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We show that the 3D XY model with a mixed action ~x. i (B cos(rTi0 ) + 7 cos(2~7,0)) which 
has XY and Ising phase transitions for small and large 7, respectively, possesses a short piece of 
first-order transition between y ~ 0.3 and 7 = 0.4. Thus, no radial degrees of freedom are 
necessary to reach a tricritical point either in the XY model or in the lattice superconductor. 

1. Introduction 

First-order transitions in lattice models with continuous symmetry have re- 
cently attracted increasing attention. The main theoretical reason for this lies in the 
desire for a better understanding of the so-called Coleman-Weinberg or Halperin, 
Lubensky and Ma mechanism [1]. The practical importance ranges from cosmologi- 
cal issues such as the inflationary universe [2] to solid state phenomena such as 
liquid crystal and melting transitions [3]. According to the above mechanism, 
fluctuations of gauge fields coupled via the covariant derivative term I ( 0 -  ieA)~12 
to a complex g l ~ [  4 theory can drive the phase transition first order at a positive 
coupling constant g (for a negative g it is trivially first order). The arguments for 
this are two-fold. On the one hand, the fluctuation determinant of the gauge field in 
a very smooth background field I~1 produces a term -I~bl 3 or 1~14 log]+l in D = 3 
or D = 4 dimensions, respectively. This leads to a first-order transition in the 
effective potential. On the other hand, the perturbatively calculated renormalization 
group trajectories in the g, e 2 plane have no infrared stable fixed point. 
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Some time ago it was pointed out that for e 2 << g, the smoothness assumption for 
J+l in the determinantal arguments breaks down because of the presence of macro- 
scopic fluctuations in the form of vortex lines [4]. Along the cores of these lines, the 
1~1 field vanishes. A field whose average is non-zero but which is threaded by many 
lines of zeros can no longer be smooth. By formulating a disorder field theory for the 
vortex lines it was possible to show that the theory undergoes a second order 
transition after all [5]. In the g,e 2 plane this implies that there must exist an 
infrared stable fixed point if the trajectory starts out with sufficiently small slope 
e2/g.  The stabilization is achieved by the nonperturbative character of vortex lines 
whose influence cannot be expanded in a power series in e 2 and g. The transition 
starts out to be of second order for small enough e2 /g  and turns first order as soon 
as e2 /g  exceeds a certain tricritical value [4]. 

A first attempt [6] to find the tricritical point by Monte Carlo simulation was 
undertaken in three dimensions on a lattice superconductor, which is an XY model 
coupled to an abelian gauge field. This attempt failed. From the analytic calculations 
in ref. [4] (which incidentally reproduced the Monte Carlo data quite well via simple 
mean-field techniques) we have learned the reason for this: the renormalized ~4 
coupling is so large that e~/g cannot possibly reach the tricritical ratio e2/g~ 
0.7/~/2. Indeed, when smaller values of g were admitted by using scalar fields with 
radial degrees of freedom [7], Monte Carlo simulations did show a first-order 
transition. 

For simulation purposes it is useful to realize that the extension by radial degrees 
of freedom which greatly increases computer costs, is not really necessary. The 
theoretical work [4] has shown that the lattice superconductor can be modified to 
produce a first-order transition without such an extension. We merely have to 
introduce local (annealed) gaussian fluctuations of the reduced temperature of the 
XY model. At the mean-field level this leads to a decrease in the quartic coupling 
constant g thereby diminishing also the renormalized value of this coupling. When 
applied to the disorder version of the lattice superconductor, which is a simple XY 
model, this procedure leads (as we shall demonstrate in the next section) to a mixed 
action of the type 

E cos(v,,o) + 8cos (v,o)). f l )  
x , i  

whose partition function can be written as follows 

z ~ , H dO(X) expIE(Bc°s(~7'O)+vc°s(2v"O))]Lx., (2) 

By mean-field techniques it was argued that for larger ~, there is a sign change in the 
effective quartic interaction of this theory which therefore undergoes a first-order 
transition. 
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It is the purpose of this paper to confirm this argument. We shall first give a 
detailed mean-field analysis of the full phase diagram and exhibit the first-order 
regime in the/3, 7 plane. Then we perform Monte Carlo simulations and verify that 
near the point of maximal transition entropy at the mean-field level (7 = 0.4) the 
fully fluctuating theory also has a first-order transition. 

For 7 >> 0.4 the transition softens with increasing 2/. The same thing happens for 
y ~< 0.2 with decreasing 7, similar to what was observed previously in U(1) lattice 
gauge models [9] with mixed actions and analysed theoretically in ref. [10]. 

Our result should be useful in the light of recent Monte Carlo studies of Higgs 
models in four dimensions [8]. The existence of a tricritical point in a model like (2) 
which does not contain radial degrees of freedom can greatly improve the available 
statistics. 

2. Mean-field analysis 

2.1. GENERAL CONSIDERATIONS 

As mentioned in the introduction, the mixed action may be viewed as the result of 
local (annealed) temperature fluctuations in the pure XY model. Using a gaussian 
distribution this is easily seen by a quadratic completion 

( ) l - l [  - Zxy (/3;(x)) 

d/3i(x ) ~r d0 (x )  
=I-If  2,, 

([ 1 
×exp ~ Bi(x)cos viO(x)  - ~(/3i(x)--/3)o 

=fix d°(x) (Z ) 2~r exp [/3cos~TiO(x)~-½02[cos~iO(x)] 2] 

=VIxfdO(x) ( ) exp Y'~ [/3cos(lp'/O(x)) + 7cos(2~iO(x))  + 7] (3) 
2~" x,i 

where 3' --- ¼o 2 is proportional to the variance of the (inverse) temperature fluctua- 
tions. Applying this averaging to the field theoretic formulation of the pure XY 
model, for large enough y, we can easily convince ourselves that the quartic bare 
coupling becomes negative. Hence at the mean-field level, the XY transition changes 
from continuous to first order. It is useful to see this in more detail. Recall the 
derivation of the XY field theory [11]. Changing to complex variables 

u (  x ) = e 
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the partition function can be written as 

z×.~(B = o f  ° dO{X)exp(~flE[U(x)U(x+i)* +c.c.]) 
. ~ 2vr ' x,, , " 

Introducing an unconstrained complex field u via 

dudu* l-Ia(u U ) 8 ( u *  U*)f(u,u*)=f(U,U*) O F  - o o  x 

and representing the 8-functions as 

8(u_ U)8(u,_ U,)= fi~ d a d a *  (T-~ 7 e x p ( -  ~[a(u- U)+ c.c.]),  
ix 

one arrives at 

,~, d a d a *  Zxv(B)=of dudu*Hf,~,(2~)~ 
× exp( '2 

(4) 

(5) 

(6) 

~fi[u(x)u(x+ i)* + c.c.] - ~ [ a u  + c.c.] + ~ ln lo ( l a l ) ) ,  
X ,  i X X 

(7) 

where the Bessel function I o is the result of the one-link integral 

U f  ° d°exp ~E[~U+ x ~ 0) H J  ~ e x p ( ~ l a l  cos 

= H ; o ( I , ~ l ) .  (8) 
x 

Local gaussian fluctuations in B,(x) with variance o 2 = 4"~ then lead to 

z(/}, vt : Fl f~ dudu* U f'~ dada*  

\ 
. r ,  / 

/ 

× e x p ( -  !, Y[ (au + c.c.) + Z In/o( la l ) )  
x x 

=- e 13F (9) 
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In the mean-field approximation one looks for constant real saddle-points of the free 

energy (per site) 

f l f  = f l F / N  = - D f i u  2 - 2 D y u  4 + e~u - in Io(a)  - Dy .  (10) 

At these minima, u can be replaced by 

I~(a)  
u -  i o ( a  ) ½ a -  ½(½a) 3 + . . .  (11) 

and expanding In I 0 to the same order in a 

one finds 

l n l o ( a ) = ( ~ a ) 2 - ~  , + . . .  

,S f= (1 - Dfl)(½cQ2 + ( D , 8 -  3 4 - 2Dy)(½c~)4 + ... 

(12) 

= (1 - Dfl)(½a)2 + (¼ - 2Dy)(½a)4 + . . . .  (13) 

For a positive quartic term the phase transition is continuous and we can read off 
the mean-field transition temperature directly from the quadratic coefficient, /~MF = 
1 / D .  For y > 1 / 8 D ,  however, the quartic coefficient becomes negative and signals 
the changeover to a first-order transition. 

Given such a situation it is useful to perform a mean-field analysis based on an 
extended field formulation of the partition function in which cos(2Vrg0) 

- J [ U ( x ) 2 U ( x  + 0 *2 + c.c.] is taken into account by a second set of fields u and er' - 2  
[12]. Apart from the trivial fact that additional parameters always improve the 
accuracy of variational procedures, there are three motivations for doing so. First, 
additional order parameters are necessary in order that the mean-field approxima- 
tion reproduces the Ising transition for large ~, (which is due to the second term in 
the action (2) squeezing the angle 0 into the two discrete values 0, ~r). Second, only 
in such an extended version can the mean-field approximation be considered as the 
lowest order term in a systematic (1/D)-expansion which controls the fluctuation 
corrections [13]. Third, the new field has an important physical meaning. Let us 
recall that the field u ( x )  in the ordinary XY model is not only an order field of this 
model. It also functions as a disorder field of oriented non-backtracking random 
loops which appear in the high-temperature expansion of the model. At high 
temperatures there are few such loops and the disorder field u ( x )  shows this by 
having a vanishing expectation value. [14]. At low temperatures, the loops condense, 
some of them becoming infinitely long. This reflects itself in the disorder field u ( x )  

acquiring a non-zero expectation value. The advantage of having a second field v(x)  
allows us to keep track of the strong-coupling graphs of strength-2. For u ~ 0, these 
form a condensate. This will be seen in detail later. 
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In t roduc ing  the fields v and a '  in complete  analogy to u and a in eqs. (5)-(7),  we 
can write down directly the field representat ion 

.~ dO / 

d a ' d a ' *  
= d u d u * d v d v * l l  I 

_ ~ i ~  d a d a *  

- ~  x ~ , ~  (2rr) ~ (2~r) 2 

\ 
x , i  

! 

× e x p ( - ½ Y ' ~ [ a u + a ' v + c . c . ] +  ~ In l o ( a ,  a ' ) )  , (14) 
x x 

where the one-l ink integral leads now to a somewhat  generalized modif ied Bessel 
funct ion  of the two (complex) arguments  a, a '  

-~ dO 
Io (a ,a '  ) =- j ~ , , ~ e x p ( ½ [ a u  + a'U 2 + c . c . ] )  

= f'~ dOexp(lalcosO + la ' l  cos(Z0 + ~b)), (15) 
_,~ 2~r 

with ~ = a r g ( a ' )  - 2 arg(a) .  At the mean-field level we look again for constant,  real 
saddle-points  of  the free energy (per site) 

1 
BY = - - i n  z 

N 

= - [ D f l u  2 + D y v 2 - a u - a ' v +  l n l o ( a , a ' ) ] .  (16) 

This  is ext remal  at 

2Df lu= a,  

2Dyv = a', 

0 In I o ( a ,  a ' )  
u= - Q l ( a , a ' ) ,  

Oa 

8 In Io(a,  a') 
v - = Q 2 ( ~ ,  ~ ' ) .  ( 1 7 )  

0a' 
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Expressing u and v in terms of 0/and 0/', f l f  becomes 

405 

0/2 0/,2 
Bf = - -  + - -  - ln i0 (0 / ,0 / '  ),  (18) 

4Dfl 4Dy 

where a(fl, y), a'(fl, y) are the solutions of the coupled equations 

0/ 
- -  = Q a ( a ,  a ' ) ,  (19a) 

0/! 
- -  -- Qz(a, a ' ) .  (19b) 
D7 

It is worth pointing out that eq. (18) is also found by integrating out the fields u(x) 
and v(x) directly in (14). In this way we would obtain a completely equivalent field 
formulation of the partition function involving only the fields a, a '  and (18) would 
be its mean-field free energy. 

Notice that if in the definition of Io(a, a') (eq. (15)) 0 ~ [0,2~r] is replaced by 
(2~r/N)n, n = 0 . . . . .  N -  1 and f~dO/2fr by N-1 (1/N))Z,=0, eq. (18) gives also the 
mean-field energy of Z u mixed models. 

Let us now discuss the phase structure in the fl, 7 plane. First, we observe that 

Ql(a,a')= - Q l ( - a , a ' ) ,  (20) 

so that as a special case 

Furthermore we see that 

QI(o, a ' )  = 0. (21) 

Iz (a)  
Q2(a,0)  = io(a---- ~ > 0 (a  * 0). (22) 

As a consequence, eqs. (19a, b) admit three types of solutions: 

(i) a = a '  -- 0 (disordered phase (DO)),  

(ii) a 4~ 0, a'4~ 0 (ordered phase (0 ) ) ,  

(iii) 0/= 0, 
I1 

a ' =  DTQ2(0,  a')  = L,7/0--7  * 0 (disordered Ising (IDO)). 

(23) 

The three regimes are shown in the phase diagram in fig. 1 and the remainder of this 
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Fig. 1. The phase boundaries of the mixed action XY model fl cos(W,0) + Tcos(2V',0) in the #. 7 plane 
as obtained from the mean-field considerations. There are three phases: ordered (O), disordered (DO) and 
disordered of the Ising type (IDO). The thin lines denote second order, the fat line a first order phase 
transition. The dashed lines are the lines of maximal undercooling and overheating, respectively. The 
dotted lines correspond to various approximations explained in the text: (1) small a, a' expansion, eq. 

(36): (2) large 7 expansion of #~0~ eq. (65); (3) y = y~v expansion of #~m eqs. (62), (63). 

sect ion is devo ted  to the calculat ion of the phase  boundar ies .  A solut ion with a :g 0, 

a '  = 0 is ru led  out  by  (22). 

In  the dual  r a n d o m  loop in terpre ta t ion ,  the phases are character ized as follows: In 

the d i so rde red  phase  (DO),  the system conta ins  prac t ica l ly  no loops  of either 

strength-1 or  s trength-2 (u = v = 0). Dur ing  the t rans i t ion  to the ordered  phase  

( D O  ~ O), the loops  of strength-1 condense  which means  that  they become prolif ic  

with some of  them acquir ing infini te  length (u :g 0). A t  the same time, also the loops 

of  s t rength-2  condense  (v ¢ 0). However ,  in count ing these we have to make  sure to 

inc lude  also those loops  which spli t  for pa r t  of their  way into two branches  of  
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strength-1. Since both types of loops are oriented and non-backtracking the univer- 
sality class of the transition is that of the XY model ( ~- superfluid transition). 

The disordered Ising phase (IDO) is filled from the outset with a condensate of 
loops of strength-2 (v ~ 0) and contains only a few small loops of strength-1 (u = 0). 
Thereby, the condensate of the strength-2 loops acts as a source of pairs of 
strength-1 loops. As a consequence it is no longer possible to assign an orientation to 
the latter. This is why the phase transition IDO --40 is of the Ising universality class. 

The transition IDO ~ DO, finally, is once more a transition in which the oriented 
non-backtracking loops of strength-2 condense. This puts it into the same univer- 
sality class as the transition DO --* O, namely XY. 

Before presenting a full numerical solution of (18), (19) it is useful to study the 
phase boundaries in some limiting cases. 

2.2. L I M I T I N G  C A S E S  

2.2.1. a = a ' = O * - * a = O , a ' ~ O ( D O ~ I D O ) .  When varying y at any fl we find 
(!a'~ + the nontrivial solu- a continuous XY transition. Since I i ( a ' ) / I o ( a ' )  2 ~ . . . ,  

tion with c~' ~ 0 sets in for ~, > 1 / D  (the horizontal line in fig. 1). 
2.2.2. a = a'  = 0 ~ a -4: O, a '  4 :0  ( D O  ~ 0) .  For simplicity let us limit ourselves 

to solutions with smal l  nonzero fields a'. Then, using the expansion (for real a, a ' )  

lo (a ,  a ' )  = Io(a ) + (~a ')212(a)  

+ (½a')2[Io(a) + I4(a)] + (½a' )311612(a)  + 216(a)] 

4 1 
+ ( l a ' )  -~.v [6Io(a) + 814(a) + 218(a)] , (24) 

we see that at a minimum of f l f ,  a '  starts out as 

I2(a ) O~ 2 

Io(-t 4 

More accurately, expanding the Bessel functions in (24)* we find, up to order 0~ 6 

(with the abbreviations h -= ~a,~ h' - ~a~ '), 

Io(OL , a t )  = 1 q- h 2 -4- ~h a + h'h 2 + h '2 

1 , 4 h , 2 h 2  + 3A6h6 + ~h h + (25) 

* lo (a)  = 1 + (12a)2 q_ ~(20¢)1 1 4 + 36(~)1  1 6 _ff . . . .  

1 2 ( ~ ) =  1 I 2 i 1 4 
2 ( 2 a )  + g ( ~ a )  + . . . .  
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and taking the logarithm 

In I0(c< a'  ) = h  2 -  ¼ h 4 + h ' h 2 + h ' 2 +  7ht 6 _ ~h,h 4" (26) 

Notice that in (26) the contribution -h 'Zh 2 happens to cancel. Differentiating 
In lo(a,c~' ) with respect to c~' gives the expansion of Q2(ct, c~'). Thus eq. (19b) 
becomes 

~vh'=  ~[2h'+ h 2 -  ~h 4 + .  ] (27t 

and can be solved easily for h': 

1 
h ' =  2 ( 1 / D 7 -  1) [ h 2 -  ~h4+ "]" (28) 

Using this relation the expansion of the free energy 

[+] f l f =  - 1  h2+ - 1  h'2 + L h 4 - h ' h  2 
4 

-- ~h 6 + ~h'h 4 (29) 
3 

can be expressed as a power series in h2 only 

[~f = C2 h2 4- C4 h4 4- C6 h6 4- . . . .  (30) 

with coefficients 

1 
m - -  - -  1 ~  

c 2 -  Dfl 

1 1 - 2D7 
c 4 -  4 1 - D 7  

1 4 D 7 -  1 
c6 9 1 - D ¥  (31) 

The important point is that for 1 / 2 D  <~ 7 <~ 1 / D  the quartic coefficient c 4 becomes 
negative. Hence there is a tricritical point at 

(1 1) (eTC., vTCP) = 5 '  

= (0.3333,0.1667) in D = 3. (32) 
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For  7 ~< 7 Tcp = 1/2D the phase boundary is the straight line fl = 1/D (see fig. 1). 
For  7 >/7 Tcp, we can follow the first-order transition to a good approximation as 
long as the jump in 0/remains small. The first-order transition takes place when the 
nontrivial mimimum of /3f  hits zero, i.e., when the solution 

h2 c4/ ,c4,2 ca 
= - -  + - -  ( 3 3 )  

2c6 V~]2c6 c6 

degenerates. This happens at 

with a jump in h 2= ( 10 / )2  

c2 (34) 
C 2 ~ 4C 6 ' 

he2 ( - - C 4 )  1 2 
- - -  - ( ~ 0 / ~ )  . ( 3 5 )  

2c 6 

Inserting the coefficients (31) we find explicit expressions for the phase boundary 

1 9 [1 - 2D3,] 2 

Dfl- 1 64 [1 - DV][4D3, -  1] 
(36) 

and the jumps of the order parameters across this line 

9 2D3, - 1 2 + 
0/C--  " ' "  ' 

2 4D7 - 1 

9 D3,(2Dy- 1) 
0/I ~ _ 

8 (1 - D T ) ( 4 D T -  1) 
+ . . . .  (37) 

It is now straightforward to calculate the internal energy 

the latent heat 

d 1 
u =  ~ ( / 3 f ) =  4D/32-0/2, 

1 
_ _ 0 / 2  Au = u ( 0 ) -  u(0/¢) = 4D/32 c 

(38) 

(39) 

and the entropy jump 

1 
A S = ~ c A u =  - - o / 2 .  

4Dflc c (40) 
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The  app rox ima te  phase boundary  (36) is displayed in fig. 1 as the dotted line (1). 
The  j u m p s  of the order parameters  and entropy as functions of y are shown in fig. 3. 

2.2.3. a = O, e~' 4:0 ~ e~ 4= O, e~' 4= 0 ( IDO ~ 0) .  This case is slightly more  involved 

since e~' is nonzero all the way. For ~ = 0, e~' can be calculated from 

a' I i { a ' )  

2 D y  lo(c~') 
: q , ( a ' ) .  (41 

Let us denote  the (unique) nontrivial  solution of (41) by c~ = c~{~(y). The strategy is 
then to expand  the free energy around c~ = 0, c~' = cq>' To  this end we need the 

expans ion  of 10(a, c~') for arbitrary c~': 

= l 5' l l  ( 0 ( , ) ]  lo(oz, OK) I0(~' ) + aO~-[Io(OK)+ 

O(4 

O~ 6 

+ ~ .  [?~&(~') + . . . 1  + . . .  (42) 

Tak ing  the logar i thm we find 

lnlo(e~,o~,)=do(oC)+d2(~')oL2+d4te~')o~a+d6(o~')e~+ . . . .  ( 4 3 )  

where 

do(o~') -- In lo(~X'), 

d2(a' ) = at[l + q,(c~')] , 

d4(°z') ~4 24q1(~ ' )+ ~ [  lr%(°~') o~' (44) 

0/* i OL' and q,,( ) is short  for I,,(c~ ) /1o(  ). Writ ing 

~, = , + ~' (45) 

and expand ing  the coefficients d, , (~ ')  in 6 '  

~,k 

d , , ( a ' )  : E d~f'(c~'0) k[ (46) 
k = 0 

it is easy to see that at a min imum of ,Sf with small a we have again 

~, 2. (47) 
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Therefore, up to order a 6 the free energy has an expansion 

a 2  ~ , 2  
1 l p , ~ , 2  1 a ,,,,. ~t3 

f l f  _ f l f ( o ) _  + - -  - s a o a  - ~ a  o a 
4 D f i  4 D y  

t~t  l t t t ~ t 2 ]  
- a 2 [ d 2  + d2 a + 5 a 2  a l 

- a 4 [ d 4 4 - d , ~ ' ]  - d 6 0 / 6 -  . . . ,  (48) 

where d,; -= d~,l~(a{~) etc., and 

p2 
O/o 

f i f ( o ) _  In I0 (a~) (49) 
4D'y 

is the free energy in the disordered phase. Minimizing with respect to &' leads to an 
equation for &' 

[1 1 . . . . . .  d~,a2 1 . . . .  ~ , 2  - -  2 D , /  d °  = 5 a °  a ± d ~ a  2 + d ; a  4, (50) 

which may be solved by the ansatz 

a '  = e a  2 q- do~ 4 . (51) 

Comparing equal powers we find 

d~ 
e - -  

1 / 2 D y  - d ( /  " 

It I t it* 2 l 
e d  2 + ~ a  o e + d 4 

d = (52) 
1 / 2 D r  - a ; '  

Notice that e = e(l ') ,  d = d(l ' )  are functions of ,/ alone. Using (51) it is straightfor- 
ward to reexpress the free energy (48) as a power series in a 2 

with 

~ f _ _  j~f(O) = C2 ( j~ ,  .)/) 0(2 _}_ C 4 ( ~ )  0/4 _[_ C6(~)0~6 _]_ . . . .  

1 
C2( /~ ,  "Y ) d2  (o(~)) 

4 D f l  

(531 

ill ( Ili  ,')l 
= ~  ~- -~-  1 +  io(a{)---- ~ 

= ~- - 1 + ( 5 4 )  
2D'{ 
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and 

e 2 

C 4 ( ' y )  - -  Ld'9°2 - d;e - d 4 2 ~ ( )  ~ 4Dy 

1 d~ 2 

2 1 / 2 D ' y  - d(;' 
d4 

1 tl6q{ 2 

2 1 / 2 D y  - q{ 
+ 2 4 +  ~ ]~ql 

221[16q2- qx 2] • (55) 

Applying recurrence formulae for Bessel functions, 

ll ' ' ql 

this can be simplified to 

C 4 ( ~ / )  = - -  

1 [ 1 - q l / a ' o - q 2 ]  2 

32 2 q l / e  G +  q ~ -  1 

Moreover, using 

+ 6t4 + ~4ql-  1 [ ~ q 2 -  q(] - (57) 

2ql 
q2= 1 - - - ,  (58) t 

O/o 

c4(y ) can be rewritten as a function of a~ and ql(a~) 

1 [1 q l / a ,  ° q~]2 1 ql + - -  - - + q l  2 . (59) 
C4("/)-- 3 2 2 q l / a ' o + q 2 - 1  + 32.--~ + 2-4 32 a• 

The tricritical value ~TCP is determined by the equation ¢4('y TCP) = 0. In order to 
find this value, we first calculate a~c from (59) and then ~,TCP from yTCP= 
( 1 / 2 D ) e d o c / q  P Using the small a expansion 

o~ 1 (  ~ i  3 1 11 
q l ( a ) = ( ~ - ) - 2 \ 2 }  + - ~ ( 2 )  5 3 . 2 4 ( 2 )  7 

19 ( ~ ) 9  473 ( 2 )  11 6049 ( a )  13 
+ T 2- 5 33. 25 + 72. 5 : ? "  2-' 2- + " "  (60) 
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which up to a = 1 has a relative error less than 10 -7, 0/~)c can be found on a pocket 
calculator quite easily by trial and error. A little more accurate computer search for 
the zero of c4(Y ) gives the following tricritical values 

0/8c= 1.0203, (61a) 

3 
~TCP= 0.3749--  (61b) 

D 

and from c2(~ TCp, ~/TCP) = 0 (see eq. (54)) 

3 
/~TCP = 0 .2293- - .  (61c) 

D 

We now turn to the discussion of c2( fl, y). The zero of this coefficient determines a 
continuous transition, or in the case of a first-order transition, the undercooling 
temperature. Recalling (54), c2(/~, ,/) = 0 implies 

1 1 
fl(o) _ ( 6 2 )  

D 1 + 0/'o/2Dy 

For ,/_< 1 /D  this may be evaluated using the expansion 

0/; =81 + T  1 -  + . . . .  (63) 

In the Ising limit ,/--* oo, we use the expansion 

1 3 
a ~ = 2 D y  

2 16Dy 

to find 

64D2T 2 
(64) 

1 1 1  __1 25 ] 
fi~0)= 2D 1 + 8D---y + 16(Dy)  2 + + (65) 8 . 6 4 ( D y ) 3  . . . .  

This shows that for y --* oo the mean-field approximation of the mixed XY model 
reproduces the Ising transition at fl~0)= 1/ (2D) .  From the dotted line (2) in fig. 1 
we see that this large ~, approximation is very accurate down to "f--0.5. fl~0) 
evaluated with the "y -- ,fMF approximation (63) is shown as dotted line (3). 

2.3. NUMERICAL SOLUTION 

In this section we describe the numerical minimization of 

0/2 0/t2 
jSf= - -  + - -  - In Io(0/, 0/'). (66) 

4D/~ 4Dy 
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For fixed fl and y this is quite tedious since near a first-order transition, fif has two 
minima of roughly the same depth. A few level plots of Bf(a, a') were useful in 
order to get some feeling for the a, a '  landscape. For the accurate determination of 
the phase boundaries we used the following algorithm: At fixed y we choose a fixed 
a 4= 0 and calculate a '  from 

a' 1 2 ( a , a '  ) 

2Dy lo(a, a ' )  
(67) 

by iteration. Since I:(a, a')/Io(a, a') is strictly positive for a 4:0 and monotonic 
increasing, this equation has always a nontrivial, unique solution. Then, with a, a' 
known, B follows from 

I~- 
2D lo(a, a ' )  " 

(68) 

Inserting y, a, a', fl in (66) we finally determine the free energy. In practice, we start 
from large a, go through the steps described above to find a ' , f i , /~f  and keep 
repeating all steps for decreasing values of a. The resulting curve for flf is shown for 
~, = 0.25 in fig. 2. The procedure has to be repeated for various values of y. The full 

0.02 

13f 
O.Ol 

0 

-0.01 

-0.02 

-0.03 

-0.04 

0.33 [3 0.34 - 

¥~o.25 

Fig. 2. I l lus t ra t ion  of mean-f ie ld  eva lua t ion  of the first-order t ransi t ion point  at "f = 0.25. The plot  shows 
f l f  as a funct ion  of ,8 traced out  by vary ing  the ext remal  value of a from large to zero value. This  results  
in two branches ,  one where a sits at a m a x i m u m  and one where it sits at  a min imum.  The ext remal  point  

on the left  is the point  of max ima l  overheat ing.  
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Fig. 3. Properties of the first-order regime at the mean-field level as a function of y: (a), (b) = jump in 
order parameters, (c)= entropy jump, (d)=  barrier height. The dotted lines show the small ~, c~' 

expansions of subsect. 2.2., eqs. (37), (39) (corresponding to the dotted line (1) in fig. 1). 

phase diagram is displayed in fig. 1. The fat line running from (/~, 3 ')= l t (7, g) to 
(0.229, 0.375) indicates first-order transitions. The dashed lines are boundaries of the 
region of metastability. The dotted lines are the analytic approximations discussed in 
the previous section. 

In fig. 3a-d ,  we show the jumps of the order parameters, the entropy jump and 
the barrier height at/~c as functions of ~,. At 7 = 0.275 the entropy jump reaches its 
maximum, z~s = 0.3. (The dotted lines show again the analytic approximations of 
subsect. 2.2.). 

A few comments may be useful concerning the universality class of the tricritical 
points. The lower one has two complex fields u, v going from a U(1) symmetric 
state to a symmetry broken state. It is therefore in the same universality class as the 
n = 2 0 ( n )  symmetric field theory mZ]~b]z-F g l ~ 1 4 +  ~k]lpl 6 with vanishing g. Near 

the upper tricritical point in the ordered phase the U(1) symmetry is broken down to 
Z 2, due to the condensation of the lines of strength-2 (v 4 0). The universality class 
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is therefore the same as for a n = 1 real field theory, 

vanishing g. 

m2cp 2 + gq04 + ~kqo 6, w i t h  

3. Monte Carlo simulations 

In order to check the validity of our mean field calculations for the mixed action 
XY model we have performed Monte Carlo simulations on simple cubic lattices with 

periodic boundary conditions. Equilibrium spin configurations were generated using 
the standard heat-bath algorithm [15]. In order to save computer time, the group 
U(1) was approximated by its discrete subgroups Z(16). . ,Z(32).  Since we were 
looking for a very weak first order transition it was essential to use relatively large 
lattices from the very beginning. Most information was obtained on 163 lattices. The 
phase diagram in fig. 4 was determined by thermal cycles, varying/~ or 7 in steps of 
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Fig. 4. The phase diagrams as obtained from the Monte Carlo simulations. For comparison we have 
plotted our mean-field curves, but  rescaled in/~ and Y direction by a factor 0.45/0.33 in order to account 
heuristically for the fluctuation corrections. The thickness of the mean-field curve is graded according to 
steps of As = 0.1. The region where As is the maximal at the mean-field level was then studied in more 

detail and found to have a first-order transition also in the fully fluctuating theory. 
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Mixed XYmodel ,  MC 16 a, 5+10Sweeps 
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Fig. 5. (a). Thermal  cycles in fl for various 7 showing a pronounced hysteresis at y = 0.30 - 0.40, as a 
rough indication for a first-order transition. (b). Thermal cycles in 7 at various fixed fl showing a 

pronounced hysteresis at fl --- 0.30 0.35. 
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Fig.  6(a)  (c). T h e  t i m e  e v o l u t i o n  o f  the  i n t e rna l  e n e r g y  n e a r  the  p h a s e  t r ans i t i on  for  th ree  s l ight ly  

d i f f e r e n t  v a l u e s  o f / ~  a n d  3' ( r a n d o m  star ts) .  T h e y  s h o w  the  j u m p i n g  b a c k  a n d  for th  b e t w e e n  two  m i n i m a  

s e p a r a t e d  b y  a b a r r i e r  typ ica l  for  a f i r s t -o rde r  t rans i t ion .  T h e  a s s o c i a t e d  h i s t o g r a m s  are  s h o w n  in figs. 7 

a n d  8a. 
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Fig. 7. The h is tograms of the time evolution of the internal energy E = {'Z, cos V',0). Fig. 7a and 7c are 
associated with fig. 6a and 6b, respectively, and fig. 7b is an intermediate situation y = 0.3487. There is a 

clear turnover  of a double peak configuration characteristic for a first-order transition. 
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0.01. At each step we performed 15-50 sweeps through the lattice before going to 
the next /3 or 7 point using the last 10-35 sweeps for averaging. Since this 
corresponds to rather rapid heating or cooling we observed in all runs more or less 
pronounced hysteresis effects. From the center of the hysteresis loops we estimated 
the critical couplings. In the phase diagram (fig. 4) they are depicted as open (fixed 
7) and full (f ixed/3) circles; the dashed line is only a guide to the eye. The full lines 
show the corresponding mean-field curves, however, rescaled by a factor 0.45/0.33. 
After this rescaling, the mean-field curves match the pure XY transition tempera- 
tures exactly. The thickness of the first-order mean-field line indicates the size of 
As MF. In fig. 5a, b, some typical thermal cycles are shown which demonstrate that, 
for both runs with fixed i, or fixed ,8, the hysteresis effect becomes maximal around 
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 =o3ot rj 
200dOoOmSWeeps [-" I 

, , \  
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Fig. 8. (a). The histogram of the internal energy of the time evolution, fig. 6c. (b). The histogram for the 
internal energy with respect to the ¥ variable ( l / N )  c3(ln Z ) / 0 y  = ~/], cos(2 W, 0 )~, at y = 0.4, ,8 = 0.301, 

which also shows a symmetric double peak characteristic for a first-order transition point. 
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7 = 0.30 . . . . .  0.40 and fl = 0.30 . . . . .  0.35, respectively. It  is gratifying to note that  this 
range  agrees well with the rescaled mean-field predict ion (compare  fig. 4). Certainly, 
this observa t ion  alone is only a first indication for a first order transition. In order  to 
be sure we have per formed at couplings a round y = 0 . 3 0 -  0.40, fi-~ 0 . 3 0 -  0.35 
very long runs (20 000 iterations) start ing f rom ordered or r andom configurat ions 
and  looked for metastabil i ty.  Typical  results are shown in figs. 6, 7. Fig. 6 gives the 
t ime evolut ion of the average energy which displays transit ions between two states. 
The  h i s tograms  of these plots are given in figs. 7 and 8d. They show clearly the 

double  peak  structures characteristic for a first-order transition. We have checked 
that  these signals do not depend on the initial configurat ion (total r andom or 
o rdered  lattice) Fur thermore ,  they are conf i rmed by analogous results for 
{F~icos(2~Vi0)) (see fig. 8b). F r o m  the distance of the two peaks in fig. 7, for 
/~c = 0.33 we est imate Au = 0.33 and As = f l c A u  -~ 0.11. Compar ing  with typical 
e n t ropy  j u m p s  of As -- 1 -- 2 in the melting process [3] we see that  the transit ion is 
only  very weakly  of first order. 

4. Conclusion 

We have conf i rmed that in three dimensions,  a mixed action XY model  has a first 
o rder  phase  transition. This implies that  if one wants to simulate a I g,[ 4 theory near  
its tricritical point ,  it is not  necessary to carry along radial  degrees of freedom. The 
addi t ional  piece in the action modifies the effective size f luctuations of the order  

p a r a m e t e r  near  the critical point  in such a way that  it is possible to reach the point  
of  a vanishing quart ic  coupling. This result should prove  to be useful for Monte  
Car lo  studies of  Higgs models  in four dimensions in which a mixed act ion of the 
type (2) for  the Higgs system makes  it possible to avoid also there the laborious 
f luctuat ions  of  radial degrees of  f reedom [8]. 

The  authors  are grateful to Professors N. Kroll  and J. Kut i  for their kind 
hospi ta l i ty  at UCSD.  
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