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Abstract

A recently developed technique for the determination of the density of partition function z
using data coming from finite-size systems is extended to deal with cases where the zeroes
restricted to a curve in the complex plane and/or come in degenerate sets. The efficacy of the a
is demonstrated by application to a number of models for which these features are manifest
zeroes are readily calculable.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The study of phase transitions is central to statistical mechanics. Of primary in
is the determination of the location, the order and the strength of the transitions.
only systems of infinite extent display such phenomena, these are not directly acc
to the non-perturbative computational approach, which is restricted to a finite num
degrees of freedom. There are, however, well-established techniques for the ext
of information from numerical studies of finite systems, and prominent amongst th
finite-size scaling (FSS).

The FSS hypothesis is based on the premise that the only relevant scales
correlation length of the infinite-size system and the linear extent of its finite
counterpart [1]. A modification, in which the correlation length of the finite system rep
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its actual size, extends the validity of the hypothesis to the upper critical dimensio
Traditional techniques to determine phase transition strength from finite-size data i
the application of FSS to thermodynamic quantities or to the lowest lying partition fun
zeroes [3].

However, a full understanding of the properties of the infinite-size system req
knowledge of the density of zeroes too. While it has long been expected that extr
of this quantity from finite-size systems would be a lucrative source of informatio
technique to do so proved elusive [4]. The source of the difficulties is that it invo
reconstruction of a continuous density function from a discrete data set, or se
the density of zeroes for a finite system is essentially a set of delta functions. R
considerations have bypassed these difficulties [5,6]. Rather than focusing on the de
zeroes itself, one determines the integrated density of zeroes. The robustness and e
of this approach was demonstrated in [5,6] and the method favourably compared to
techniques in [7].

In these previous analyses, the distribution of zeroes had two special properties
are (i) the zeroes dominating critical or pseudocritical behaviour lie on a curve calle
singular line, which impacts onto the real axis at the transition point and (ii) these ze
are simple zeroes (zeroes of order one). While these two properties are common to t
of models in statistical physics and in lattice field theory, they are by no means gene
the question of the generality of the technique presented in [5,6] therefore arises.

The purpose of this paper is to extend the method presented in [5,6] to dea
situations where the above two properties do not hold. Instead, the method develop
in Section 2 assumes the zeroes to be distributed across a two-dimensional regio
complex plane and/or to occur in degenerate sets. Such distributions of zeroes ha
observed in various models of statistical physics and lattice field theory in two dimen
The models we address in Section 3 are (a) the Ising model on a square lattice
Brascamp–Kunz boundary conditions) with anisotropic couplings, (b) the Ising mod
a bathroom-tile lattice, and (c) the case of free Wilson fermions in two dimensions. W
all of these models are in the same two-dimensional Ising universality class, their de
distributions of zeroes are quite different and provide a sufficiently wide sample t
the improved density-of-zeroes approach to the detection and characterization of
transitions. Finally, Section 4 contains our conclusions.

2. Zeroes and their densities

All of the information on a thermodynamical system in equilibrium is encoded in
zeroes of the appropriate partition function. Indeed, for a system of finite size, whe
partition function,ZL, can be written as a polynomial in an appropriate function,z, of
temperature, field or of a coupling parameter, we may write

∏( )

(2.1)ZL(z)= A(z)

j

z− zj (L) ,
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whereL denotes the linear extent of the system,j labels the zeroes, andA(z) is a
smooth non-vanishing function which plays no crucial role in the sequel and is henc
discarded.

In numerical approaches to critical phenomena, FSS of the zeroes,zj (L) (with j
fixed—typically to j = 1, which labels the zero nearest the transition point), is u
to determine properties of phase transitions. A summary of the status of some o
calculations is given in [5]. On the other hand, attempts have also been made t
a deeper understanding of some more tractable models analytically [8,9]. Where
attempts have involved zeroes of the partition function, it is clear that much informat
contained in their density. The technique developed in [5] is essentially a converge
these two approaches, and we summarize it here for convenience.

2.1. Simple zeroes on a singular line

The reduced free energy is obtained from (2.1) as

(2.2)fL(z)= 1

V
lnZL(z)= 1

V

∑
j

ln
(
z− zj (L)

)
,

having discarded the regular contribution coming fromA(z). HereV represents the volum
of the system. In independent series of publications, Abe [8] and Suzuki [9] assume
the zeroes fall on a singular line in the complex plane, parameterized byz= zc+r exp(iφ),
wherezc is the transition point. In this case, a necessary and sufficient condition to ac
the correct scaling behaviour for the specific heat is behave asg∞(r) ∝ r1−α , whereα is
the usual critical exponent of the specific heat. Integrating, gives the cumulative den
zeroes in the infinite-volume limit,

(2.3)G∞(r)∝ r2−α.

In the finite-volume case, the density of zeroes is a string of delta functions, and

(2.4)gL(r)= 1

V

∑
j

δ
(
r − rj (L)

)
,

where thej th zero is given byzj (L) = zc + rj (L)exp(iφ). Integrating this along th
singular line leads to the following expression for the cumulative density of zeroes [5

(2.5)GL(r)=
{
j/V if r ∈ (rj , rj+1),

(2j − 1)/2V if r = rj .
The two central observations of [5,6] were, firstly, that equating the infinite-vol

density formula (2.3) to its finite-volume counterpart (2.5) is sufficient (with hypersca
to recover standard FSS expressions (indeed, FSS, traditionally the consequen
hypothesis, emerges quite naturally from this approach), and, secondly, that (2.
sensible definition of the cumulative density of zeroes in the finite case. With this defin
the strength of transitions may bedirectly measured by fitting to the ansatz
(2.6)G(r)= a1r
a2 + a3.
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In particular, a non-zero value ofa3 indicates a definite phase. Whena3 vanishes, a
transition of first order is indicated ifa2 ∼ 1, while a value ofa2 larger than 1 indicates
second-order transition with strength

(2.7)α = 2− a2.

In [5] and [6] this method was tested by application to a number of models in stati
physics and in lattice field theory. In all of these models, the locus of zeroes is
dimensional, with a singular line impacting onto the real axis at the transition p
Furthermore, all zeroes for finite lattices were simple zeroes (with no degeneracies
question now arises as to how the technique translates to more general distribut
zeroes.

2.2. General distribution of zeroes

Departures from such smooth linear sets of zeroes were first observed for mod
hierarchical and anisotropic two-dimensional lattices, for which there can exist a
dimensional distribution (area) of zeroes [10–12]. Since then, a host of systems ha
discovered with this feature [13–16]. A common characteristic of all such two-dimens
distributions of zeroes is that the only physically relevant point at which they cross th
axis, in the thermodynamic limit, is that which corresponds to the phase transition
however, possible that the zeroes cross the real or imaginary axis at unphysical
These points may be associated with new universality classes.

Stephenson [17] has shown that the density of zeroes for such two-dimen
distributions in the infinite-volume limit is

(2.8)g∞(x, y)= y1−α−mf
(
x

ym

)
,

where(x, y) give the location of zeroes in the complex plane, with the critical poin
the origin. Herem is a new type of exponent which is related to the shape of the
dimensional distribution [17].

Integrating out thex-dependence in (2.8) yields [17]

(2.9)g∞(y)=
x2∫
x1

g∞(x, y) dx ∝ y1−α,

wherex1 andx2 mark the extremities of the distribution of zeroes at a distancey from
thex axis in the complex plane. Integrating again, to determine the cumulative dens
zeroes at the pointr in they-direction, yields

(2.10)G∞(r)∝ r2−α,

an expression identical to (2.3). The strength of the transition, as measured byα, can
therefore be determined by similar methods to those previously used. However, rath

counting the zeroes along the singular line, one now counts them up to a liney = r within
the two-dimensional complex domain they inhabit.
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The second new feature we wish to accommodate is the existence of degeneracie
set of zeroes. If a number of zeroes coincide,GL, as defined in (2.5), is multivalued and
no longer a proper function. A more appropriate density function is determined as fo
Suppose, in general, thatzj = zj+1 = · · · = zj+nj−1 arenj -fold degenerate. By a glanc
at Fig. 1 it is easy to convince oneself that the densities to the left and right of an
zero are given by

(2.11)VGL(r)=
{
j + nj − 1 for r ∈ (rj+nj−1, rj+nj ),
j − 1 for r ∈ (rj−1, rj ).

The density at thenj -fold degenerate zero,rj , is again sensibly defined as an average:

(2.12)GL(rj )= 1

V

(
j + nj

2
− 1

)
.

This is the most general formula for extracting the density of any distribution of ze
and deals with two-dimensional spreads and degeneracies. Fitting this quantity to th
(2.6) yields the strength of a second-order transition through (2.7). As in [5] and [6
criteria for a good fit are good data collapse inL (or V ) andj near the transition point an
a3 be compatible with zero.

The error estimates appropriate to this modified density analysis may be deter
from a procedure adapted from [5] and which we now elucidate. In the present case,
zeroes may be degenerate, the monotone nature of the cumulative density function
that the actual value ofGL(rj (L)) cannot deviate from (2.12) by more than±nj/2V (see
Fig. 1). The quantitative difference between this starting point and that in [5] is tha
deviation is not constant in this case.

LetGobs
j (L) represent the data point coming from the size-L lattice and correspondin

to thej th zero, which isnj -fold degenerate. Assign an initial errorσj (L)= σarbnj/V to
this data point, whereσarb is arbitrary. With these errors, the appropriate goodness-of-
Fig. 1. Schematic plot of the cumulative density of zeroes as defined by (2.12). In this example, where the volume,
V , is fixed,r1 = r2 are 2-fold degenerate, whiler3 = · · · = r6 are 4-fold degenerate.
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given by

(2.13)χ2
1 =

∑
L,j

[Gobs
j (L)−Gexp

j (L)]2
σj (L)2

=
∑
L,j

V 2

σ 2
arbn

2
j

[
Gobs
j (L)−Gexp

j (L)
]2
,

where the expected density value,Gexp
j (L), comes from the model (2.6). Minimizingχ2

1

yields the parametersai in (2.6) with associated errors denoteddaarb
i .

Assume, now, the actual error associated with each data point is, in fact,σnj /V . The
corresponding chi-squared may be written [5]

(2.14)χ2
2 = σ

2
arb

σ 2 χ
2
1 .

If the model fits well,χ2
2/Ndof should be close to unity, whereNdof is the number of

degrees of freedom. The error assigned to each point now becomes

(2.15)σ 2 = σ 2
arbχ

2
1/Ndof = χ2

1/Ndof,

having chosenσarb to be unity. Moreover, the actual errors associated with the param
ai are (withσarb = 1)

(2.16)dai = σ

σarb
daarb
i = σ daarb

i .

Just as in [5], this approach prohibits an independent goodness-of-fit test.
In summary, the procedure is to letσj (L)= nj /V and minimizeχ2

1 in (2.13) to findai

anddaarb
i . The best estimates for the errors are, then,dai =

√
χ2

1/Ndofda
arb
i .

Note that standard FSS is for fixed-index zeroes and gives that the distance of
from the critical point is

(2.17)rj (L)∼ L−1/ν .

Typically one uses the imaginary part of the zero, Imzj , for the distancerj in a traditional
FSS analysis. The real part of the lowest zero may be considered as a pseudocritica
Its scaling is characterized by the so-called shift exponent,λ, and

(2.18)Rez1(L)− zc ∼ L−λ,

wherezc marks the critical point. Usuallyλ coincides with 1/ν, but this is not always
the case and the actual value of the shift exponent depends on the lattice topolo
a summary of some recent results concerning the finite-size shifting of the pseudo
point in the Ising case in two dimensions, see [18].

3. Testing the method on various (Ising) models

We take three two-dimensional models for which the zeroes are easily calculat

each case the real, physical, critical point is in the Ising universality class, with strength of
transition given byα = 0 (corresponding to a logarithmic divergence in the specific heat).
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3.1. Square lattice Ising model with anisotropic couplings

The task of analytically solving the Ising model in two dimensions for finite-
systems is greatly ameliorated by the usage of Brascamp–Kunz boundary conditio
19], where for anM × 2N lattice, the spins in the left boundary row atx = 0 are fixed to
+ and in the right boundary row atx =M + 1 to the alternating sequence+ − + − · · ·,
whereas in they-direction periodic boundary conditions are assumed. In the genera
of anisotropic couplings—J1 along thex- andJ2 along they-direction, with arbitrary ratio
R = J2/J1—the partition function takes the form [20]

ZM,2N = 22NM
M∏
i=1

N∏
j=1

[
cosh(2β)cosh(2Rβ)− sinh(2β)cos(φi)

(3.1)− sinh(2Rβ)cos(θj )
]
,

whereφi = iπ/(M + 1), θj = (2j − 1)π/2N , andβ = J1/kBT . Recall that for fully
periodic boundary conditions, the analogue of (3.1) consists of a sum of four pr
terms [21] which is much more cumbersome to analyze for the zeroes.

For isotropic couplings withR = 1 the term in square brackets of (3.1) simplifies
1 − 2ξ sinh(2β) + sinh2(2β), with −1 � ξ = (cosφi + cosθj )/2 � 1. It immediately

follows that the complex zeroes can be parameterized exactly as sinh(2β)= ξ ± i√1− ξ2,
i.e., that they are distributed on the unit circle in the complex sinh(2β)-plane.

For the anisotropic model withR = 3, each factor in (3.1) can be rewritten as a fou
order polynomial inw = 2 sinh(2β) to give

(3.2)ZM,2N =
M∏
i=1

N∏
j=1

[
w4 + 5w2 + 4− 2w cos(φi)−

(
6w+ 2w3)cos(θj )

]
.

The zeroes of (3.2) are also easily determined numerically, but it is not possib
parameterize them by a single variable, implying that they are distributed across
dimensional region rather than on a one-dimensional curve as in the isotropic ca
Fig. 2 this two-dimensional distribution of zeroes is shown for the caseR = 3 and a square
lattice of sizeL=M = 2N = 40.

The zeroes impact onto the real axis at the pointw = 1 and the critical behaviour i
expected to be dominated by the zeroes close by. The zeroes in this case are al
zeroes (no degeneracies), so it should be noted that this case is essentially a tes
applicability of the method to the situation of a two-dimensional distribution of zero
the complex plane rather than a test of how the method copes with varying degener

The cumulative-density distribution for this set of zeroes is plotted in Fig. 3. A th
parameter fit to (2.6) for the first 8 zeroes for lattices of sizeL= 40,60,80,100,120, and
140 givesa3 = 0.000 002(15), indicating the presence of a transition. Witha3 set to zero,
a two-parameter fit then yieldsa2 = 2.016(32), close to the expected value of 2 (whi
corresponds toα = 0).

A closer inspection of Fig. 3 shows that thej = 1 zeroes (denoted by the symbol×)

are slightly misaligned with respect to the higher-index zeroes. We have therefore
repeated the fit restricted toj = 2–8, which yieldsG(r) = 0.088(7)r2.008(33), so that



tion

t,

oidal
ental
W. Janke et al. / Nuclear Physics B 682 [FS] (2004) 618–634 625

Fig. 2. The partition function zeroes in the complexw = 2sinh(2β) plane for the anisotropic (J2 = 3J1)
L=M = 2N = 40 Ising model with Brascamp–Kunz boundary conditions.

Fig. 3. The distribution of zeroes nearw= 1 for the anisotropic Ising model with anisotropy ratioR = 3 subject to
Brascamp–Kunz boundary conditions forL= 40–140 andj = 1 (×), j = 2 (+), j = 3 (∗), j = 4 (◦), j = 5 (�),
j = 6 (�), j = 7 (•), j = 8 (+).

α = −0.008(33). This is nice confirmation that the technique works when the distribu
of (non-degenerate) zeroes is two-dimensional.

Standard FSS applied to fixed-index zeroes using (2.17) yields the expected resulν = 1
[18]. Similarly, the shift exponent in (2.18) is found to beλ= 2. Thusλ is not coincident
with 1/ν. This contrasts with the case of the Ising model in two dimensions with tor
boundary conditions [22] but matches results using topologies with a trivial fundam
homotopy group [23].
To understand these numerical results we return to the finite lattice expansion of (3.2)
and look at the finite-size scaling of the lowest zerow1, which is given by the roots of the
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Fig. 4. The partition function zeroes in the complexw = 2sinh(2β) plane for the anisotropic (J2 = 2J1)
L=M = 2N = 40 Ising model with Brascamp–Kunz boundary conditions.

factor in (3.2) withi = j = 1 on anM × 2N lattice. For an infinite lattice the expressi
factorizes to give(4 +w2)(1 −w)2 and we see the points where the distribution pinc
down as the roots atw = 1 (and atw = ±2i). For a finite square lattice (L=M = 2N ) we
can expand around the root at 1 in powers of 1/L to find

(3.3)w = 1+ πi
L

− π(2i + 5π)

10L2 + · · · .

Separating the real and imaginary parts yields Imw1(L)∼ L−1 and Rew1(L)−wc ∼ L−2.
For comparison, we present a similar analysis with anisotropy ratioR = 2, for which

the zeroes are plotted in Fig. 4. While the overall shape of the distribution is the
as in theR = 3 case of Fig. 2, its detailed structure is different. In this case the de
analysis revealsa3 = −0.000 01(2), and a subsequent two-parameter fit to the firs
zeroes for lattices of sizeL = 40–140 yieldsa2 = 2.009(30), i.e.,α = −0.009(30). The
corresponding data is displayed in Fig. 5.

3.2. Bathroom-tile lattice

It is also possible to obtain two-dimensional distributions of zeroes for two-dimens
Ising models withisotropic couplings, one example being the Ising model on a bathro
tile lattice [13]. This is the(4 · 82) lattice depicted in Fig. 6 and which is dual to the Uni
Jack lattice.

The continuum form of the (reduced) free energy on the bathroom-tile lattice is
by

f = 3

2
+ 1

2
ln(1+ u)+ 1

8

π∫ π∫
dθ1dθ2

(2π)2
ln

[
A(u)+B(u)(cos(θ1)+ cos(θ2)

)

−π −π

(3.4)+C(u)cos(θ1)cos(θ2)
]
,
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Fig. 5. The distribution of zeroes nearw = 1 for the Ising model with anisotropy ratioR = 2 subject to
Brascamp–Kunz boundary conditions forL= 40–140 andj = 1 (×), j = 2 (+), j = 3 (∗), j = 4 (◦), j = 5 (�),
j = 6 (�), j = 7 (•), j = 8 (+).

Fig. 6. The bathroom-tile lattice.

whereu= exp(−2β) and

A(u)= (
1+ u2)2(

1− 4u+ 10u2 − 4u3 + u4),
B(u)= 2u(1− u)3(1+ u)(1+ u2),

(3.5)C(u)= −4u2(1− u)4.

This system is described in detail in [13]. The zeroes of the partition function were
calculated from the finite lattice discretization ofone of the terms in the partition function
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Fig. 7. The partition function zeroes in theu = exp(−2β) plane for the bathroom-tile Ising model (3.6) wi
L=M =N = 40. Here AFM, PM, FM and O1 indicate the antiferromagnetic, paramagnetic, ferromagnetic
unphysical phases, respectively.

for periodic boundary conditions leading to (3.4), namely

Z = 2MN
M∏
r=1

N∏
s=1

{
A(u)+B(u)

[
cos

(
2r − 1

M

)
+ cos

(
2s − 1

N

)]

(3.6)+C(u)cos

(
2r − 1

M

)
cos

(
2s − 1

N

)}1/2

.

In principle the full partition function is a sum of four1 such terms, differing in the
arguments of the cosines which correspond to the four possible choices of (anti)p
boundary conditions for the two species of fermions in the continuum limit of the m
In using (3.6), we are assuming that the scaling behaviour of one of these terms is g
An alternative, which we do not pursue here as we are essentially interested in
the scaling of the cumulative density of zeroes rather than formulating the finite l
models themselves, would be to construct Brascamp–Kunz type boundary conditio
the bathroom tile lattice. This would also have the effect of projecting out a (diffe
single product term in the expression forZ.

The phase diagram for such a system has paramagnetic [PM], ferromagnetic [FM
anti-ferromagnetic [AFM] phases as well as an unphysical phase which we denote1,
to adhere to the same notation as [13]. The zeroes have varying degrees of dege
Those forL =M = N = 40 are depicted in Fig. 7 in the complexu = exp(−2β) plane
and a blow-up of the region near the ferromagnetic critical point forL = 200 is given in
Fig. 8. Zeroes in the vicinity of the critical point taper off into a quasi-one-dimensi
locus, so the bathroom-tile case is a test of the applicability of the method to zer
varying degeneracies, rather than to a true two-dimensional distribution.
1 One of which will vanish at criticality for toroidal topology.
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Fig. 8. The bathroom-tile Ising zeroes near the ferromagnetic critical pointu = 0.2490384. . . for L =
M =N = 200.

Fig. 9. The distribution of zeroes for the bathroom-tile Ising model withL= 40–200 andj = 1–4 (×), j = 5–12
(+), j = 13–16 (∗), j = 17–24 (◦), j = 25–32 (�), j = 33–40 (�), j = 41–44 (•).

The physical ferromagnetic critical point is given byu = (1/2)(
√

4
√

2− 2 − √
2) =

0.249 038 4. . ., corresponding toβ = 0.695 074 1. . . [13]. In this region, thej = 1 zeroes
are four-fold degenerate, thej = 5 are eight-fold degenerate, thej = 13 zeroes are
again four-fold, thej = 17, j = 25 andj = 33 zeroes are each eight-fold degener
and thej = 41 zeroes are four-fold degenerate. The cumulative density of zeroes
this ferromagnetic critical point is depicted in Fig. 9 forL = 40,70,100, and 200 with
j = 1–44 (seven data points for eachL). A three-parameter fit to the form (2.6) clear
shows that the curve goes through the origin. Indeed, such a fit to the above dat

a3 = 0.000 000 7(830). Now, settinga3 = 0, a two-parameter fit to the data yieldsa2 =
1.998(18), corresponding toα = 0.002(18), fully consistent with zero, as expected.
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The physical antiferromagnetic critical point is given byu= 4.015 445 4. . ., near which
the zeroes again have a one-dimensional locus (as evident in Fig. 7). The dege
pattern for the first 44 zeroes is the same as in the above ferromagnetic critica
A three-parameter fit yieldsa3 = 0.000 01(3), and a two-parameter fit to this data giv
a2 = 2.03(2). Restricting the fit closer to the origin by using thej = 1–16 (3 data point
for eachL) yieldsa2 = 1.999 4(163), compatible withα = 0.

The accumulation point between the ferromagnetic and unphysical regions occ
u= −0.601 231 8. . . (for which there is no realβ). Here the degeneracy pattern is differe
to those above, with thej = 1 zeroes being four-fold degenerate, thej = 5 zeroes eight
fold, the j = 13 zeroes again four-fold, thej = 17 andj = 25 zeroes each eight-fo
degenerate while thej = 33 zeroes are four-fold and thej = 37 zeroes are eight-fol
degenerate. The density analysis again reveals a transition (a3 = 0), with a2 = 2 (e.g., the
first 24 zeroes forL= 40–200 givea2 = 1.993(12), corresponding toα = 0.007(12)).

A similar accumulation pattern occurs at the boundary between the antiferroma
and unphysical O1 phases atu = −1.663 251 9, with the corresponding density analy
yieldinga2 = 2.009 5(123).

At each of the above four accumulation points, traditional FSS yieldsν = 1 andλ= 2.

3.3. Wilson fermions

The partition function,ZL(κ) for a system of free Wilson fermions involves an integ
over Grassmann variables, which, on completion, leads to the determinant of the W
matrix,M(0). Hereκ = 1/(2m0+d) is the hopping parameter,m0 is the dimensionless bar
fermion mass andd is the lattice dimensionality (which is 2 in our case). It is well kno
that this system exhibits a phase transition at 1/2κ = d = 2, where massless fermion
appear in the continuum limit [24]. This determinant may be expressed as a prod
eigenvalues, and, for even lattice extent,L,

(3.7)ZL(κ)= detM(0) =
2∏
α=1

∏
p

λ(0)α (p),

where

(3.8)λ(0)α (p)=
1

2κ
−

2∑
µ=1

cospµ + i(−1)α

√√√√ 2∑
µ=1

sin2pµ,

with pµ = 2πp̂µ/L and wherep̂1 = −(L− 1)/2,−(L− 3)/2, . . . , (L− 1)/2, while p̂2 =
−L/2,−L/2 + 1, . . . ,L/2. These values comply with standard boundary requirem
for Grassmann variables, namely that they are periodic in the spatial (1-) directio
antiperiodic in the temporal (2-) one [24].

The complex hopping-parameter zeroes are easily and exactly extracted fro
multiplicative expression for the partition function (see [15]) and the zeroes for a sy
of sizeL= 50 are depicted in Fig. 10 in the complex 1/2κ plane.
A special feature of Wilson fermions is the occurrence of so-called doubler fermions.
This means that apart from the physical critical point, which occurs where the zeroes
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Fig. 10. The partition function zeroes for theL= 50 free Wilson fermions in the complex 1/2κ plane.

Fig. 11. The distribution of zeroes near the physical critical point 1/2κ = 2 for free Wilson fermions with
L= 50–250 andj = 1–2 (×), j = 3–6 (+), j = 7–8 (∗), j = 9–12 (◦), j = 13–16 (�), j = 17–18 (�), j = 19–23
(•).

accumulate at 1/2κ = 2 in the figure, there are lattice artefacts at 1/2κ = 0 and at
1/2κ = −2 where further accumulations of zeroes, leading to critical behaviour, occu

These Wilson-fermion zeroes clearly form a two-dimensional distribution. They
come in degenerate sets, with the first and seventh zeroes being 2-fold degenerat
the third and nineth are 4-fold degenerate. So this system encapsulates both new
we seek to address.

The density plot for the zeroes near the physical transition is given in Fig. 11. Usin

first twelve zeroes for lattices of sizeL= 50,100,150,200, and 250 (four data points for
each lattice size), a three-parameter fit yieldsa3 = 0.000 005(29), convincing evidence that
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Fig. 12. The distribution of zeroes near the artifactual critical point 1/2κ = 0 for free Wilson fermions with
L= 50–250 andj = 1–2 (×), j = 3–6 (+), j = 7–8 (∗), j = 9–12 (◦).

the density plot indeed goes through the origin. The subsequent two-parameter fit
a2 = 1.996(11), givingα = 0, as expected.

It is worthwhile also applying the method to the artifactual doubler transitio
1/2κ = 0, where the two-dimensional nature of the distribution is more pronounced. T
the density data again fall on a universal curve (see Fig. 12) anda3 is determined to be
0.000 01(6). A two-parameter fit now yieldsa2 = 1.996(11), again demonstrating thatα is
zero and the success of the method. Finally, as in the other systems studied here, tra
FSS yieldsν = 1 andλ= 2, so in each case the shift exponent does not match the in
of the correlation-length exponent.

4. Conclusions

A recently introduced technique to extract a continuous function, in the form o
density of partition function zeroes, from sets of discrete data has been extended
with the general case where (i) zeroes do not fall on a one-dimensional curve and/or
(ii) multiple zeroes may occur. The technique is tested in a variety of models which
the same universality class as the two-dimensional Ising model and which exhibit v
combinations of these general features. It is seen to be capable of direct determ
of the strength of the phase transition, as measured by the critical exponentα. We have
compared the results obtained from more standard finite-size scaling of the indi
zeroes and also found good agreement.

It also perhaps worth highlighting that in this exercise we have found that formul
an Ising model with anisotropic couplings and Brascamp–Kunz boundary conditio
straightforward and still leads to a simple product form for the finite lattice part
function, a very useful property for investigating scaling. Though we have only touch

the topic briefly in this paper, the exotic critical points which appear at complex couplings
in many models are also amenable to our analysis, and we discuss this elsewhere.
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