc
[13] have been rigorously established by this method. The interrelation between̄κ
traces and the Coulomb gas description is made explicit by observing that the Coulom
gas coupling parameterg can be simply expressed byg = 1/κ̄ [14]. The nature of the
SLEκ̄ traces changes with̄κ : for 0 � κ̄ < 1 the path is simple (nonintersecting), while f
1 � κ̄ � 2 it possesses double points (seeFig. 1); and for κ̄ > 2 it is space-filling[15,
16]. This change reflects a change in the critical systems described by the SLEκ̄ traces
[14]: for 1 � κ̄ � 2 they represent the hulls of FK clusters of theq-state Potts model with
4 � q � 0, while for 1

2 � κ̄ � 1 they represent the closed graphs of the high-temper
representation of the O(n) model with−2 � n � 2 and at the same time also the exter
1 The parameter̄κ we use is related to the labelκ in Ref. [9] throughκ̄ = κ/4. The reason for our convention
will become clear when we proceed (see, e.g., Eq.(28)).
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Fig. 1. Trace possessing a double point.

perimeters of FK clusters with dual parameter 1/κ̄ [14,17]. For a recent overview from th
mathematical point of view, see Ref.[17].

In this paper, the tricritical regime of the two-dimensional (annealed) site dilutedq-state
Potts model with 0� q � 4 is studied from the geometrical point of view. It will be argu
that the tricritical behavior of these models is encoded in the geometrical clusters
pure Potts model in the same way that the critical behavior is encoded in the FK clu
The relation between geometrical clusters and tricritical behavior was first established b
Stella and Vanderzande[18,19] for the special caseq = 2, i.e., for the Ising model. Usin
arguments based on renormalization group, conformal invariance, and numerical s
tions, they showed that the geometrical cluster dimensions of the Ising model at crit
are determined by theq = 1 tricritical Potts model, as was earlier conjectured by Temes
and Herényi[20]. The values of two of the three leading tricritical exponents charact
ing the geometrical clusters were already determined before by Coniglio and Klein[21].
The distinctive feature of theq = 1 tricritical model is that it is in the same universal
class as the Ising model defined by the central chargec = 1

2. In addition, it has the sam
correlation length exponentν = 1 as the Ising model. The boundaries of geometrical P
clusters were also already known to be in the same universality class as the tricritical
with the same central charge[12,22]. Formulated in terms of SLĒκ traces, the hulls of geo
metrical clusters are described at criticality by traces with1

2 � κ̄ � 1, thereby forming the
geometrical counterpart of the FK hullswhich are described by the traces with 1� κ̄ � 2.
It will be shown here that not just the boundary dimensions, but all the relevant f
dimensions characterizing FK clusters are in one-to-one correspondence with those
geometrical clusters, thus providing a physical picture for the close connection be
the critical and tricritical behaviors just mentioned. The important aspect of the map
it leaves the central charge unchanged, so that both cluster types and their bounda
in the same universality class, characterized by the same central charge.

To support this geometrical picture, we carry out a Monte Carlo study of the
temperature representation of the 2-state Potts, or Ising model. We generate th
temperature graphs by using a Metropolis update algorithm involving single plaq
[23]. By duality, the high-temperature graphs, which are closed, form the hulls of
metrical spin clusters on the dual lattice. We thus simulate the geometrical hulls d
without first considering the clusters. From the geometrical properties of these g
such as their distribution, the size of the largest graph, and whether or not a graph
the lattice, the fractal dimension of the hulls of geometrical clusters can be determin

immediately. Our numerical result agrees with the analytic prediction by Duplantier and
Saleur[24], which was derived using the Coulomb gas map.
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The paper is organized as follows. In Section2, those aspects of the dilutedq-state
Potts model are reviewed that are of relevance for the following, in particular its c
properties. Section3.1discusses the various fractal dimensions characterizing FK cluster
In Section3.2, the results for FK clusters are transcribed to geometrical clusters, wh
Section4 are shown to encode the tricritical Potts behavior. The Monte Carlo resul
the high-temperature representation of the Ising model are presented in Section5, followed
by a summary in Section6.

2. Diluted q-state Potts model

The diluted Potts model can be defined by the Hamiltonian[25]

(1)−βH = K
∑
〈ij〉

(δσi,σj − 1) + J
∑
〈ij〉

(δτi ,τj − 1)δσi,σj − H
∑

i

(δτi ,1 − 1),

whereβ denotes the inverse temperature and the double sum
∑

〈ij〉 extends over neare
neighbors only. The first term at the right hand with coupling constantK is the pureq-
state Potts model with spin variableσi = 1,2, . . . , q at theith site. On this a second Pot
model with auxiliary spin variableτi = 1,2, . . . , s, coupling constantJ , and ghost field
H is superimposed. The reasons for this extension of the pure Potts model are tw
First, in the limits → 1, thes-state Potts model describes (bond) percolation[2], which is
naturally formulated in terms of clusters. The extension thus allows for the investigat
cluster properties of the original model when the limits → 1 is taken. Second, the dilute
model has two fixed points forq � 4. In addition to the pure Potts critical point, it also h
a tricritical point, depending on the value of the coupling constantJ . Adding vacancies
therefore leads to two distinct scaling regimes, each with its own critical exponents. Note
that the limits → 1 is subtle as precisely fors = 1, the Hamiltonian(1) is independent o
J andH , so that it reduces to the standard Potts model.

The second term in the Hamiltonian(1) connects nearest neighbors of like spins (
which δσi,σj = 1) with bond probability

(2)p = 1− e−J ,

while the ghost fieldH in the last term acts as a chemical potential for the auxiliary spin
the first state,τi = 1. A configuration of auxiliary bonds thus obtained can be represen
by a graph on a restricted lattice, consisting of those sites of the original lattice that h
least one nearest neighbor with like spins (seeFig. 2).

Following Fortuin and Kasteleyn[2], we can rewrite the partition function of the mod
(1) as[25]

(3)Z =
∑
{σ }

exp

[
K

∑
〈ij〉

(δσi,σj − 1)

]∑
{Γ }

pb(1− p)b̄
∏
C(Γ )

[
1+ (s − 1)e−Hnc

]
,

where{Γ } denotes the set of bond configurations specified byb bonds and̄b broken bonds

between like spins, whileC(Γ ) denotes the clusters in a given bond configurationΓ . Fi-
nally, nc is the number of sites contained in thecth cluster, where an isolated single site
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Fig. 2. Left panel: original lattice with the spin variables taking three different values(q = 3) indicated by differ-
ent grey scales. Right panel: reduced lattice consisting of sites having at least one nearest neighbor with
i.e., of the same shading. Auxiliary bonds, taking two different values(s = 2), are laid with a certain probability
within clusters of like spins. The resulting bond clustersrepresent sites which are all in the same spin (indica
by dots with the same shading) and auxiliary spin state (indicated by bonds with the same shading). The bro
bonds within a spin cluster are indicated by broken lines.

counts as a cluster, irrespective of whether itis on the restricted or the original lattic
This last observation follows from the absence of any reference to the spin variable
last term of the Hamiltonian(1). In the partition function, the limiting cases = 1, where
the Hamiltonian(1) is independent ofJ andH , can be recovered by noting that, for
given spin configuration the sum

∑
{Γ } pb(1−p)b̄ of the probabilities of all possible bond

configurations adds up to unity.
As mentioned above, cluster properties can be extracted from the partition functi(3)

of the diluted model by taking the limits → 1. Specifically[25],

(4)
1

N

d lnZ

ds

∣∣∣∣
s=1

= 1

N

〈∑
{Γ }

pb(1− p)b̄
∏
C(Γ )

e−Hnc

〉
=

∑
n

�ne−Hn,

whereN denotes the total number of lattice sites and�n is the cluster distribution giving
the average number density of clusters ofn sites. The thermal average indicated by an
brackets in Eq.(4) is taken with respect to the pureq-state Potts model, i.e., the first fact
in the Hamiltonian(1). The right hand is seen to be the generating function for cluster
differentiating it with respect to the ghost fieldH higher momenta in the cluster sizes c
be obtained.

The pure Potts part of the theory is easily dealt with by noting that, for a given
configuration, it gives a factor(e−K)a , wherea denotes the number of nearest neigh
pairs of unlike spin.

The two fixed points of the diluted model correspond to two specific choices o
coupling constantJ [21,26]with K fixed at the critical temperatureKc of the pure Potts
model (seeFig. 3). The first choice is obtained by takingJ = K. This case is specia
because the factors e−K arising from the first term in the Hamiltonian(1) can now be
related to the bond probability(2) as
(5)e−K = 1− p,
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Fig. 3. Phase diagram of the diluted model(1) in the K–p plane, withp = 1 − exp(−J) the bond probability.
The arrows indicate the renormalization flow in the infrared. The FK fixed point governs the critical behav
described by the FK clusters, while the geometrical fixedpoint governs the tricriticalbehavior described by th
geometrical clusters.

and the partition function becomes

(6)ZFK =
∑
{Γ }

pb(1− p)B−b
∏
C(Γ )

[
1+ (s − 1)e−Hnc

]
q,

whereB is the total number of bonds on the lattice,B = b+ b̄+a. The sum
∑

{σ } produced
the factorq since each cluster can be in any of theq spin states. Fors = 1, this partition
function reduces to the celebrated Fortuin–Kasteleyn representation of the Potts mo[2],

(7)ZFK =
∑
{Γ }

pb(1− p)B−bqNC,

whereNC is the number of clusters, including isolated sites, contained in the bond
figurationΓ . The clusters seen in the limits → 1 encode the complete thermal critic
behavior of the model and are frequently referred to as Fortuin–Kasteleyn (FK) clu
For q → 1, the partition function(7) describes standard, uncorrelated percolation, w
the FK clusters coincide with the usual percolation clusters.

The second choice is obtained by taking the limitJ → ∞ where the bondprobability
p tends to unity. The only clusters surviving this limit are those without any broken b
between like spins(b̄ = 0), which are the geometrical clusters. The partition function
be written in this limit as

(8)ZG =
∑
{Γ }

e−Ka
∏
C(Γ )

[
1+ (s − 1)e−Hnc

]
Pc(q),

where the factorPc(q) is such that the product over the clusters
∏

C(Γ ) Pc(q) =: PΓ (q)

gives the number of different spin configurations for a given bond configurationΓ . That

is, PΓ (q) is the number ofq-colorings of the geometrical clusters contained inΓ , where
it is recalled that an isolated single site counts as a cluster. Fors = 1, the partition function
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reduces to

(9)ZG =
∑
{Γ }

e−KaPΓ (q),

which is nothing but the standard low-temperature representation of the pure Potts
[3]. For the Ising model(q = 2), each graph can be colored in two different ways,PΓ (2) =
2, so that the coloring number becomes irrelevant. For uncorrelated percolation(q = 1),
PΓ (1) = 1 anda = 0 trivially, so that only one geometrical cluster remains, represent
fully occupied lattice[26].

3. Pure Potts model

3.1. FK clusters

Adapting similar notations[11], we parameterize the two-dimensionalq-state Potts
models as

(10)
√

q = −2 cos(π/κ̄),

with 2 � κ̄ � 1 so that the argument of the cosine takes values in the interval[π/2,π].
Special cases are:

• tree percolation (q = 0, κ̄ = 2);
• uncorrelated percolation (q = 1, κ̄ = 3

2);
• Ising model (q = 2, κ̄ = 4

3);
• q = 3, κ̄ = 6

5;
• q = 4, κ̄ = 1.

The parameter̄κ is related to the central chargec via [13]

(11)c = 1− 6(1− κ̄)2

κ̄
,

while the correlation length exponentν and the Fisher exponentηC are given by[10]

(12)ν = 2

3

1

2− κ̄
, ηC = 2− 1

κ̄
− 3

4
κ̄ .

The latter determines the algebraic decay of the cluster correlation functionGC(x) at the
critical point

(13)GC(x,x′) ∼ 1/|x − x′|d−2+ηC,

with d the number of space dimensions. Physically,GC(x,x′) gives the probability tha
sitesx and x′ belong to the same cluster. The subscript “C” is to distinguish the
defined exponent from the standard definition based on the spin–spin correlation functio

The other exponents can be obtained from the two given in Eq.(12)using standard scaling
relations.
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For ease of comparison with the more oftenused notation where the central charge
given in terms of a parameterm [13]:

(14)c = 1− 6

m(m + 1)
,

which in turn is related toq through

(15)
√

q = 2 cos

(
π

1+ m

)
= −2 cos

(
m

1+ m
π

)
,

with 1 � m � ∞, we note that the relation with̄κ reads for Potts models:

(16)κ̄ = 1+ m

m
, m = 1

κ̄ − 1
.

Usually, only the first equation in Eq.(15) is given, we included the second to clearly s
the relation with thēκ parameterization.

The critical behavior of the Potts model is also encoded in the FK cluster distributi�n

given in Eq.(4), which near the critical point takes the form

(17)�n ∼ n−τC exp(−θn),

as in percolation theory[4]. The first factor, characterized by the exponentτC, is an en-
tropy factor, measuring the number of ways of implementing a cluster of given size o
lattice. The second factor is a Boltzmann weight which suppresses large clusters a
as the parameterθ is finite. When the critical temperature is approached from above,
vanishes asθ ∝ (T − Tc)

1/σC, with σC a second exponent. The cluster distribution th
becomes algebraic, meaning that clusters of all sizes are present. As in percolation the
[4], the values of the two exponents specifying the cluster distribution uniquely dete
the critical exponents as

α = 2− τC − 1

σC
, βC = τC − 2

σC
, γC = 3− τC

σC
,

(18)ηC = 2+ d
τC − 3

τC − 1
, ν = τC − 1

dσC
, DC = d

τC − 1
,

where the fractal dimension of the clusters is related to the Fisher exponent(12)via

(19)DC = 1

2
(d + 2− ηC).

Various exponents are given the subscript “C” toindicate that the cluster definition is us
in defining them. For FK clusters, where in terms ofκ̄

(20)σC = 12κ̄(2− κ̄)

3κ̄2 + 8κ̄ + 4
, τC = 3κ̄2 + 24κ̄ + 4

3κ̄2 + 8κ̄ + 4
,

the cluster exponents coincide with the thermal ones. The cluster definition not alwa
yields the thermal critical exponents. For example, when the critical behavior of a sy
tem allows for a description in terms of other geometrical objects such as closed p

worldlines or vortex loops, a related but different definition is required to obtain the thermal
exponents from the loop distribution[27].
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The various fractal dimensions characterizing FK clusters and the leading therm
eigenvalueyT = 1/ν read in terms of̄κ [12,28,29]

(21a)DC = 1+ 1

2κ̄
+ 3

8
κ̄,

(21b)DH = 1+ κ̄

2
,

(21c)DEP = 1+ 1

2κ̄
,

(21d)DRB = 1− 3

2κ̄
+ κ̄

2
,

(21e)yT = 3− 3

2
κ̄ .

Here,DC is the fractal dimension of the clusters themselves, andDH that of their hulls
[30,31]. In the context of uncorrelated percolation, the hull of a cluster can be de
as a biased random walk[30]: Identify two endpoints on a given cluster. Starting at
lower endpoint, the walker first attempts to move to the nearest neighbor to its l
that site is vacant the walker attempts to move straight ahead. If that site is also vaca
the walker attempts to move to its right. Finally, if also that site is vacant, the walke
returns to the previous site, discards the direction it already explored and investiga
(at most two) remaining directions in the same order. When turning left or right, the w
changes its orientation accordingly. The procedure is repeated iteratively until the upp
endpoint is reached. To obtain the other half of the hull, the entire algorithm is repea
for a random walker that attempts to first move to its right instead of to its left. The
of FK clusters is a self-intersecting path. As remarked in the Introduction, these hu
4 � q � 0 correspond to the SLEκ̄ traces with 1� κ̄ � 2.

The fractal dimensionDEP characterizes the external perimeter. Its operational defi
nition [30] in the context of uncorrelated percolation is similar to that for the hull w
the proviso that the random walker only visits (nearest neighbor) vacant sites around
hull of the cluster. From the resulting trace those sites not belonging to the perimeter, i
without an occupied site as nearest neighbor, are deleted (such sites can, for exam
visited by the walker when it makes a right or left turn on a square lattice). This lea
nonintersecting traces.

These algorithms have recently been used in a numerical study carried out on
large lattices (L = 212 = 4096) to determine the fractal dimensions of FK clusters of
q-state Potts models withq = 1,2,3,4 [32].

By construction, the external perimeter is smoother than the hull, or at least as sm
so thatDEP� DH . The two are equal when the fractal dimensionDRB of the so-called red
bonds[33] is negative. (A red bond denotes a bondthat upon cutting leads to a splitting
the cluster.) For FK clusters,DEP is strictly smaller thanDH for all 1 < κ̄ � 2, while for
κ̄ = 1 (q = 4), the fractal dimension of the red bonds becomes zero, and the hull an
external perimeter have identical dimensions.

The two boundary dimensions are seen to satisfy the relation[29]
(22)(DEP− 1)(DH − 1) = 1

4
.
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An analogous relation, this time also involving the fractal dimension of the FK clu
themselves reads

(23)(DC − DEP)

(
DC − 3

4
DH − 1

4

)
= 3

16
.

In addition, the fractal dimensions satisfy the linear relation

(24)DC − DH = 1

4
(DEP− DRB).

The dimensionDC of the FK clusters approaches the number of available dimens
DC → 2 whenq → 0 (κ̄ → 2). In this limit, also the hulls of the FK clusters becom
space-filling,DH → 2.

As in percolation theory[33], the fractal dimensions can be identified with renorm
ization group eigenvalues of certain operators. For example, the fractal dimensionDC of
the FK clusters coincides with the magnetic scaling exponentyH ,

(25)DC = yH = d − βC/ν,

while that of the red bonds,DRB, coincides with the eigenvalueyJ in theJ direction,

(26)DRB = yJ ,

and therefore describes the crossover between FK and geometrical clusters[18,28]. Specifi-
cally, 1/yJ determines the divergence of the correlation lengthξ at the critical temperatur
Kc when the bond probability(2) approaches the critical valuepc = 1 − exp(−Jc), i.e.,
ξ ∼ (pc − p)−1/yJ .

3.2. Geometrical clusters

Starting from the FK cluster dimensions(21), we next wish to obtain the analog e
pressions for the geometrical clusters of the Potts model at criticality. As argued by
derzande[26], both cluster types are characterized by the same central chargec. From
Eq.(11) it follows that a given value ofc does not uniquely determinēκ . Indeed, inverting
that equation, we obtaintwo solutions forκ̄ :

(27)κ̄± = 13− c ± √
(c − 25)(c − 1)

12
,

with κ̄+ � 1 andκ̄− � 1. The solutions satisfy the constraint

(28)κ̄+κ̄− = 1.

Since the right hand is independent ofc, replacingκ̄ with 1/κ̄ leaves the central charg
unchanged,c(κ̄) = c(1/κ̄).

As an aside, note that the fractal dimensions of the hull and external perimeter
clusters are related by precisely this map[29], which is called duality in SLE studies. Th
duality, which in the Coulomb gas language corresponds to the earlier observed corr

denceg → 1/g (recall thatg = 1/κ̄) [14,17], is also at the root of the relation(22)between
the two boundary dimensions.
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Applying the duality map̄κ → 1/κ̄ to the FK cluster dimensions listed in Eq.(21), we
obtain

(29a)DG
C = 1+ 3

8κ̄
+ κ̄

2
,

(29b)DG
H = 1+ 1

2κ̄
,

(29c)DG
RB = 1+ 1

2κ̄
− 3

2
κ̄,

(29d)yG
T = 3− 3

2κ̄
,

whereκ̄ = κ̄+. These dimensions precisely match those conjectured by Vanderzan
geometrical clusters[26]. We therefore conclude that the geometrical clusters of the P
model are images of the FK clusters under the mapκ̄ → 1/κ̄ for given κ̄ . Since this trans
formation at the same time maps the critical onto the tricritical regime (see belo
follows that the geometrical clusters (of the pure Potts model) describe the tricritic
havior in the same way as the FK clusters describe the critical behavior. Forκ̄ = 1 (q = 4),
the dimensions of the FK and geometrical clusters become degenerate, and the crit
tricritical behaviors merge. Forq > 4, the phase transition is discontinuous[7]. The frac-
tal dimension(29a)was first given by Stella and Vanderzande[18] for the Ising case, an
generalized to arbitrary 1� κ̄ � 2 by Duplantier and Saleur[34].

The external perimeter dimensionDEP of FK clusters has no image under the m
κ̄ → 1/κ̄ . To understand this, recall that by smoothing the hull of a FKcluster one obtain
its external perimeter. For geometrical clusters, on the other hand, the fractal dimen
the red bonds is negativeDRB � 0 as follows from Eq.(29c)with 1 � κ̄ � 2, so thatDG

H =
DG

EP and the hull of a geometrical cluster is already nonintersecting. This is also refl
by the SLĒκ traces. Under the transformationκ̄ → 1/κ̄ , the self-intersecting traces wi
κ̄ � 1, representing the hulls of FK clusters are mapped onto simple traces withκ̄ � 1,
representing the hulls of geometrical clusters[14].

For givenκ̄ , the fractal dimension of the external perimeters of FK clusters coinc
with that of the hulls of geometrical clusters,DEP = DG

H(= DG
EP). Since FK clusters ar

obtained from geometrical clusters by breaking bonds between nearest neighbors w
spins, the smoothing of the FK hulls apparently undoes this process again (as far
boundaries are concerned).

Table 1summarizes the various fractal dimensions appearing in the Potts models
that for q = 0, the geometrical cluster dimension is larger than the number of ava
dimensions,DG

C > 2, making the geometrical clusters unphysical in thiscase. The equalit
DEP = DRB is typical for tree percolation. The valueDG

C = 2 for q = 1 agrees with the
observation that in this case the geometrical cluster represents a fully occupied lattic[26].
The cluster dimensionDC(κ̄) possesses a minimum at 1< κ̄ = 2/

√
3 < 4

3, allowing the
models withq = 4 andq = 2 to have the same dimension.

The physical meaning of the thermal eigenvalueyG
T is related to the existence of
critical magnetic fieldHs(K), such that in the regionK < Kc, H > Hs(K) a geometrical
cluster spanning the lattice (hence the subscript “s”) is always present. The eigenvalueyG

T
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Table 1
FK and geometrical fractal dimensions characterizing theq-state Potts models, withq = 0,1,2,3,4

q c m κ̄ DC DH DEP yT DRB DG
C DG

H yG
T DG

RB

0 −2 1 2 2 2 5
4 0 5

4
35
16

5
4

9
4 − 7

4

1 0 2 3
2

91
48

7
4

4
3

3
4

3
4 2 4

3 2 − 11
12

2 1
2 3 4

3
15
8

5
3

11
8 1 13

24
187
96

11
8

15
8 − 5

8

3 4
5 5 6

5
28
15

8
5

17
12

6
5

7
20

153
80

17
12

7
4 − 23

60

4 1 ∞ 1 15
8

3
2

3
2

3
2 0 15

8
3
2

3
2 0

namely determines the vanishing of this field asK approachesKc from below[18]:

(30)Hs(K) ∼ (Kc − K)y
G
T .

4. Tricritical Potts model

In the traditional representation in terms of the parameterm determining the centra
chargec through Eq.(14), theq-state tricritical Potts models is parameterized by[13]

(31)
√

q = 2 cos

(
π

m

)
= −2 cos

(
1+ m

m
π

)
,

wherem is restricted to 1� m � ∞. As for the Potts models, usually only the first equat
is given. The second one is included because oncomparing with the parameterization(15)
of the Potts models, we observe that the two are related by invertingm/(1 + m). Given
the connection(16) with the κ̄ notation, it follows that this is nothing but the centr
charge conserving map̄κ → 1/κ̄ which relates the FK and geometrical clusters of a gi
Potts model. Whereas̄κ+ parameterizes the Potts branch(10), the solutionκ̄− of Eq. (27)
parameterizes the tricritical branch,

(32)
√

q = −2 cos(π/κ̄−),

with κ̄− restricted to the values12 � κ̄− � 1, so that the argument of the cosine now ta
values in the interval[π,3π]. (From now on, thēκ ’s are given a subscript plus or minus
indicate the solution larger or smaller than 1. Up to this point only the larger solution
used and no index was needed to distinguish.) The results obtained for the Potts
can be simply transcribed to the tricritical models, providedκ̄+ used on the Potts branch
replaced bȳκ−. This close relation between the two models was first observed by Nie
et al.[8]. Note that for12 � κ̄− < 2

3 the geometrical cluster dimension exceeds the avail
number of dimensions, which is unphysical. The eigenvalueyG

T (29d)with κ̄ = κ̄+ = 1/κ̄−
is one of the two leading thermal eigenvalues of the tricritical Potts model[11]. The second
one is given by the inverse correlation length exponent 1/ν, with
(33)ν = 1

4

1

1− κ̄−
.
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Because replacinḡκ+ with κ̄− is tantamount to replacinḡκ+ with 1/κ̄+, it follows
that for given central charge, the FK clustersof the tricritical model are the geometric
clusters of the Potts model (andvice versa). For example, the fractal dimensionDC of the
FK clusters in the critical regime,DC = 1+ 1/2κ̄+ + 3κ̄+/8, translates into 1+ 1/2κ̄− +
3κ̄−/8= 1+ κ̄+/2+3/8κ̄+ for the tricritical regime. This is precisely the fractal dimens
(29a)of the geometrical Potts clusters.

Asq increases, the critical and tricritical points approach each other until they annihila
at the critical valueq = 4, where the FK and geometrical clusters coincide and the red
dimension vanishes. As stressed by Coniglio[28], the vanishing ofDRB signals a drastic
change in the fractal structure, anticipating a first-order phase transition.

5. High-temperature representation

5.1. Monte Carlo study

To support the picture discussed above we carry out a Monte Carlo simulation
high-temperature (HT) representation of the 2-state Potts, i.e., Ising model, adopting
update algorithm[23]. HT, or strong coupling expansions can be visualized by graph
the lattice, with each occupied bond representing a certain contribution to the partitio
function. For the Ising model, defined by the Hamiltonian

(34)−βH = β
∑
〈ij〉

SiSj , Si = ±1,

where the coupling constant is taken to be unity, the HT representation reads[35]

(35)Z = (coshβ)2N2N
∑
{ΓO}

vb,

where{ΓO} denotes the set ofclosed graphs specified byb occupied bonds, andv = tanhβ .
Traditionally, HT expansions are carried out exactly up to a given order by enume
all possible ways graphs up to that order can be drawn on the lattice. We instead
ate possible graph configurations by means of a Metropolis update algorithm, inv
single plaquettes[23] (seeFig. 4for typical configurations generated in the low- and hig
temperature phases). By taking plaquettes as building blocks, the resulting HT grap
automatically closed—as required[35]. The update is such that all the bonds of a sele
plaquette are changed, i.e., those that were occupied become unoccupied and vic
[23] (seeFig. 5). A proposed update resulting inb′ occupied bonds is accepted with pro
ability

(36)pHT = min
(
1, vb′−b

)
,

whereb denotes the number of occupied bonds before the update. Withl denoting the
number of bonds on the plaquette already occupied,b andb′ are related through
(37)b′ = b + 4− 2l.
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Fig. 4. Typical graph configurations, somewhat resembling the oil paintingRhythm of a Russian Dance by De Stijl
artist Theo van Doesburg (1883–1931), generated on a 16× 16 square lattice with periodic boundary conditions
in the high- (left panel) and low-temperature (right panel) phase.

Fig. 5. Update mechanism at work. Left panel: present graph with the plaquette selected for updating indica
by the broken square. Right panel: new graph after the update proposal is accepted. Both the old and new g
consist of 8 bonds, in accordance with Eq.(37) since two bonds on the plaquette were already occupied.

In the following, we focus exclusively on the graphs and measure typical cluster q
ties, such as the graph distribution, the size of the largest graph, and whether or not
spans the lattice. From this, the temperature where the graphs proliferate as well a
fractal dimension can be extracted as in percolation theory. Both the proliferation tempe
ature and the associated correlation length exponent turn out to coincide with thei
counterparts.

By the well-known Kramers–Wannier duality[36], the HT graphs form Peierls doma
walls [37] separating spin clusters of opposite orientation on the dual lattice. Each
in a HT graph intersects a nearest neighbor pairon the dual lattice of unlike spins perpe
dicular to it. In other words, the HT graphs are the boundaries ofgeometrical spin clusters
(albeit on the dual lattice) whose fractal dimension we wish to establish. The adva
of the plaquette update we use is that these boundaries are simulated directly witho
considering the corresponding cluster. At the critical temperature,the domain walls lose
their line tensionand proliferate.

When interpreted as domain walls, the HT graphs should strictly speaking be cut
vertices, so that the graphs break down in separate polygons without self-intersectio
only touch at the corners where the vertices were located. However, it is expected that th
does not change the universal properties at criticality we wish to determine.

From the duality argument it also follows that the plaquette update is equivalent to
single spin update on the dual lattice (seeFig. 6). To illustrate this, the internal energyU is
computed, using the plaquette update. On an infinite lattice, the Kramers–Wannier duali

implies that observables calculated at an inverse temperatureβ in the original Ising model
can be transcribed to those of the dual model at an inverse temperatureβ̃ . The relation
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Fig. 6. A plaquette on the original lattice corresponds toa Peierls domain wall on the dual lattice, separating
site at its center with reversed spin from the outside.

between the two temperatures follows from noting that, an occupied HT bond repres
factorv, while a nearest neighbor pair on the dual lattice of unlike spin on each side
HT bond carries a Boltzmann weight exp(−2β̃), so that[36]

(38)tanhβ = e−2β̃ ,

or sinh2β = 1/sinh2β̃.
On a finite lattice with periodic boundary conditions, however, a mismatch arises

causesingle HT graphs wrapping the (finite) lattice are not generated by the plaq
update—such graphs always come in pairs. The HT Monte Carlo study will therefo
exactly simulate the Ising model with periodic boundary conditions, at least not for sm
lattice sizes. (For larger lattices, single graphs wrapping the lattice become highly un
so that their absence will not be noticed anymore, and the HT Monte Carlo simulatio
becomes increasingly more accurate.) In contrast, on the dual side, where the plaque
update corresponds to a single spin update, this class of graphs is not compatible w
periodic boundary conditions, so that they should not be included. Hence, the plaquett
date simulates the (transcribed) dual rather than the original model itself.Fig. 7 gives the
exact internal energy of the original Ising model on a finite lattice with periodic boundary
conditions[38,39]and that of the dual model transcribed to the original one using Eq.(38).
In the figure, also the data points obtained using the plaquette update are included a
to indeed coincide with the dual curve. For increasing lattice sizes, the dual and the o
curves approach each other.

5.2. Simulation

To determine the graph proliferation temperature, the probabilityPS for the presence o
a graph spanning the lattice as function ofβ is measured for different lattice sizes[4]. For
smallβ , PS tends to zero, while for largeβ it tends to unity. We consider a graph spann
the lattice already when it does so in just one direction. Ideally, the curves obtain
different lattice sizes cross in a single point, marking the proliferation temperature
seen fromFig. 8 that within the achieved accuracy, themeasured curves cross at the th
mal critical point, implying that the HT graphs (domain walls) lose their line tension
proliferate precisely at the Curie point.

The data was collected in 3.3×105 Monte Carlo sweeps of the lattice close to the criti
point and 1.1 × 105 outside the critical region, with about 10% of the sweeps used

equilibration. After each sweep, the resulting graph configuration was analyzed. Statistical
errors were estimated by means of binning.
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Fig. 7. Exact internal energyU on a 162 lattice for the Ising and dual model (transcribed to the original mo
using Eq.(38)), and the Monte Carlo data obtained using the plaquette update.

Fig. 8. ProbabilityPS for the presence of a spanning graph as function ofβ measured for different lattice size
L. Within the achieved accuracy, the curves cross at the thermal critical pointβ = βc.

Finite-size scaling[4] predicts that the rawPS data obtained for different lattice size

collapse onto a single curve when plotted as function of(β/βc − 1)L1/ν with the right
choice of the exponentν. By duality, the relevant correlation length here is that of the Ising
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Fig. 9. The raw data ofFig. 8 replotted as function of(β/βc − 1)L1/ν , with the Ising choiceν = 1. The data
collapse is satisfactory over the entire temperature range.

model, so thatν takes the Ising valueν = 1. With this choice, a satisfying collapse of t
data is achieved over the entire temperature range (seeFig. 9).

Next, the cluster exponentsσG andτG specifying the graph distribution,

(39)�b ∼ b−τGe−θb, θ ∝ (β − βc)
1/σG

are determined, where�b denotes the average number density of graphs containib

bonds. To this end we measure the so-called percolation strengthP∞, giving the frac-
tion of bonds in the largest graph, and as secondindependent observable the average gr
size[4] (seeFig. 10)

(40)χG =
∑′

b b2�b∑′
b b�b

,

where the prime on the sum indicates that the largest graph in each measurement is om
ted. Close to the proliferation temperature, these observables obey the finite-size
relations[40]

(41)P∞ = L−βG/ν P(L/ξ), χG = LγG/νX(L/ξ),

whereξ is the correlation length and the critical exponentsβG, γG are related toσG, τG
through Eq.(18) written in terms of the variables appropriate for the graph expon
Precisely atTc, these scaling relations imply an algebraic dependence on the systemL,
allowing for a determination of the exponent ratios (seeTable 2andFig. 11).

The data was fitted using the nonlinear least-squares Marquardt–Levenberg alg
giving
(42)βG = 0.626(7), γG = 0.740(4),
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Fig. 10. The percolation strengthP∞ (top panel) and average graph sizeχG (bottom panel) as function ofβ/βc
for different lattice sizesL.

Table 2
Percolation strengthP∞ and average graph sizeχC at the (inverse) critical temperatureβc = ln(1 + √

2)/2 =
0.440687. . . for various lattice sizesL (seeFig. 11)

L 16 20 24 32 40 48 64 80 96 128

P∞ 0.1129(6) 0.0986(7) 0.0876(6) 0.0744(7) 0.0642(8) 0.0569(8) 0.0461(9) 0.0426(11) 0.0353(10) 0.0312(12)
χC 8.90(4) 10.44(4) 11.91(5) 14.86(8) 17.44(10) 20.03(16) 24.55(22) 29.61(34) 33.13(39) 41.93(81)
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Fig. 11. Log–log plot of the percolation strengthP∞ (top panel) and average graph sizeχG (bottom panel)
at the critical temperature as function of the lattice sizeL. The straight lines 0.642L−0.626 and 1.139L0.740,
respectively are obtained through two-parameter fits.

with χ2/d.o.f.= 1.15 and 0.94, respectively, and where it was used thatν = 1. These
values are perfectly consistent with the fractionsβG = 5

8 = 0.625, γG = 3
4 = 0.75, leading

to the exponents
(43)σG = 8

11
, τG = 27

11
,
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and the fractal dimension

(44)DG
H = 11

8

of the HT graphs we were seeking. By duality, this fractal dimension equals that o
hull bounding the geometrical spin clusters (Peierls domain walls) on the dual lattice. O
numerical result agrees with Eq.(29b)with κ̄ = κ̄Ising = 4

3 appropriate for the Ising mode
The value(44) was predicted by Duplantier and Saleur, using the Coulomb gas

[24]. Subsequent support for that prediction was provided by Vanderzande and Stel[19]
who drew on earlier numerical work by Cambier and Nauenberg[41]. A first direct nu-
merical determination was given by Dotsenko et al.[42]. Employing the Swendsen–Wan
cluster update, these authors analyzed the geometrical spin clusters and their hull
critical temperature. They extracted the fractal dimension from the resulting hull dis
tion, which is algebraic at the critical temperature. Apart from directly simulating the
with the plaquette update, another advantage of our approach is the use of finite-siz
ing which is generally considered more reliable than the extraction of exponents by
the data obtained for a fixed lattice size.

As argued in Section4 for the general case, the geometrical Ising clusters correspo
the tricritical Potts model with̄κ = κ̄− = 1/κ̄Ising = 3

4, which according to Eq.(32) is the
tricritical q = 1 model[18]. In addition to the correlation length exponentν = 1 which we,
in accordance with Eq.(33), observed numerically and the second thermal eigenvalueyG

T =
15
8 , this tricritical behavior is further characterized by[11] βC = 5

96. This value follows
from the scaling relation(25)with the fractal dimensionDC of the FK clusters replaced b
that of their geometrical counterpart(29a)with κ̄ = κ̄Ising = 4

3 [18].
The fact that the two correlation length exponents featuring in the criticalq = 2 and

tricritical q = 1 Potts models are equal is special to this case, being a result of the Kra
Wannier duality. Indeed, equating the correlation length exponent(12)of the critical Potts
models and that of the tricritical Potts models given in(33) with κ̄− = 1/κ̄ to assure tha
both models have the same central charge, yieldsκ̄ = κ̄Ising = 4

3 as only physical solution

6. Summary

In this paper, it is shown that the geometrical spin clusters of the pureq-state Potts
model in two dimensions encode the tricritical behavior of the site diluted model. T
clusters, formed by nearest neighbor sites of like spins, were shown to be mirror im
of FK clusters, which in turn encode the critical behavior. Since the mirror map cons
the central charge, both cluster types (and thus both fixed points) are in the same
sality class. The geometrical picture wassupported by a Monte Carlo simulation of t
high-temperature representation of the Ising model, corresponding toq = 2. The use of a

plaquette update allowed us to directly simulate the hulls of the geometrical clusters and to
accurately determine their fractal dimension.
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