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Using the recentlyproposedmulticanonicalensemble,we perform Monte Carlo simulations
for the two-dimensional7-statePottsmodel andcalculateits surfacefree energydensity(surface
tension)to be 2f S = 0.0241±0.0010.This is an orderof magnitudesmaller than otherestimates
in the recent literature. Relying on existing Monte Carlo data, we also give a preliminary
estimatefor the surfacetensionof four-dimensionalSU(3) lattice gaugetheorywith L

5 = 2.

1. Introduction

First-orderphasetransitionsplay a major role in many physicalsystems.Many
phasetransitionsobservedin nature are first order. Examplesarevapour—liquid
and liquid—solid transitions, the SU(3) deconfinementtransition and others at
various stagesof our universesevolution. In a first-order phasetransition two
phasescan coexist at the transition point, with a domain wall, whose tension is
finite, separatingthe two phases.Let usdenoteby f1 and f2 thefree energiesper

unit volume of the two phasesandby F the free energyof the whole system;the
difference

(1)

is the free energyassociatedwith the interface.Its value,normalizedto unit area
f
5, is the surface tension, a quantity of central importance for the theory of
first-orderphasetransitions[1].
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In recent yearsconsiderableefforts were devotedto surface-tensioncalcula-
tions.In particular, thetwo-dimensional7-statePottsmodelhas servedas a testing
groundfor methods[2,3] which were subsequentlyappliedto SU(3) lattice gauge
theory[4,5].Herewe rely on the methodof Binder[6] to evaluateagainthe surface
tensionfor thesemodels.Oursurface-tensionestimatescomeout muchlower than
those of refs. [2—5].We explain this by showing that their extrapolationswere
obtainedfrom temperaturesfor which no true two-phaseregionsexist. Our SU(3)
estimate relies on the L~= 2 data of ref. [7]. For the Potts model we have
performed a new high-statisticsMonte Carlo (MC) simulation with the recently
proposed[8] multicanonical ensemble.For the 10-state Potts model the multi-
canonical approachhad improved standardMC calculations in the two-phase
region by almost threeordersof magnitude[9]. In our caseof the 7-statemodel,
we find the less dramaticimprovementof a factor of two to three.This is due to
the fact that the first-order transition is considerablyweakerthan that of the
10-statemodel.

Besidesservingas a testingground for surface-tensioncalculations,two-dimen-
sional Potts models have also attractedrecent attention through their use as a
laboratoryfor testingfinite-sizescaling (FSS)concepts.Rigorouswork by Borgset
al. [10] has greatly refined the phenomenologicaltwo-gaussian-peakmodel [11],
andthe questionhow large the simulatedsystemsmustbe in order that asymptotic
FSS limits are approachedhas been investigatedby a numberof MC studies
[12—16].As a by-productof our surfacetensioninvestigation,we cansupplement
thesestudieswith results from our q = 7 data.

2. Pottsmodel

The two-dimensional7-statePottsmodel [17] is definedon an L2 lattice by the
partition function

Z(j3)= ~ exp(—f3E), (2)
configurations

E= — ~ ~qq’ ~ (3)
K ii>

Here i,j are labels of the sitesof the lattice and Ki,j) is the sum over nearest
neighbours.We alwaysemploy the periodicboundarycondition. Following ref. [6]

we aregoingto extractthe surfacetensionfrom theprobabilitydensityPL(E;/3) of
the energyE. For f3 sufficiently close to the transition point PL(E;/3) exhibits a
double peak structure. We adopt the normalization piax = 1 and we define
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Fig. 1. Energydensitydistributions PL(E) for latticesof size L = 20 100on a logarithmicscale.The

valuesofthe maximahavebeennormalizedto 1.

L-dependentpseudo-transitionpoints I3~by the requirementthat both maxima
are of equalheight:

1,max — / 1,max\ — ~ 1E
2,ma~(\— p2max — 1 1Etm~< ~

L L~ L ) L~ L ) L ~ ~ L L

As in this equationwe suppressin the following I~in the argumentof PL(E;/3)

whenthe probabilitydensityis consideredat its pseudo-transitionpoint. Oncethe
energyprobabilitydensityPL(E) is known, the interfacial free energyperunit area
follows [6] from the L —‘ ~ limit of *

1
2f~= —~ln(P~”~). (5)

Here ~~Ifl = PL(E~),where EZ”~ is the position of the minimum which the
probability densitytakes in the range E±,ma22<E s~~ The factor 2 accounts
for the fact that for periodicboundaryconditionsthe minimum of the probability
density is governedby at least two interfaces.Our empirical resultsof PL(E) for
lattices in the rangeL = 20 100 are depictedin fig. 1 on a logarithmic scale.
To enhancethe MC statisticsat the minima of the probabilitydensities,we have
simulatedthe multicanonicalensembleas describedin refs. [8,91.The multicanoni-
cal probability densities PL(E) of our “raw” dataare fairly flat in E and the

* To comply with refs. [2—51our presentdefinition differs by a factorof two from ref. [91.
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Fig. 2. Multicanonical energy distribution P~

0(E)togetherwith its reweighteddistribution P100(E).
Both distributionsarenormalizedto unit area.

resultsof fig. 1 are obtainedby reweightingfor the correctBoltzmannfactor.For
our L = 100 lattice thisprocedureis illustrated by fig. 2. Table1 gives an overview
of our dataandresults.The statisticsis given in sweeps,a sweepbeing definedas
updatingeach spin in the lattice once.The other quantitiesgiven are f3~,~
e~,~ and f~,wherewe denoteby e = E/V the energydensityand ~

e~”~and e~~ma~are the densitiesbelonging to the correspondingextensivequanti-
tiesas introducedabove.

For lattices of size up to L = 60 we havealso performed simulationswith a
standardheat-bathalgorithmto evaluatethe improvementsdueto themulticanon-
ical method.The relativeperformanceof the two algorithmsis best evaluatedby
comparing the tunneling times. As in refs. [12,161we define four times the
tunneling time 4T~as the averagenumber of sweepsneededto get from a
configuration with energy E~,ma21 to a configurationwith ~ and back. This

TABLE 1
Resultsof multicanonicalsimulations

L Statistics f3~ e~m*5 e~’~ e~,m*5 2f~

20 4000000 1.284692 1.066(10) 1.3124(24) 1.602(38) 0.03645(48)
40 4000000 1.291051 1.12708) 1.327(24) 1.57805) 0.03387(59)
60 8000000 1.292283 1.1525(03) 1.3369(87) 1.575(02) 0.02997(60)

100 16000000 1.293089 1.1736(29) 1.346602) 1.570(02) 0.02816(58)
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Fig. 3. Tunnelingtimesfor the multicanonical,for the standardheat-bath,andfor the Metropolis [13]

simulationon a doublelog scale.

definition has the advantagethat tunnelingtime andexponentialautocorrelation
time in generalagreewith goodprecision(exactly in a simplemodel). In fig. 3 we
displayon a log—log scalethe divergencein the tunnelingtimes for themulticanon-
ical algorithm(circles) andfor the heatbath algorithm(crosses).Notice that the
tunneling times for the single-hit Metropolis algorithm (squares)are largerby a
factor of aboutseven[131.The fit to the multicanonicaldata is r~= 0.082(17)x
L265~5~.Incidentally, this is the samepowerlaw which wasobservedin ref. [9] for
the 10-state model. Due to the weaknessof the transition, the exponential
divergenceof the canonicaltunnelingtimesis not yet obviousin the presentcase.
Still the multicanonicalimprovementshouldbe appreciatedas we spentmost of
our CPU time simulatingthe 1002 lattice.

In the forthcomingfits we rely only on our multicanonicaldata,as otherwisethe
small latticeswould get too largea weight as comparedwith out L = 100 lattice.A
major pointof thispaperis theanalysisof the f~datagiven in table 1. The FSSfit

2f5=2f~+~ (6)

is depictedin fig. 4 andgives

2fS = 0.0241±0.0010, (7)

with c = 0.384±0.055 for the constant.Our result (7) is about a factor of ten
smallerthan the estimatesgiven in refs. [2,3].We like to arguethat their methods
analyzepropertiesof rigid domainwalls which haveno connectionto thestatistical
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Fig. 4. Finite-sizescaling fit for the interfacial freeenergy2fS. For comparisonalsothe data from the
standardheat-bathsimulationsareshown.

fluctuationsof the systemsat their pseudo-transitionpoints /3k. To enhancethe
signal for the surfacefree energy,the methods[2—5] have in common that they
introducedomainscorrespondingto temperaturesf3~±6, wherein the caseof the
two-dimensional7-statePottsmodel the exactlyknown [171transitiontemperature

= ln(1 + ~/~)= 1.293562... is used. Then, it is tried to extract the surface
tensionthrough carefully monitoring the limit 6 —* 0. This seemspreciselywhy
their methodsfail. The signal is lost before the relevant 6-region of adiabatic
distortions is reached.For instance,the smallest6-valueon which the extrapola-
tion of ref. [2] relies is 6 = 0.01 on a large128 x 256 lattice,wherealso anunused
datapointwith 6 = 0.005exists.The 6 = 0.005datapointhadto remainunusedas
it exhibitsa cross-overto much smallersurfacetensionvalues,interpretedthenas
a finite-latticesizeeffect. Our fig. 5 revealsthat eventhe 6 = 0.005valueis still too
large in the sensethat /3’~±0.005 cannotbe associatedwith the phasetransition
region. When we reweight the canonical energy densitydistribution from our
100 x 100 lattice (where the transition is lesssharpthanon the 128 x 256 lattice)
to the values I3’~±0.005 the double-peakstructuredisappears:for /3C — 0.005 the
systemis completelyin the disordered,and for /3C + 0.005 it is completelyin the
orderedphase.

Finally, in this section,we summarizeour FSS analysisof standardquantities
like variouspseudo-transitiontemperatures,the Bindercumulant,the specificheat
and the latent heat. Conventionally,pseudo-transitiontemperaturesTB,mhlI and
~ aredefinedby the location of the Binder-parameterminimumand specific-
heatmaximum,respectively.Fig. 6 showstheFSSof thesequantities,togetherwith
the exactlyknown [10,141asymptoticexpansionsto first order.Fig. 7 gives the FSS
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Fig. 5. Reweightingof our P

100(E) probability density to ~C —0.005 (high left peak alone) and

~C + 0.005 (high right peakalone).

of the Binder-parameterminimum. The arrow shows the exactly known [12,14]
infinite-volume limit. The indicatedasymptoticslope usesc0 as calculatedbelow
andrelieson a ratherlengthyformula which canbe found in refs. [14,16].In fig. 8
we show the FSS of the maxima and the minima of the probability distribution
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Fig. 6. Scalingof the pseudo-transitiontemperaturesTB,mm and ~ Thesolid lines are theexactly

knownasymptoticexpansions.
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Fig. 7. Resultsfor theBinder-parameterminimum. Thearrowshowstheexactinfinite-volume limit.

PL(E). Linear fits to the multicanonical datayield elm~= 1.2053±0.0070 and
e

2,m~= 1.5640±0.0095, in good agreementwith the exact results [18] 1.2013...
and 1.5546..., respectively.For the minimum we find emm= 1.3596±0.0249.
Lastly, the FSS fit of the latent heat is given in fig. 9. The linear fit gives
z.le = 0.3574±0.0087,in agreementwith the exactresult 0.3533...

Besides the surfacetension, the only quantitiesnot known exactly are the
specific heats C

0, Cd in the ordered and disordered phase, respectively.To
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Fig. 8. Finite-sizescalingof the extremaof theprobabilitydistribution PL(E).
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Fig. 9. Finite-sizescalingof thelatent heat.

calculatethesequantities,we use the FSS relation [14,16]

~ (8)

where 4C = Cd — C
0 and ~.4s= J3~iie is the entropygap over the transition point.

For PottsmodelsLIC = J3C ~s/ ~ [18]. Fig. 10 depicts the FSSof the specific-heat
maximum with the exactly known leading term of the asymptotic expansion

~ ~ ________________________________
0.000 0.001 0.002 0.003

Fig. 10. Finite-size scalingof the specific-heatmaximumwith the exactly known leadingterm of the
asymptoticexpansionsubtracted.
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subtracted.The fit yields then C
0 = 47.5±2.4 for the specific heatin the ordered

phase.Since L~C 0.2, this is in goodagreementwith the estimate[13]C0 = 50 ±10.

3. SU(3) lattice gauge theory

We consideredfour-dimensionalpure SU(3) lattice gaugetheorydefinedon an
L~L

3,(L~~ L) hypercubic lattice. To each link I of the lattice an element
U

1 ~ SU(3) is assignedandthe partition function is given by [19]

Z(13) =ffldU1 ex~[_~~Re Tr U(13)J. (9)

Here denotesthe sumoverall plaquettesof the lattice. For eachplaquettep,
U(j~)is the orderedproduct of the four link matricessurroundingthe plaquette
anddU is the SU(3) Hurwitz measure.The resultsof sect. 2 imply, of course,that
we cannothaveconfidencein the SU(3) surfacetensionestimates[4,5].The L~= 2

SU(3) deconfining phase transition is sufficiently strong to warrant new MC
simulationsbasedon the multicanonical ensemble[8,9]. So far such calculations
havenot beenperformed. Neverthelesswe are able to give a rough estimateby
analyzing the L~= 2 SU(3) data of ref. [7] with regard to the surfacetension,
althoughthe quality of the SU(3)datais fairly limited. For comparison,in caseof
the 7-statePottsmodel we haveabout 400 tunneling eventsfor our 1002 lattice,

100 - -
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102 I I I
0.40 0.42 0.44 0.46 0.48
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Fig. 11. SU(3) action density distributions PL(sP) for latticesof size 26~ 2 12~on a logarithmic
scale.Thevaluesof the maximahavebeennormalizedto 1.
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Fig. 12. Finite-sizescalingfor for theSU(3) interfacialfreeenergyfS/ T~.

whereaswe aredown to only (altogether)10 tunnelingeventsfor the largestSU(3)
lattice,which is 2~122.Available lattice sizesarenow L = 6, 8, 10 and12. Fig. 11
depicts the appropriatelyreweightedprobability densitiesfor the lattice averages,
called si,, of the normalizedplaquetteaction Re Tr U(j~)/3(there exist two
L = 12 datasetswhich we havecombinedto one). In contrastto the Pottsmodel
thereis now some ambiguity in choosingthe histogrambinning size, but we have
checkedthat within reasonablelimits the influenceon the final estimatesis mild.
The interfacial free energyperunit areafollows in a similar fashionas in sect. 2.
Eq. (5) modifies to

a3
2f~= _~_~ln(P~h1I), (10)

where a is thelattice constant.It is conventional[4,5] to give final estimatesfor the
dimensionlessquantityf~/T3where I~= a’L~’ is the physical temperatureof
the SU(3) deconfiningtransition. Our estimatesof fL/T~aredepictedin fig. 12.
The increaseof fLs with lattice size, ascomparedto the decreasefound in sect. 2

andotherPottsmodel investigations[9,14,16],is remarkable.Presently,we haveno
theoreticalunderstandingaboutthe circumstanceswhich differentiatean approach
of the asymptoticlimit from below versusabove.The FSS fit of fig. 12 gives the
asymptoticestimate

= 0.071±0.008. (11)
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Of course,in view of therather small lattice sizesandthe somewhatlimited quality
of the data, this extrapolationis kind of daring. Nevertheless,it is presumablya
reasonablestarting point. With appropriateCPU time funding of about 1 000
CRAY-YMP (or equivalent)supercomputertime, onemayperform a multicanoni-
cal simulationof a 2~24~systemto checkfor consistencyby addingf~4/1~

3to fig.
12.

Comparisonwith refs. [4,5] is somewhatsubtle,as changingnormalizationshave
to be traced.We believe that their final definitions matchwith ours andwe find

our resultto be abouta factor of two smallerthan theirs. The discrepancyis rather
mild when comparedto the oneof sect. 2. Consideringthe relativeweaknessof

our estimate(11), one may evenquestionwhetherthereis a significant difference
at all. However, the investigationof sect. 2 suggeststhat there is no reason to
expectour estimatesand those of the methodsof refs. [2—51to convergeto the
samenumbers.

4. Conclusions

We havecarriedout a fairly detailedFSS investigationfor the two-dimensional
7-state Potts model. As far as comparisonswith exact analytical results are
possible,we find our estimateswell consistent.The surfacetensionis not known
exactly.We give an estimate(7) which differs considerablyfrom resultsreportedin
previous literature [2,3]. It may look kind of surprising that no problems were
noted before, however, the methodsof refs. [2—5]seemin some senseto be
self-consistentlywrong. They rely on simulationsfar away (in the senseexplained
in sect. 2) from the relevantpseudo-transition/3-values.The ordersof magnitude
of thesedeviationsfrom the pseudo-transitionpoints aredictatedby the needto
increasethe signal, and in this regionof rigid domainsthe illusion of a consistent

approachis, indeed,suggestedby the data. ForSU(3) our surfacetensionestimate
(11) should be consideredas a first attempt to addressthe problem,and multi-
canonicalsimulations[8,9] on latticesof sizeup to at least2 . 24~are suggested.

It hadalreadybeennoticedsometime agoby the authorsof ref. [13] that eq.(5)
seemsto give a smaller estimatethan the methodsof refs.~[2,3], andone of the
presentauthors(BB) likes to thank Alain Billoire for useful discussions.Further,

we thank ThomasNeuhausfor contributionsat the earlystageof the Pottsmodel
simulation. The Monte Carlo data were producedon the SCRI cluster of fast
RISC workstationsandat the Embry-RiddleAeronauticalUniversity.
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