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Abstract

We report on single-cluster Monte Carlo simulations of the Ising, 4-state Potts and 10-state Potts
models on quenched ensembles of planar, tri-valent (Φ3) random graphs. We confirm that the first-
order phase transition of the 10-state Potts model on regular 2D lattices is softened by the quenched
connectivity disorder represented by the random graphs and that the exponents of the Ising and 4-
state Potts models are altered from their regular lattice counterparts. The behaviour of spin models
on such graphs is thus more analogous to models with quenched bond disorder than to Poisonnian
random lattices, where regular lattice critical behaviour persists.

Using a wide variety of estimators we measure the critical exponents for all three models, and
compare the exponents with predictions derived from taking a quenched limit in the KPZ formula
for the Ising and 4-state Potts models. Earlier simulations suggested that the measured values for
the 10-state Potts model were quite close to the predicted quenched exponents of thefour-state Potts
model. The analysis here, which employs a much greater range of estimators and also benefits from
greatly improved statistics, still supports these numerical values. 2000 Elsevier Science B.V. All
rights reserved.

PACS:05.20; 61.43.B; 75.100; 04.60

1. Introduction

There has recently been some interest, and no little controversy, regarding the critical
behaviour of systems with quenched bond disorder in 2D (for a review see [1]). It has been
known for some time that the first-order phase transition displayed byq > 4-state Potts
models on regular lattices is softened by the introduction of the quenched bond disorder
to a continuous transition [2–5], though the universality class of this transition and its
dependence on the strength and nature of the bond disorder are still not completely clear
[6–11]. Models which already display a continuous transition in the pure case appear to
have their critical exponents altered by the bond disorder [12–21] provided that the critical
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exponentαpureof the specific heat is positive. In addition, a qualitatively new phenomenon
in the form of multi-fractal scaling of local correlators has also been predicted [22] and
measured [23] when quenched bond disorder is present. It should be remarked that all of
the theoretical results in the bond disordered case are perturbative in nature, which is in
large measure the source of the controversy surrounding the various predictions for critical
exponents, since the domain of validity is unclear.

Another type of disorder that might be imposed is quenchedconnectivitydisorder. Very
high accuracy numerical simulations have shown that spin models on Poisonnian random
lattices in both 2D [24,25] and 3D [26] stay stubbornly identical to their regular lattice
brethren — there is no sign of the effects observed with quenched bond disorder. However,
a different picture emerges when one considers spin models living on a quenched ensemble
of tri-valent (Φ3) planar graphs, as generated by simulations of 2D quantum gravity. In this
case the connectivity disorder is sufficiently strong forq > 4 Potts model transitions to be
softened to continuous transitions [27] and forq 6 4 exponents to be modified from their
regular 2D lattice values [28]. In this respect such planar random graphs appear to be
much more akin to random bond disorder models than to the Poisonnian random lattices
considered in [24–26]. One very interesting feature of theΦ3 graphs is that exact, rather
than perturbative, predictions for exponents exist in theq 6 4 case, by virtue of taking
a quenched limit [22,29,30] in the KPZ formula which gives the weights of conformal
operators when they are coupled to 2D quantum gravity.

In the quantum gravity and string theory context one is typically interested inannealed
rather than quenched connectivity disorder, in which the lattices and spins are interacting
on the same time scale, providing a discrete analogue of the back reaction in continuum
theories of gravity. In this case the relation between the bare (∆) and dressed (̃∆) weights
is given by the KPZ relation [31–33]

∆̃=
√

1− c+ 24∆−√1− c√
25− c−√1− c . (1)

In order to calculate the dressed weights in the quenched case one should takec= 0 in the
KPZ relation to get

∆̃quenched=
√

1+ 24∆− 1

4
, (2)

which now gives non-rational weights. Indeed, Cardy [22] has recently pointed out that the
nth power of a correlator with bare weight∆ averaged over the disorder will scale not as
n∆̃, but rather

∆̃n =
√

1+ 24n∆− 1

4
, (3)

with a “typical” 1 value being governed by [22]

∂∆̃n

∂n

∣∣∣∣
n=0
= 3∆. (4)

1 Rather than average.
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In this paper we concern ourselves exclusively with measuring quantities which correspond
to n= 1 in the formula above, such as the specific heat, susceptibility and magnetisation.
The picture suggested by the earlierq = 2 andq = 10 simulations in [27,28] was that
measurements were in accordance with the predicted quenched exponents forq 6 4 and
that the exponents of the quenchedq > 4 models were “stuck” at theq = 4 values,
as evinced by the apparent agreement between the measuredq = 10 exponents and the
quenchedq = 4 predictions. This was somewhat similar to the original scenario postulated
for the quenched bond disordered Potts models, where it was suggested that all bond
disorderedq > 4 Potts models displayed Ising-like criticality. An obvious test of the
scenario for quenched connectivity disorder is to perform simulations atq = 4, as well
as improving the quality of the measurements forq = 2 andq = 10 in order to get sharper
estimates of the exponents in these cases. This is precisely what we do here.

In what follows we briefly describe the simulation methods, an extension of those used
in [27], before going on to discuss the analysis of the results and our best estimates for
the various exponents for the Ising, 4-state Potts and 10-state Potts models. We finish with
some observations on the values we obtain.

2. Simulation and measurements

We used the standard definition of theq-state Potts model partition function and energy
in all the simulations,

ZPotts=
∑
{σi}

e−βE, E =−
∑
〈ij〉

δσiσj , σi = 1, . . . , q, (5)

whereβ = J/(kBT ) is the inverse temperature in natural units,δ is the Kronecker symbol,
and〈ij 〉 denotes the nearest-neighbour bonds of randomΦ3 graphs (without tadpoles or
self-energy bubbles) withN sites. In this study we considered the casesq = 2 and 4 (with
N = 500, 1000, 2000, 3000, 4000, 5000, and 10000) which in the pure model exhibit
second-order phase transitions, and the caseq = 10 (withN = 250, 500, 1000, 2000, 3000,
5000, and 10000) which in the pure model undergoes a first-order phase transition.

The simulations were carried out using the Wolff single-cluster update algorithm [34].
For each lattice size we generated 64 independent graphs using the Tutte algorithm [35,
36], and performed 500K equilibration sweeps followed by up to 10 million measurement
sweeps in order to obtain 500K independent measurement sweeps for each lattice size.
The runs were carried out at severalβ values near the transition point and time series of
the energyE and the magnetisation2 M = (qmax{ni} − N)/(q − 1) recorded for each
graph. In what follows the per-site quantities are denoted bye = E/N andm =M/N ,
the thermal averages on each individual graph by〈· · ·〉 and the quenched average over the
different graphs by[· · ·]av.

From the time series ofe andm it is straightforward to compute in the finite-size
scaling (FSS) region various quantities at nearby values ofβ by standard reweighting

2 Whereni 6N denotes the number of spins of “orientation”i = 1, . . . , q in one lattice configuration.
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Fig. 1. The specific heat calculated from reweighting aboutβ0 = 2.22, fluctuations and numerical
differentiation of the energy forq = 10 andN = 2000 (which is typical).

[37] techniques. Some care must be taken with the reweighting range in the presence of
quenched averaging, but we confirmed that direct measurements of both the susceptibility
and specific heat from fluctuations and numerical derivatives were in accordance with the
values deduced from reweighting in several representative cases. Comparisons forq = 10
andN = 2000 around the reweighting point ofβ0= 2.22 are shown in Figs. 1 and 2.

To estimate the statistical (thermal) errors for each of the 64 realizations, the time-series
data was split into bins, which were jack-knifed [38,39] to decrease the bias in the analysis
of reweighted data. The final values are averages over the 64 realizations which will be
denoted by square brackets[· · ·]av, and the error bars are computed from the fluctuations
among the realizations. Note that these errors contain both the average thermal error for a
given realization and the theoretical variance for infinitely accurate thermal averages which
is caused by the variation over the random graphs.

From the time series of the energy measurements we compute by reweighting the
average energy, specific heat, and energetic fourth-order cumulant,

u(β)= [〈E〉]av/N,

C(β)= β2N
[〈e2〉 − 〈e〉2]av,

V (β)=
[
1− 〈e

4〉
3〈e2〉2

]
av
. (6)
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Fig. 2. The susceptibility calculated from reweighting aboutβ0 = 2.22 and from fluctuations for
q = 10 andN = 2000.

Similarly, we derive from the magnetisation measurements the average magnetisation,
susceptibility, and magnetic cumulants3 ,

m(β)= [〈|m|〉]av,

χ(β)= βN[〈m2〉 − 〈|m|〉2]av,

U2(β)=
[
1− 〈m

2〉
3〈|m|〉2

]
av
, (7)

U4(β)=
[
1− 〈m

4〉
3〈m2〉2

]
av
.

Further useful mixed quantities involving both the energy and magnetisation are defined
by

d[〈|m|〉]av

dβ
= [〈|m|E〉 − 〈|m|〉〈E〉]av,

d ln[〈|m|〉]av

dβ
=
[ 〈|m|E〉
〈|m|〉 − 〈E〉

]
av
, (8)

d ln[〈m2〉]av

dβ
=
[ 〈m2E〉
〈m2〉 − 〈E〉

]
av
.

3 See below for some subtleties in the ordering of averages in the cumulants.
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The dynamical aspects of the simulations are encoded in the autocorrelation functions
and the associated integrated autocorrelation timesτ̂ . It is customary [34] to convert the
τ̂ thus obtained by multiplying with a factorf = nflip〈|C|〉/N to a scale where, on the
average, measurements are taken after every spin has been flipped once (similar to, e.g.,
Metropolis simulations). For quenched, random systems this procedure is not unique due
to the necessary average over realizations, since one can take either[τ ]av≡ [f · τ̂ ]av or
[f ]av · [τ̂ ]av. The differences between the two averaging prescriptions turn out, however,
to be extremely small in practice.

One finds that the autocorrelation times forq = 2 stay roughly constant with increasing
system size, being[τe]av∼ 3–4 for the energy and[τm]av∼ 1.6–2.2 for the magnetisation.
For q = 4 scaling behaviour is visible with[τe]av∼ 12–18 and[τm]av∼ 7–10, giving a
dynamical exponentz/D ∼ 0.064(10) for the energy. Power law scaling is much more
pronounced for theq = 10 model with[τe]av∼ 60–500 and[τm]av∼ 40–350 and much
larger dynamical exponents for both the energy and magnetisation,z/D ∼O(1).

The self-averaging properties of the ensemble can be investigated by considering the
probability density for theτ ’s, P(τ), rather than the average values,[τe,m]av. One would
expect the cumulative distributionF(τ) = ∫ τ0 P(τ ′)dτ ′ to tend to a step function for
increasing system size in a self-averaging system. This is observednot to be the case for
all the models simulated, giving clear evidence of non-self-averaging behaviour. These
observations can be put on a more quantitative basis by calculating∆τ/[τ ]av, where∆τ is
the standard deviation, or by looking at data collapse with the scaled variableτ/[τ ]av [40,
41].

3. Data analysis and results

In the infinite-volume limit the various measured quantities exhibit singularities at the
transition point. In finite systems the singularities are smeared out and scale in the critical
region according to

C = Creg+Nα/(νD)fC(x)[1+ · · ·],
χ =Nγ/(νD)fχ (x)[1+ · · ·],

[〈|m|〉]av=N−β/(νD)fm(x)[1+ · · ·],
d[〈|m|〉]av

dβ
=N(1−β)/(νD)fm′(x)[1+ · · ·],

d ln[〈|m|p〉]av

dβ
=N1/(νD)fp(x)[1+ · · ·],

dUp
dβ
=N1/(νD)fU2p (x)[1+ · · ·], (9)

whereCreg is a regular background term,ν, α, β , andγ , are the usual critical exponents,
and thefi(x) are various FSS functions with

x = (β − βc)N1/(νD) (10)
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being the scaling variable.[1+ · · ·] indicates correction terms which become unimportant
for sufficiently large system sizesN . We have expressed the scaling relations in terms of
the total number of verticesN rather than the linear sizeL since the fractal dimensionD
of the graphs isa priori unknown. Numerical simulations and various analytic approaches
suggest thatD = 4 [42–45] for the ensemble of graphs we are considering, but we shall
not need this explicitly for our analysis here. By rearranging Eq. (10) one finally obtains
the standard scaling relation for the peak-locations (pseudo-critical points)βc(N) on finite
graphs,

βc(N)= βc + aN−1/(νD), (11)

with a being a constant.
One further issue of principle remains. In the presence of quenched disorder there are

three equally plausible ways of defining the various cumulants. For instance, if we take
the fourth-order magnetic cumulant as an example we could define not only the form used
above

U
(1)
4 =

[
1− 〈m

4〉
3〈m2〉2

]
av
, (12)

but also the variants

U
(2)
4 = 1− [〈m

4〉]av

3[〈m2〉2]av
,

U
(3)
4 = 1− [〈m

4〉]av

3[〈m2〉]2av
, (13)

and the correct choice is not immediately clear. We can hedge our bets in the scaling
analysis by including all three of the variants without prejudice in order to check their
consistency. In simulations with poor statistics per realisation (such as typically in spin-
glass studies) usuallyU(3)4 is taken since with that choice (systematic) bias effects are
minimised. In our case, however, the statistics for each realisation is so large that there is
no reason to favour one definition over the other on technical grounds.

Without further ado, we start the analysis by estimating the value of 1/(νD). With
the wealth of available estimators we have various tactics available for the extraction
of 1/(νD). One possibility would be to use the maxima of each of dU2/dβ , dU4/dβ
(all variants for both cumulants), d ln[〈|m|〉]av/dβ , and d ln[〈m2〉]av/dβ as pseudo-critical
points and then evaluate the scaling of each of these quantities at their own maxima to
extract the exponent. Another would be to evaluate the scaling of each of these quantities at
all of the available pseudo-critical points. A global estimate is then extracted by performing
a direct or error weighted average. In both these cases we take a fairly conservative estimate
for the errors by using the smallest contributing error bar.4

4 The largestcontributing error bar would certainly be too pessimistic; this choice probably errs on the side of
caution too.
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Table 1
Fit results for the critical exponent 1/(νD)

Quantity Type q = 2 q = 4 q = 10

dU2/dβ at maximum 0.32(1) 0.42(2) 0.59(3)
average 0.32(1) 0.45(2) 0.61(3)
weighted av. 0.31(1) 0.44(2) 0.60(3)

dU4/dβ at maximum 0.32(2) 0.39(2) 0.62(3)
average 0.31(1) 0.40(2) 0.59(2)
weighted av. 0.31(1) 0.40(2) 0.59(2)

d ln[〈|m|〉]av/dβ at maximum 0.36(1) 0.42(1) 0.56(1)
average 0.36(1) 0.43(1) 0.56(1)
weighted av. 0.36(1) 0.43(1) 0.56(1)

d ln[〈m2〉]av/dβ at maximum 0.36(1) 0.42(1) 0.56(1)
average 0.36(1) 0.43(1) 0.57(1)
weighted av. 0.36(1) 0.43(1) 0.57(1)

meta-average 0.34(1) 0.42(1) 0.58(1)

Quenched 0.3486. . . 0.589. . . –
KPZ 0.3333. . . 0.5 –
Regular 0.5 0.75 –

We present the results from both approaches in Table 1. In obtaining these estimates we
have dropped the smallest graph sizes in all cases and usedU(1) for definiteness as our
definition of the cumulants for the results presented in the table:U(2) andU(3) give values
that are indistinguishable within the error bars. The results are quite stable to the deletion
of the next smallest size, but the quality of the fits declines somewhat when this is done. In
all of the listed fits the quality of fitQ was very good, the lowest being≈ 0.3, with most
being as high as 0.8–0.9. For comparison we have included the prediction of the quenched
KPZ formula (Eq. (2)), the standard KPZ exponents and the regular 2D lattice exponents
in the lower box. Since theq = 10 model has a first-order transition on a regular 2D lattice
there is no direct prediction in this case.

Looking at the results in Table 1 it is clear that the estimates of 1/(νD) are not consistent
with those for regular 2D lattices, giving a clear indication that the planar random graphs
are different in this respect from Poisonnian random lattices. The average of averages
or “meta-average” forq = 2 is compatible with both the quenched and KPZ values at
the level of accuracy we have achieved, but that forq = 4 matches none of the possible
theoretical predictions. The estimatedq = 10 values are a good fit to the quenchedq = 4
prediction, as we have already noted in [27], and the numerous additional estimators here
add extra weight to this observation. The difference between the theoretical quenched and
KPZ values forq = 4 is sufficient for theq = 10 estimatesnot to be consistent with the
theoreticalq = 4 KPZ value.
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Table 2
Fit results for the pseudocritical couplingsβc

atβmax of q = 2 q = 4 q = 10

C 1.539(5) 1.836(1) 2.244(1)
χ 1.562(6) 1.834(2) 2.246(1)

dU(1)2 /dβ 1.551(5) 1.831(1) 2.244(1)

dU(2)2 /dβ 1.550(5) 1.834(1) 2.242(1)

dU(3)2 /dβ 1.550(5) 1.831(2) 2.243(1)

dU(1)4 /dβ 1.558(7) 1.832(2) 2.244(1)

dU(2)4 /dβ 1.569(4) 1.841(2) 2.240(2)

dU(3)4 /dβ 1.562(5) 1.834(2) 2.242(1)
d[〈|m|〉]av/dβ 1.561(3) 1.834(1) 2.245(1)
d log[〈|m|〉]av/dβ 1.562(5) 1.837(2) 2.243(1)
d log[〈m2〉]av/dβ 1.570(5) 1.838(1) 2.243(1)

average 1.558(3) 1.835(1) 2.244(1)
weighted av. 1.558(3) 1.835(1) 2.244(1)

It is also noteworthy that theq = 10 measurements (and also theq = 4 quenched
theory predictions) violate a supposedly general bound derived by Chayes et al. [46,47]
for quenched systems,νD > 2, sinceνD ∼ 1.72(3) from the q = 10 measurements.
Hyperscaling,α/(νD)= 2/(νD)−1, implies thatα/(νD) should be negative if the bound
holds, but we find below that direct fits to the specific heat forq = 10 also give a positive
value (0.21(1)) that is compatible with that deduced from hyperscaling (0.16(1)). The
measured values ofνD for q = 2 andq = 4, on the other hand,are consistent with the
bound. Whether the failure of theq = 10 model to observe the bound is a consequence of
the technical details of the averaging procedure as suggested in [48] or a result of long range
correlations in the disorder (which is due to the curvature correlations for the Liouville
action in the original 2D gravity theory used to generate the graphs) is unclear.

We now use our best estimates of 1/(νD) to extract the critical couplingβc by
performing a linear two-parameter fit, Eq. (11), using the maxima ofC andχ along with
derivatives of the three variants ofU2 andU4 and derivatives and logarithmic derivatives
of the magnetization as estimators of the pseudocritical points. This gives the eleven
estimators which are shown in Table 2. A global estimate is again extracted by performing
both a straightforward average and an error weighted average. It is noteworthy that the
estimated critical couplings are compatible with those found in simulations of the models
coupled to 2D quantum gravity5 , i.e., with annealedrather than quenched connectivity
disorder. This was already remarked on in [27,28] where non-linear three parameter fits
were employed.

5 On corresponding ensembles of graphs without tadpoles and self-energy bubbles.
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Table 3
Fit results for the critical exponent
α/(νD) for q = 10

atβmax of q = 10

C 0.21(1)

χ 0.21(2)

dU(1)2 /dβ 0.22(1)

dU(2)2 /dβ 0.21(1)

dU(3)2 /dβ 0.22(1)

dU(1)4 /dβ 0.21(1)

dU(2)4 /dβ 0.18(2)

dU(3)4 /dβ 0.21(1)

d[〈|m|〉]av/dβ 0.21(1)

d log[〈|m|〉]av/dβ 0.21(1)

d log[〈m2〉]av/dβ 0.22(1)

average 0.21(1)

weighted av. 0.21(1)

q = 4 Quenched 0.177. . .

q = 4 KPZ 0

q = 4 Regular 0.5

The crossing points of the various definitions of the fourth-order cumulant in Eqs. (12)
and (13) provide further estimates ofβc . The error bars from these measurements are much
larger than those in Table 2 due to the spread of crossings for different system sizes, but
the estimates fromU(1)4 , U(2)4 , andU(3)4 are all consistent, givingβc = 1.58(2) for q = 2,
βc = 1.85(2) for q = 4, andβc = 2.244(4) for q = 10. The rather wide spread in the
estimatedβc is reflected by a similar spread in the values ofU4 atβc, usually denoted by
U∗. The variantU(2)4 appears to be the best behaved for allq givingU∗ ≈ 0.55(3).

Moving on toα/(νD), the Fisher hyperscaling relation in the form

α

νD
= 2

νD
− 1 (14)

givesα/(νD)=−0.32(1),−0.16(1), and 0.16(1) for q = 2, 4, and 10, respectively, from
the 1/(νD) values in Table 1, whereas the quenched predictions areα/(νD)=−0.303. . .
and 0.177. . . for q = 2 and 4. Direct non-linear fits toα/(νD) using the scaling form
C = Creg+ C1N

α/(νD) for the maxima of the specific heat are unstable forq = 2,4 but
give α/(νD) = 0.22(7) for q = 10. The constant in this fit is consistent with zero, so we
carried out a log–log fit at all of the pseudo-critical points as shown in Table 3, giving
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Fig. 3. Two representative fits (from the eleven used) for the scaling of the specific heat evaluated at
its own maximum and at the maximum of the susceptibilityχ .

a final average ofα/(νD) = 0.21(1) for q = 10. Two representative series of points for
the specific heat evaluated at its own maximum and the maximum of the susceptibility on
the different graph sizes are shown in Fig. 3. This independent measurement ofα/(νD)

whenq = 10 is thus in rough agreement with the theoretical quenched exponent values for
q = 4.

In Tables 4, 5, and 6 we list the measured values of the magnetic exponentsγ /(νD),
β/(νD) and(1−β)/(νD) for q = 2,4, and 10. We have adopted a similar approach to that
used in the estimation of 1/(νD). Data from all but the smallest graph size was included in
the fits, and the stability of the fits checked against the deletion of the next smallest sizes,
proving in all the listed cases to be reasonable. The appropriate scaling relations in Eq. (9)
are evaluated at all the pseudo-critical points reported in the tables and a final averaged
value and error weighted average calculated. For the blank entries in the tables no stable fit
proved possible. In the tables the number of terms used in the averages for each exponent
are listed in the average row, and various theoretical predictions for the exponents are listed
for comparison. Since it is already clear that theq = 10 measurements bear some similarity
to the quenchedq = 4 predictions we have repeated theq = 4 theoretical values in theq =
10 table. The exponent ratioγ /(νD) is evaluated from the scaling of the susceptibilityχ ,
β/(νD) from the scaling of the magnetisation and(1− β)/(νD) from the scaling of its
derivative with respect to the inverse temperature.



692 W. Janke, D.A. Johnston / Nuclear Physics B 578 [FS] (2000) 681–698

Table 4
q = 2 Potts (Ising) fit results for the critical exponentsγ /(νD), β/(νD), and (1−
β)/(νD)

atβmax of γ /(νD) Q β/(νD) Q (1− β)/(νD) Q

C 0.75(1) 0.14 0.14(2) 0.24 0.23(2) 0.40

χ 0.79(1) 0.13 0.08(1) 0.21 0.26(1) 0.78

dU(1)4 /dβ 0.79(2) 0.66 0.12(1) 0.42 0.26(2) 0.33

dU(2)4 /dβ – – – – – –

dU(3)4 /dβ 0.80(2) 0.46 0.10(1) 0.14 0.28(1) 0.13

dU(1)2 /dβ 0.77(1) 0.75 0.12(1) 0.82 0.25(1) 0.76

dU(2)2 /dβ 0.77(1) 0.73 0.12(1) 0.64 0.25(1) 0.63

dU(3)2 /dβ 0.77(1) 0.78 0.12(1) 0.84 0.25(1) 0.62

d[〈|m|〉]av/dβ – – 0.09(1) 0.38 0.26(1) 0.80

d ln[〈|m|〉]av/dβ 0.80(1) 0.55 0.10(1) 0.36 0.28(1) 0.37

d ln[〈m2〉]av/dβ 0.83(2) 0.15 – – 0.30(1) 0.32

average (9,9,10) 0.79(1) 0.11(1) 0.26(1)
weighted av. 0.78(1) 0.10(1) 0.26(1)

Quenched 0.7094. . . 0.1452. . . 0.2033. . .
KPZ 0.6666. . . 0.1666. . . 0.1666. . .
Regular 0.875 0.0625 0.4375

The scaling relation

γ

νD
= 1− 2

β

νD
(15)

relates the two exponents in these tables. The directly measured values are all in reasonable
agreement with those derived by using either exponent as input in this scaling relation.
There is an accidental equality between the theoretical quenched values ofγ /(νD) (and
hence via Eq. (15) ofβ/(νD)) for the Ising and 4-state Potts models which is not, however,
reflected in the estimates. There is a steady decrease inγ /(νD) and corresponding increase
in β/(νD) asq is increased, so theq = 4 andq = 10 measurements are clearly different
from those forq = 2. There is still apparent agreement between the quenchedq = 4
predictions and the measurements atq = 10. It is also clear that theq = 4 measurements
are in definite disagreement with the quenchedq = 4 predictions.

In Fig. 4 we plot the data points and fits for the susceptibility in the Ising model. The
individual points forχ evaluated at its own maximum, the maximum of the specific heat,
the maxima of the derivatives of the second and fourth order cumulants and the maximum
of the derivative of the magnetisation are shown explicitly.6 The fits from the different

6 We have shown only theU(1)2,4 cumulant results to avoid cluttering the graph, the alternative definitions give
effectively identical results.χ evaluated at the maxima of the derivatives of the log of the magnetisation and the
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Table 5
q = 4 Potts fit results for the critical exponentsγ /(νD), β/(νD), and(1− β)/(νD)

atβmax of γ /(νD) Q β/(νD) Q (1− β)/(νD) Q

C – – – – – –

χ 0.75(1) 0.13 – – 0.34(2) 0.61

dU(1)4 /dβ – – – – 0.33(1) 0.37

dU(2)4 /dβ – – – – – –

dU(3)4 /dβ – – – – – –

dU(1)2 /dβ 0.75(1) 0.82 0.12(1) 0.50 0.33(1) 0.70

dU(2)2 /dβ 0.77(1) 0.42 – – 0.34(1) 0.41

dU(3)2 /dβ 0.75(1) 0.80 0.13(1) 0.26 0.33(1) 0.66

d[〈|m|〉]av/dβ 0.75(1) 0.44 0.10(1) 0.99 0.34(1) 0.73

d ln[〈|m|〉]av/dβ – – – – – –

d ln[〈m2〉]av/dβ – – – – – –

average (5,3,6) 0.75(1) 0.12(1) 0.34(1)
weighted av. 0.75(1) 0.11(1) 0.34(1)

Quenched 0.7094. . . 0.1452. . . 0.4433. . .
KPZ 0.5 0.25 0.25
Regular 0.875 0.0625 0.6875

series are all in good agreement, as indicated by the tables. We also plotχ evaluated at
its own maximum forq = 2, 4, and 10 in Fig. 5 in order to show the general trend in the
exponent.

4. Conclusions

The qualitative conclusions of our extensive analyses are quite clear: the quenched con-
nectivity disorder of theΦ3 graphsdoesalter the exponents of models which already pos-
sess a continuous transition on a regular lattice, as well as softening the first-order transition
of theq = 10 model to a continuous transition. A quenched ensemble ofΦ3 graphs with
connectivity disorder thus shares many of the features of a system with quenched bond dis-
order. As noted in the introduction, other ensembles with quenched connectivity disorder
such as Poisonnian random lattices do not — being more akin to regular lattices.

At a quantitative level, however, the current batch of simulations pose rather more ques-
tions than they answer: the working hypothesis of the veracity of the quenched exponents
is at best only weakly supported by the results. For the Ising (q = 2) model, the esti-
mated value of 1/(νD), 0.34(1), is consistent with both the quenched and KPZ predictions.

modulus squared of the magnetisation have also been dropped for clarity. The graphs forq = 4 andq = 10 show
similar features and are not reproduced here.
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Table 6
q = 10 Potts fit results for the critical exponentsγ /(νD), β/(νD), and(1− β)/(νD)

atβmax of γ /(νD) Q β/(νD) Q (1− β)/(νD) Q

C 0.71(2) 0.13 – – – –

χ 0.72(1) 0.31 0.10(1) 0.39 0.43(2) 0.10

dU(1)4 /dβ 0.73(2) 0.72 0.11(1) 0.23 0.43(2) 0.53

dU(2)4 /dβ – – – – – –

dU(3)4 /dβ 0.69(2) 0.30 – – 0.41(2) 0.22

dU(1)2 /dβ 0.72(2) 0.61 0.12(1) 0.32 0.43(2) 0.19

dU(2)2 /dβ – – – – 0.42(2) 0.16

dU(3)2 /dβ 0.71(2) 0.37 0.14(1) 0.29 0.43(2) 0.12

d[〈|m|〉]av/dβ 0.72(2) 0.25 0.11(1) 0.10 0.43(2) 0.11

d ln[〈|m|〉]av/dβ 0.71(2) 0.10 – – 0.43(2) 0.10

d ln[〈m2〉]av/dβ – – – – 0.43(2) 0.11

average (8,5,9) 0.71(1) 0.12(1) 0.43(2)
weighted av. 0.71(1) 0.12(1) 0.43(2)

q = 4 Quenched 0.7094. . . 0.1452. . . 0.4433. . .
q = 4 KPZ 0.5 0.25 0.25
q = 4 Regular 0.875 0.0625 0.6875

Although the estimates for the magnetic exponents[γ /(νD),β/(νD), (1− β)/(νD)] ∼
[0.79(1),0.11(1),0.26(1)] are closer to the quenched[0.7094,0.1452,0.2033] than the
Onsager[0.875,0.0625,0.4375]or KPZ[0.666. . .,0.166. . . ,0.166. . .] values, any agree-
ment is less than convincing. In mitigation, it is fair to point out that we have struggled in
the past to obtain good estimates of the magnetic KPZ exponents on dynamicalΦ3 graphs
without tadpoles and self-energy bubbles [49], which is the class of graph we have used in
the simulations here. This is probably due to large corrections to scaling, since including
degenerate graphs (self-energy bubbles and tadpoles) appears to give a faster approach to
the continuum limit [50].

Takenen massethe estimated exponents of theq = 4 model,[1/(νD), γ /(νD),β/(νD),
(1− β)/(νD)] ∼ [0.42(1),0.75(1),0.12(1),0.34(1)] fit neither the quenched[0.589. . .,
0.7094. . .,0.1452. . .,0.4433. . .], KPZ [0.5, 0.5, 0.25, 0.25] nor regular lattice [0.75,
0.875, 0.0625, 0.6875] predictions, although one could argue thatγ /(νD) ∼ 0.75(1) on
its own is actually closer to the quenched prediction than theq = 2 model.

The q = 10 model, on the other hand, provides us with a set of estimated ex-
ponents[1/(νD), γ /(νD),β/(νD), (1− β)/(νD)] ∼ [0.58(1),0.71(1),0.12(1),0.43(2)]
which match the predicted quenchedq = 4 exponents[0.589. . .,0.7094. . .,0.1452. . .,
0.4433. . .] quite well. These estimatedq = 10 exponents (and theoreticalq = 4 values)
hence violate the boundνD > 2 of [46,47], which merits an explanation in its own right.
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Fig. 4. Fits toχ whenq = 2 to obtainγ /(νD) at the maxima ofχ , C, dU(1)2 /dβ, dU(1)4 /dβ and
dm/dβ are shown on a log–log scale.

Fig. 5. Fits toχ at its own maximum forq = 2,4, and 10.
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It is difficult to quibble with the thermal statistics from the very long time series in the
current batch of simulations, but one might find fault with the relatively modest number
of replicas used in the disorder averaging. The replica to replica variation of the measured
quantities does not, however, appear to have significantly skewed the measured values and
error estimates. Looked at without theoretical prejudice the measured exponents suggest
a slow variation withq that is akin to that observed in the quenched bond disorder
simulations of [9–11], rather than values which stick atq = 4 and change no further
with increasingq . It is thus possible, or even probable, that the apparent agreement of
the measuredq = 10 exponents with the predictedq = 4 values is accidental. A simple
way to settle this issue would be to simulate other values ofq to investigate the variation,
if any, of the exponents, particularly forq > 4.

There is a second parameter that one can vary in such simulations, namely the central
charge used in generating the graphs of the quenched ensemble. Since the partition function
ZN obtained on integrating outd scalar fields onΦ3 graphs withN vertices is

ZN =
∑

G∈G(A)

(
detCG

)−d/2
, (16)

whereG(A) is the class of graph being summed over andCG is the adjacency matrix of
the graphG,

CG =

qi if i = j ,
−nij if i andj are adjacent,
0 otherwise,

(17)

one can use Eq. (16) to generate an ensemble of graphs to which one can associate a central
charged .

Quenched simulations may then be carried out on this ensemble rather than thed =
c = 0 graphs used here. The appropriated can be substituted into the KPZ formula to
obtain predictions for the exponents in this case. This brings one to another puzzle: in
[51] very good agreement was found between the predicted exponents for the Ising model
on a quenched ensemble of graphs withd = −5 and measurements. In this light, it is
surprising that the agreement here for the Ising model on much largerd = 0 graphs with
better statistics is poorer. One could speculate that the scaling behaviour of the models
improved as they became more “classical”, i.e., as the effects of gravity were switched
off (d→−∞) or that the generic logarithmic corrections discussed in [52] for quenched
theories withd = 0 might play a role for the models discussed here butnot for d =−5.

Various other aspects of the behaviour of spin models on quenched random gravity
graphs that have only been touched on here merit further investigation. The clear evidence
of non-self-averaging behaviour for allq and the autocorrelation scaling techniques used
to quantify it are described in more detail in a companion paper [41]. Similarly, the
multifractal scaling of spin correlation functions can also be investigated. Finally, as we
have already noted, further simulations for otherq (and alsod) values would help to
determine whether the quenched exponents were correctly describing the behaviour of the
models and cast further light on the (accidental?) agreement betweenq = 10 measurements
and the predictedq = 4 exponents.
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In summary, spin models onΦ3 random graphs offer a useful framework for the
exploration of quenched disorder and may even offer some advantages over bond
disordered models given the availability of various exact, rather than perturbative,
predictions for exponents. The results described here suggest numerous avenues for future
work.
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