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Using the recently proposed multicanonical ensemble, we perform Monte Carlo simulations
for the two-dimensional 7-state Potts model and calculate its surface free energy density (surface
tension) to be 2 f* = 0.0241 +0.0010. This is an order of magnitude smaller than other estimates
in the recent literature. Relying on existing Monte Carlo data, we also give a preliminary
estimate for the surface tension of four-dimensional SU(3) lattice gauge theory with L, =2.

1. Introduction

First-order phase transitions play a major role in many physical systems. Many
phase transitions observed in nature are first order. Examples are vapour-liquid
and liquid-solid transitions, the SU(3) deconfinement transition and others at
various stages of our universes evolution. In a first-order phase transition two
phases can coexist at the transition point, with a domain wall, whose tension is
finite, separating the two phases. Let us denote by f, and f, the free energies per
unit volume of the two phases and by F the free energy of the whole system; the
difference

FC=F—-(Vfi+V,f2) >0, (D)

is the free energy associated with the interface. Its value, normalized to unit area
f%, is the surface tension, a quantity of central importance for the theory of
first-order phase transitions [1].
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In recent years considerable efforts were devoted to surface-tension calcula-
tions. In particular, the two-dimensional 7-state Potts model has served as a testing
ground for methods [2,3] which were subsequently applied to SU(3) lattice gauge
theory [4,5]. Here we rely on the method of Binder [6] to evaluate again the surface
tension for these models. Our surface-tension estimates come out much lower than
those of refs. [2-5]. We explain this by showing that their extrapolations were
obtained from temperatures for which no true two-phase regions exist. QOur SU(3)
estimate relies on the L,=2 data of ref. [7]. For the Potts model we have
performed a new high-statistics Monte Carlo (MC) simulation with the recently
proposed [8] multicanonical ensemble. For the 10-state Potts model the multi-
canonical approach had improved standard MC calculations in the two-phase
region by almost three orders of magnitude [9]. In our case of the 7-state model,
we find the less dramatic improvement of a factor of two to three. This is due to
the fact that the first-order transition is considerably weaker than that of the
10-state model.

Besides serving as a testing ground for surface-tension calculations, two-dimen-
sional Potts models have also attracted recent attention through their use as a
laboratory for testing finite-size scaling (FSS) concepts. Rigorous work by Borgs et
al. [10] has greatly refined the phenomenological two-gaussian-peak model [11],
and the question how large the simulated systems must be in order that asymptotic
FSS limits are approached has been investigated by a number of MC studies
[12-16]. As a by-product of our surface tension investigation, we can supplement
these studies with results from our g = 7 data.

2. Potts model

The two-dimensional 7-state Potts model [17] is defined on an L? lattice by the
partition function

Z(B)y= X exp(—BE), (2)

configurations

E=— Y 8,4 4v4;=1-...7. 3)
G

Here i,j are labels of the sites of the lattice and {i,j) is the sum over nearest
neighbours. We always employ the periodic boundary condition. Following ref. [6]
we are going to extract the surface tension from the probability density P;(E;8) of
the energy E. For B sufficiently close to the transition point P;(E;B) exhibits a
double peak structure. We adopt the normalization P/ =1 and we define
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Fig. 1. Energy density distributions P;(E) for lattices of size L = 20,...,100 on a logarithmic scale. The
values of the maxima have been normalized to 1.

L-dependent pseudo-transition points B by the requirement that both maxima
are of equal height:

Pg,max = PL( Ei,max) — PL( Ez,max) — PLZ,max — 1 (Ell,max < Ez,max)‘ (4)

As in this equation we suppress in the following 8 in the argument of P,(E;B)
when the probability density is considered at its pseudo-transition point. Once the
energy probability density P,(E) is known, the interfacial free energy per unit area
follows [6] from the L — « limit of *

1 A
2ff =~ T In(P]"™). (5)

Here PM" = P,(EM"), where E™" is the position of the minimum which the
probability density takes in the range E}™ < E < E}™. The factor 2 accounts
for the fact that for periodic boundary conditions the minimum of the probability
density is governed by at least two interfaces. Our empirical results of P,(E) for
lattices in the range L = 20,...,100 are depicted in fig. 1 on a logarithmic scale.
To enhance the MC statistics at the minima of the probability densities, we have
simulated the multicanonical ensemble as described in refs. [8,9]. The multicanoni-
cal probability densities P/(E) of our “raw” data are fairly flat in E and the

* To comply with refs. [2-5] our present definition differs by a factor of two from ref. [9].
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Fig. 2. Multicanonical energy distribution P{y,(E) together with its reweighted distribution P,o(E).
Both distributions are normalized to unit area.

results of fig. 1 are obtained by reweighting for the correct Boltzmann factor. For
our L = 100 lattice this procedure is illustrated by fig. 2. Table 1 gives an overview
of our data and results. The statistics is given in sweeps, a sweep being defined as
updating each spin in the lattice once. The other quantities given are 85, e;™,
emin e2m> and fS, where we denote by e = E/V the energy density and e}™,
e™ and e?™™ are the densities belonging to the corresponding extensive quanti-
ties as introduced above.

For lattices of size up to L = 60 we have also performed simulations with a
standard heat-bath algorithm to evaluate the improvements due to the multicanon-
ical method. The relative performance of the two algorithms is best evaluated by
comparing the tunneling times. As in refs. [12,16] we define four times the
tunneling time 47; as the average number of sweeps needed to get from a

configuration with energy E™ to a configuration with E?™* and back. This

TaBLE 1
Results of multicanonical simulations

L Statistics Bi. elmax emin ebmax 2fF

20 4000000 1.284692 1.066(10) 1.3124(24) 1.602(38) 0.03645(48)
40 4000000 1.291051 1.127(18) 1.327(24) 1.578(15) 0.03387(59)
60 8000000 1.292283 1.1525(03) 1.3369(87) 1.575(02) 0.02997(60)

100 16000000 1.293089 1.1736(29) 1.3466(12) 1.570(02) 0.02816(58)
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Fig. 3. Tunneling times for the multicanonical, for the standard heat-bath, and for the Metropolis [13]
simulation on a double log scale.

definition has the advantage that tunneling time and exponential autocorrelation
time in general agree with good precision (exactly in a simple model). In fig. 3 we
display on a log-log scale the divergence in the tunneling times for the multicanon-
ical algorithm (circles) and for the heat bath algorithm (crosses). Notice that the
tunneling times for the single-hit Metropolis algorithm (squares) are larger by a
factor of about seven [13]. The fit to the multicanonical data is 7; = 0.082(17) X
L*5®) Incidentally, this is the same power law which was observed in ref. [9] for
the 10-state model. Due to the weakness of the transition, the exponential
divergence of the canonical tunneling times is not yet obvious in the present case.
Still the multicanonical improvement should be appreciated as we spent most of
our CPU time simulating the 1002 lattice.

In the forthcoming fits we rely only on our multicanonical data, as otherwise the
small lattices would get too large a weight as compared with out L = 100 lattice. A
major point of this paper is the analysis of the f; data given in table 1. The FSS fit

c
2f5=2f+ — 6
fre2fit (6)
is depicted in fig. 4 and gives
2f*=0.0241 £+ 0.0010, (N

with ¢ =0.384 + 0.055 for the constant. Qur result (7) is about a factor of ten
smaller than the estimates given in refs. [2,3]. We like to argue that their methods
analyze properties of rigid domain walls which have no connection to the statistical
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Fig. 4. Finite-size scaling fit for the interfacial free energy 2f°. For comparison also the data from the
standard heat-bath simulations are shown.

fluctuations of the systems at their pseudo-transition points 8f. To enhance the
signal for the surface free energy, the methods [2-5] have in common that they
introduce domains corresponding to temperatures B8° + 8, where in the case of the
two-dimensional 7-state Potts model the exactly known [17] transition temperature
B¢ =1In(1 ++v7)=1.293562... is used. Then, it is tried to extract the surface
tension through carefully monitoring the limit 8§ — 0. This seems precisely why
their methods fail. The signal is lost before the relevant 8-region of adiabatic
distortions is reached. For instance, the smallest §-value on which the extrapola-
tion of ref. [2] relies is & = 0.01 on a large 128 X 256 lattice, where also an unused
data point with 8 = 0.005 exists. The § = 0.005 data point had to remain unused as
it exhibits a cross-over to much smaller surface tension values, interpreted then as
a finite-lattice size effect. Our fig. 5 reveals that even the § = 0.005 value is still too
large in the sense that 8¢+ 0.005 cannot be associated with the phase transition
region. When we reweight the canonical energy density distribution from our
100 x 100 lattice (where the transition is less sharp than on the 128 X 256 lattice)
to the values B¢+ 0.005 the double-peak structure disappears: for g€ — 0.005 the
system is completely in the disordered, and for 8¢+ 0.005 it is completely in the
ordered phase.

Finally, in this section, we summarize our FSS analysis of standard quantities
like various pseudo-transition temperatures, the Binder cumulant, the specific heat
and the latent heat. Conventionally, pseudo-transition temperatures 75™" and
Tm* are defined by the location of the Binder-parameter minimum and specific-
heat maximum, respectively. Fig. 6 shows the FSS of these quantities, together with
the exactly known [10,14] asymptotic expansions to first order. Fig. 7 gives the FSS
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Fig. 5. Reweighting of our P, (E) probability density to B°—0.005 (high left peak alone) and

B€ +0.005 (high right peak alone).

of the Binder-parameter minimum. The arrow shows the exactly known [12,14]
infinite-volume limit. The indicated asymptotic slope uses ¢, as calculated below
and relies on a rather lengthy formula which can be found in refs. [14,16]. In fig. 8
we show the FSS of the maxima and the minima of the probability distribution

0.783
0.781
0.779

=
0.777

0.775

0.773

0.000

T

T

T

B,min

\ ¢, max
T

| |

c.max

B,min

(o]

0.001

0.002

0.003

Fig. 6. Scaling of the pseudo-transition temperatures T5™" and 7™ The solid lines are the exactly
known asymptotic expansions.
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Fig. 7. Results for the Binder-parameter minimum. The arrow shows the exact infinite-volume limit.

P,(E). Linear fits to the multicanonical data yield "™ = 1.2053 + 0.0070 and
e>™ = 1.5640 + 0.0095, in good agreement with the exact results [18] 1.2013...
and 1.5546..., respectively. For the minimum we find e™" = 1.3596 + 0.0249.
Lastly, the FSS fit of the latent heat is given in fig. 9. The linear fit gives
Ae =0.3574 + 0.0087, in agreement with the exact result 0.3533 ... .

Besides the surface tension, the only quantitics not known exactly are the
specific heats c,, ¢4 in the ordered and disordered phase, respectively. To
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Fig. 8. Finite-size scaling of the extrema of the probability distribution P,(E).
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Fig. 9. Finite-size scaling of the latent heat.
calculate these quantities, we use the FSS relation [14,16]
As\? 1
=12 7) +4c+3(Ac — As) 1n(q)+c0+O(F , (8)

where Ac =c,4 — ¢, and As = B° Ae is the entropy gap over the transition point.
For Potts models Ac = B¢ As/ \/a [18]. Fig. 10 depicts the FSS of the specific-heat
maximum with the exactly known leading term of the asymptotic expansion
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Fig. 10. Finite-size scaling of the specific-heat maximum with the exactly known leading term of the
asymptotic expansion subtracted.
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subtracted. The fit yields then ¢, = 47.5 £+ 2.4 for the specific heat in the ordered
phase. Since Ac = 0.2, this is in good agreement with the estimate [13] ¢, = 50 + 10.
3. SU(3) lattice gauge theory
We considered four-dimensional pure SU(3) lattice gauge theory defined on an

L,L* (L,<L) hypercubic lattice. To each link / of the lattice an element
U, € SUQ3) is assigned and the partition function is given by [19]

Zw)=fENMem : (9)

2
= T Re Tr U(p)
g r

Here X, denotes the sum over all plaquettes of the lattice. For each plaquette p,
U(p) is the ordered product of the four link matrices surrounding the plaquette
and dU is the SU(3) Hurwitz measure. The results of sect. 2 imply, of course, that
we cannot have confidence in the SU(3) surface tension estimates [4,5]. The L, =2
SU(3) deconfining phase transition is sufficiently strong to warrant new MC
simulations based on the multicanonical ensemble [8,9]. So far such calculations
have not been performed. Nevertheless we are able to give a rough estimate by
analyzing the L,=2 SU(3) data of ref. [7] with regard to the surface tension,
although the quality of the SU(3) data is fairly limited. For comparison, in case of
the 7-state Potts model we have about 400 tunneling events for our 1002 lattice,

T T
0
10 ?
|
Py
o
7]
N’
Q-;_!
10" -
107 ——
0.40 042 U2% U35 U48
S

Fig. 11. SU(3) action density distributions PL(sp) for lattices of size 2-6%,...,2-12% on a logarithmic
scale. The values of the maxima have been normalized to 1.
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whereas we are down to only (altogether) 10 tunneling events for the largest SU(3)
lattice, which is 2 - 122. Available lattice sizes are now L = 6, 8, 10 and 12. Fig. 11
depicts the appropriately reweighted probability densities for the lattice averages,
called s,, of the normalized plaquette action Re Tr U(p)/3 (there exist two
L =12 data sets which we have combined to one). In contrast to the Potts model
there is now some ambiguity in choosing the histogram binning size, but we have
checked that within reasonable limits the influence on the final estimates is mild.
The interfacial free energy per unit area follows in a similar fashion as in sect. 2.
Eq. (5) modifies to

-3

2fs = In( P, (10)

a
L,L?

where a is the lattice constant. It is conventional [4,5] to give final estimates for the
dimensionless quantity f°/7., where T,=a 'L ! is the physical temperature of
the SU(3) deconfining transition. Our estimates of f;/7.} are depicted in fig. 12.
The increase of f; with lattice size, as compared to the decrease found in sect. 2
and other Potts model investigations [9,14,16], is remarkable. Presently, we have no
theoretical understanding about the circumstances which differentiate an approach
of the asymptotic limit from below versus above. The FSS fit of fig. 12 gives the
asymptotic estimate

% =0.071 + 0.008. (11)
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Of course, in view of the rather small lattice sizes and the somewhat limited quality
of the data, this extrapolation is kind of daring. Nevertheless, it is presumably a
reasonable starting point. With appropriate CPU time funding of about 1000
CRAY-YMP (or equivalent) supercomputer time, one may perform a multicanoni-
cal simulation of a 2 - 24* system to check for consistency by adding f5, / 77 to fig.
12.

Comparison with refs. [4,5] is somewhat subtle, as changing normalizations have
to be traced. We believe that their final definitions match with ours and we find
our result to be about a factor of two smaller than theirs. The discrepancy is rather
mild when compared to the one of sect. 2. Considering the relative weakness of
our estimate (11), one may even question whether there is a significant difference
at all. However, the investigation of sect. 2 suggests that there is no reason to
expect our estimates and those of the methods of refs. [2-5] to converge to the
same numbers.

4, Conclusions

We have carried out a fairly detailed FSS investigation for the two-dimensional
7-state Potts model. As far as comparisons with exact analytical results are
possible, we find our estimates well consistent. The surface tension is not known
exactly. We give an estimate (7) which differs considerably from results reported in
previous literature [2,3]. It may look kind of surprising that no problems were
noted before, however, the methods of refs. [2-5] seem in some sense to be
self-consistently wrong. They rely on simulations far away (in the sense explained
in sect. 2) from the relevant pseudo-transition B-values. The orders of magnitude
of these deviations from the pseudo-transition points are dictated by the need to
increase the signal, and in this region of rigid domains the illusion of a consistent
approach is, indeed, suggested by the data. For SU(3) our surface tension estimate
(11) should be considered as a first attempt to address the problem, and multi-
canonical simulations [8,9] on lattices of size up to at least 2 - 24° are suggested.

It had already been noticed some time ago by the authors{‘ of ref. [13] that eq. (5)
seems to give a smaller estimate than the methods of refsi [2,3], and one of the
present authors (BB) likes to thank Alain Billoire for useful discussions. Further,
we thank Thomas Neuhaus for contributions at the early stage of the Potts model
simulation. The Monte Carlo data were produced on the SCRI cluster of fast
RISC workstations and at the Embry-Riddle Aeronautical University.
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