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Motivated by recent Monte Carlo confirmation that the phase transition in the U(1) lattice 
gauge model in D = 4 dimensions and its Villain approximation are of different order, we perform 
a quantitative analysis of this approximation. For completeness we also treat the case of the 
classical planar spin model (XY model) in D = 2 and 3 dimensions. We show the approximation is 
good only for low fl and fails badly for larger fl, for which it is often derived. We point out that it 
is an extremely accurate approximation for a//,8 for a model with mixed action fl cos 0 + ¥cos20 
and fl, y related to Villain's flv by flv = - [2 log  l~(fl)/l(~((fl)] - l ,  l~( f i ) / I~( f i )  = 
(l((f l) / l(~(fl))  4 where l~(fl)= f~ ,~(dO/21r)cos bO e 3"°s0+vc°s20 are extensions of the modified 
Bessel functions. 

I n  p l a n a r  sp in  a n d  U(1)  la t t ice  gauge models ,  the Vi l la in  a p p r o x i m a t i o n  [1] has  

b e c o m e  a favor i te  tool  for an a l y z i n g  defect  s t ruc tures  a n d  phase  t rans i t ions .  The  

a p p r o x i m a t i o n  is usua l ly  in fe r red  [2] f rom the  obv ious  fact tha t  for large fl, 

exp ( f l  cos 0)  shou ld  be  i n d i s t i n g u i s h a b l e  f rom the per iod ic  gauss ian  which  has  the 

m i n i m a  at  the  s ame  places  0 = 2~rn wi th  the same  cu rva tu res  

e Be°so , e  ~ ~ e ~2B(°-2~')2. (1) 

A l t e r n a t i v e l y ,  o n e  f inds  the s t a t eme n t  [3] that ,  in  the F o u r i e r  e x p a n s i o n  

eOC°~°= ~ I h ( f l ) e  ib°, 
b = - o c  

o n e  c a n  rep lace  the mod i f i ed  Bessel f u n c t i o n  b y  its a sympto t i c  behav io r  

I (B) 
' e - b2/2~ (2) 

I0(8) 

W h i l e  this  l imi t  is ce r ta in ly  true, it  will  be  seen to be  i r re levan t  as far as the 
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136 W. Janke, H. Kleinert / Villain approximation 

application of the approximation to phase transitions is concerned. These always 
take place for small fl _< 1. This lies more in the threshold regime of the Bessel 
function, where 

Ib(fl)  1 
_ _  elog(fl/2)lbl. 

Io(fl ) /~o  Ibl! 

For  small enough fl, this can be replaced by 

Ih(fl)  ~e u/2I 21og(fl/2)] l)b2~_ e 52/2flv (3) 
Io(fl) B-o 

i.e. we find again a gaussian necessary for a Villain approximation, but with a 
redefinition of the temperature fl ~ fly = [ - 2  log(fl/2)] 1. The limit (3) is making a 
mistake only for I bl >/2 where the expression is anyhow extremely small. We shall 
see immediately that it is this limit of the Bessel functions which is exploited by the 
Villain approximation, rather than (2). 

It is worth recalling that Villain himself gave a prescription for his approximation 
which is valid in the limit of large, as well as small, ft. He approximated e ~c°~° by a 
periodic gaussian with an unknown normalization Rv( f l )  and a rescaled inverse 

temperature f lv(f l )  as follows 

eZCOSO=Rv(fl)~e (~v(Z)/2)(0 2.,,) 2 (4) 
t l  

He then expanded both sides in a Fourier series 

10 ( /3 ) +2  Ib(fl)cosbO= 1 + 2  ~ e "2/2~v(e)cosbO (5) 
b=l ~/27rflv(fl) h=l 

and determined the unknown functions Rv(f l )  and f iv(f l )  by the requirement that 
the lowest Fourier coefficients for b = 0 and b = + 1 be equal. This led to 

R v ( f l )  = Io(fl){27rflv , (6) 

e 1/2~v(~)_ l l ( f l )  
i o ( / ~ )  . (7 )  

In the limit fl -+ ac, these relations become 

R v ( B ) ~ e  ¢ 1 - 4 f l  " '" ' 

(8) 

in agreement with (1), (2). 
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Fig. 1. The inverse temperature of the Villain approximation f lv(f l )  as a function of fl of the 
corresponding cosine model. The phase transitions are seen to lie in the low-fl regime (for the D = 3 XY 

model, (9) is a good approximation). 

In the opposite limit of small fl they give 

Rv(Bt- , 
f lv(f l )  - - [ 2 1 o g ( f l / 2 ) ] - '  (9) 

in agreement with (3). 
In fig. 1, we have plotted flv/fl as a function of fl and indicated the limiting 

forms (8), (9) by dashed lines. The high- and low-temperature regimes are clearly 
separated by the minimum of the curve which lies around f l -  1. Notice that the 
limiting form at high temperatures, (9), approaches the full Villain approximation 
much faster than the low-temperature limit (8). 

As a simple rough test of the quality of the approximation we may use the Monte 
Carlo data for the critical value tic of the XY models and U(1) lattice gauge theory 
and compare them with the value flcVA obtained from the critical value of the Villain 
model, five, via relation (7). The result is shown in table 1. We see that the 
agreement is excellent in all three cases. Notice that the three-dimensional XY 
critical point lies well inside the high-temperature regime, i.e. just opposite of the 
limit (1) usually invoked to introduce the Villain approximation. The critical points 
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TABI.E 1 
Compar ison of critical temperature in XY model for D = 2, 3, and U( 1 ) lattice gauge theoD' for D - 4 

with the values obtained from the Villain approximation (VA) via fiv - [2 log( 11( f i ) / lo(  fl))] l 

Model fl, fi, (from VA) f i r ,  

2D-XY 1.12 [4a], 1.18 [4b] l . lS 0.73 [4c] 
3D-XY 0.45 [4d] 0.45 0.33 [4e] 
4D-U(1) 1.00 [4f] 1.02 0.63 [4g] 

The values are taken from ref. [4], in which all but Ferer et al. (with results obtained from 
high-temperature series) obtained results from Monte Carlo simulation. 

of the two-dimensional XY and the lattice gauge model, on the other hand, require 
the application of the full Villain formula (7) (see fig. 1). 

The purpose of this paper is threefold: First we want to give a more detailed 
quantitative comparison of the three models with their Villain approximations. 
Second we want to clarify the physical content of the approximation. Third we show 
how the mapping cosine model ~ Villain model can be made extremely precise (so 
that there are no differences in the order of the phase transition). 

The partition functions we want to compare are 

.~ 2~r exp /3 c o s V f l ( x )  , 

• 2rr exp fl • cos (V ' f l , -V j0 , )  
x, l  [ x , i < l  

(lo) 

and the Villain versions 

zVM=ufd0(x) E 27r 
{ nA x)} 

__ I "~] exp 5 /3vE (v,O - 2rrni)" , 
x , i  

dOg,x, [ 1 E exp - ~ f i v  E (Vrflj - Vr/0, - 2~rn,i) 2 • 
, {n,/(x)} x , i < j  

(11) 

Here x are the N sites of a D-dimensional simple cubic lattice, i the oriented links, 
and V i O ( x )  = O(x + i) - O(x)  the lattice derivatives. Each of the partition functions 
has its own internal energy u = - ( l / N ) ( O / O / 3 ) l o g Z  and specific heat c =  
- ( / 3 2 0 / 0 / 3 ) u  with/3 replaced by flv in the Villain case. 
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Using (4), the Villain approximation states that the partition functions should be 
related as follows 

R ] ND7VM 
ZXY ~ R V k p l  ~ X Y  , 

l~ [ [ ~ N D ( D  1 ) / 2 7 V  M (12) 
ZU(1) ~ "'V~,I'-'] L'U(1) " 

By forming the derivatives with respect to /3, this leads to the following Villain 
approximation for the internal energy and specific heat 

/ ~V  • VM 
Uxy ~ - D  + / 3 v U x y  , 

Rv 

• . vM /3 cvM 
CX Y ~ /32 D R v  e 2 --  /3Vb/Xy q- /32 XY , ( 1 3 )  

with the same relations for the U(1) lattice gauge theory except that D has to be 
replaced by { D ( D  - 1) (i.e. the number of links by the number of plaquettes). The 
dots denote the derivatives with respect to/3 and give, explicitly 

R v ( / 3 ) = R v ( e  t /2Bv+lf iv / f i ) ,  

= 2/~2/flv + 2/32v [(e 1/#~ _ el/#,,) # v ( / 3 )  
L 

+ ~ ( e  I/2/~v + et/Z#v) + , 

Rv(/3) Rv(/3) 2 l [ ]~v  fl2v] 1 - 1 / 2 f l y  - -  1lily 

Rv(/3 ) R v ( / 3 )  2 - 2 L#vv /32 ] + 1 -  ~ e  e 
(14) 

In figs. 2-4 we have taken the Monte Carlo data for the internal energy and the 
specific heat of the Villain model, transformed them via (13), and plotted them on 
top of the Monte Carlo data of the corresponding cosine models*. The approxima- 
tion is seen to be excellent for low/3, up to the phase transition tic. Above the 
transition it becomes rapidly worse. Around/3 = 1.5, the approximation produces an 
unphysical bump. Only for very high/3 does it reproduce the correct Dulong-Petit 
limits 

1 
t'/XY ---+ 2/3 ' 

1 
Cxv ---, - (15) 

2 

• In all simulations,  we have used cubic lattices with periodic boundary conditions, approximated the 
phase variables by 16 discrete angles (2~r/16)n, n = 0  . . . . .  i5, and worked with the heat-bath 
algorithm. 
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Fig. 2, The internal energy and the specific heat of the D = 2 XY model in comparison with the Villain 
approximation. The curves are obtained from high- and low-temperature expansions of the Villain model 

transformed in the same way. 
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Fig. 4. The same comparison as in figs. 2, 3 for the D = 4 dimensional U(1) lattice gauge theory. In (c), 
(d), the critical regime is displayed with higher resolution and better statistics (500 and 2500 sweeps for 
equilibration and measurement,  respectively). At first sight, the failure of the Villain approximation to the 
specific heat at ~ - 1.5 looks smaller than for the D = 2 XY model. This, however, is an optical illusion 
caused by the height of the peak (which the Kosterlitz-Thouless transition in thc D = 2 XY model does 

not have). Percentage-wise, the deviation is the same. 
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In  figs. 2 and 3 we have taken the high-and low-temperature expansions of  the 
Villain model  [5], t ransformed them via (13), and plotted them as well. The lowest 

dashed curve on the low-temperature side is due to the Dulong-Peti t  limit of  the 

Villain model  
1 

V M  _ _  

Uxv 2Bv ' 

1 
vM - _ (16) 

Cxy 2 

It  fits very well into the unpleasant  bumps.  



144 W. Janke, tt. Kleinert / Villain approximation 

1 / i  " \ i  ' P 

C ,//~ ", 

spec.heat.  

X Y m o d e l  
Vi l la in approx, using asympt  

1 
UVM- 2[3 v 

1 
CVM~ 2 

I I i I 
-0.5 2 4 6 8 10 

P 
Fig. 5. The Villain approximation to the specific heat of the XY model for D = 2,3 at large fi using the 

1 large-flv limits of the Villain model u v M - ,  1 / 2 B v ,  c wa - - '  ~. We see that very large B > 2.5 are 
necessary, to reach the correct limits. 

In order to show the high values of fi which are necessary for the Villain 
approximation to approach the correct Dulong-Petit limits we have plotted the 
Villain transformed limits (16) in fig. 5. Only for fl > 4 does one reach the limits (15). 
In conclusion, the Villain approximation is a good low-fi approximation, up to the 
phase transition. At moderately high fl it is very bad and the limit (1), which is 
usually involved to justify its introduction, is reached so slowly that it is of no 
practical relevance. 

Let us now come to our second task, namely that of understanding the physics of 
the Villain approximation. The high-temperature expansion of the three models is 
well-known 

z×¥= E H~v.,~,.~.oH&,~x,(B). 
{hi(x) } x x , i  

Zu(1) = E I-[3~,/,,Uo,0 IF] . / f .~. , (f l ) .  (17) 
{ f , ( x ) }  X, l  x , i < !  

The integer numbers bi(x ) with the lattice divergence condition vr, b,(x)=-F.~(bg(x) 
- b i ( x -  i ) ) =  0 describe closed non-self-backtracking lines of superflow [5]. Simi- 
larly, the integer numbers fb (x ) ,  i <j  describe closed random surfaces [6}. For the 
Villain model, the equivalent expansion reads 

1 [ 1 
zVM-- y" I~sg.,h,(~).oexp- - -  , 

(2~rflv ) No 2flv { b,(x)} x 

w - -  . ( 1 8 )  Zu(1)= (2rrflv)ND(D 1)/2 E i_i.3v.j .( .) .oexp_ y.  f , j ( x )  
{f,/x)} x,j x.,<i 2flv 
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Comparison with (17) shows that the Villain approximation (12) with the relations 
(6), (7) would be exact  if the sums were restricted to only the lowest values 
b~, f~j = 0, _+ 1 . . . . .  The excellent quality of the approximation observed in figs. 2 -4  
teaches us that for low `8, up to the phase transition, the systems are dominated by 
the lines or surfaces of strength one. Up to tic, these lines or surfaces have a much 
larger entropy than the lines of larger strength and this is what gives them an 
overwhelming importance. The failure of the approximation above the transition 
must be due to lines and surfaces of strength larger than one. 

The question arises whether the inclusion of lines and surfaces of strength two is 
capable of extending the validity of the approximation beyond the transition into the 
regime of moderate and large `8. In order to see this we extend the Villain 
approximation (4) by writing an ansatz 

e z c°s ° + vc°s2° -- R )  (f l)  ~ e - <~/2)(0 - 2~,,) ~ 
t /  

(19) 

and asking for an exact  equality of the lowest three Fourier coefficients. On the 
left-hand side, these are given by the generalized modified Bessel functions 

dO 

f " bO e ¢c°*°+ vc°s2° (20) 1~(`8) = - - c o s  
.~ 2~r 

On the right-hand side, they are again 

Equating the terms b = 0, + 1, _+ 2 we find 

R v ( ` 8 )  = (21) 

e 1 / 2 ~ B )  1{ ( `8 )  
Ig ( `8 )  ' (22) 

e - 4 / 2 ~ )  1] ( ,8 )  
13(`8)  . (23) 

The solutions to the latter two equations are shown in fig. 6. When plotted in a fi, ~, 
plane, the Villain model runs along the curve given in fig. 7. For small `8, the curve 
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Villain model. 

starts out with 7 - - ¼/~2 and /~, - -[21og(/~/2)1 1. For large/~, we find / ~  - / ~  
+ 4~, and 1' - - ~/~ (see the appendix). 

Let us test this improved Villain approximation by comparing the internal energy 
and specific heat of the U(1) gauge Villain model obtained by Monte Carlo 
simulations with the corresponding quantities obtained from the Monte Carlo data 
of the mixed cosine model, transformed via (19). Explicitly, if we denote v' iO~(x)  - 
v ' iO i (x  ) by 0p with the label p = (x, i, j )  for i < j  running through all plaquettes on 



IV. Janke, H. Kleinert / Villain approximation 147 

0.2 

Y 
0.1 

i 
-0.1 

-0.2 

-0.3 

-0.4 

-0.5 0 

i i ! i i 

lStorder 

" : ~ ~  ~, TCP=(109,-011) 
\'*'... ! 

• (NSvc~'e(15vc~)=(114'-018)' ""-i 
0 0  

•/ ~ "~" ~ 2  =av (116022) 

"•-... 
1 I I " ,  I 

05 110 15 20 25 30 

Fig. 7. The parameters fl, , /of the mixed action/3 cos 0 + ycos20 which can be studied by means of our 
improved Villain approximation. The fat vertical line shows a straight-line connection to the critical 
points found by Jers&k et al. ([7]). The dotted line was estimated by those authors to be the locus of the 
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t he  la t t ice ,  w h o s e  to ta l  n u m b e r  is Np = N½D(D - 1), we  d e t e r m i n e  the  e x p e c t a t i o n s  

a n d  v a r i a n c e s  

1 
c. = E <cos,0,>. 

P 

[+ ] v.m=Np ~_~ (cosnOpCOSmOp,)-c,,cm 
p, p' 

(24) 

in  t he  m o d e l  w i t h  the  ene rgy  flF_.pcosSp+7}Rpcos2Op, and  f ind  f r o m  these  the  

a p p r o x i m a t i o n  to the  in t e rna l  ene rgy  a n d  the  spec i f ic  hea t  of  the  Vi l la in  m o d e l  as 
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1 O Off O-~ 
u TM-  + ~ I g , ( ~ ) -  - - c , -  - - c 2  

2/~ v 0fiv l°g Oflv Oflv 

[ 02 o2e 02, (oe)2 
c V M = ~ + f l 2  - ~ v l ° g l ° V ( f l ) +  0fl~v c t +  Ofl~ c:+ ~ v  vII 

l + 2 O f l ~ 0 ~ v  v12+ O~v v22 ' (25) 

where we have omitted the superscript • of fiv for brevity. 
The results are plotted in fig. 8, together with the Monte Carlo data of the Villain 

model itself. The discrepancy above the phase transition, which is present in the 
ordinary Villain approximation, disappears completely. Near the critical point, both 
the internal energy and the specific heat are fitted perfectly. 

The result is quite interesting in the light of the recent observation [7], suggested 
by one of the authors*, that the U(1) lattice gauge theory has a first-order transition. 

If we take the transition values [7] for the/~ cos 0 + ~, cos 20 model and insert them 
into our fig. 7, we see that they lie on a straight line with a tricritical point half-way 
between the pure cosine and the pure Villain model. In fig. 7, we also display 
another  curve (the dotted one) which was suggested by Jersfik et al. [7] to represent 
the locus of the Villain model in the B, ~' plane. Those authors Fourier expanded the 
logarithm of the Villain-Boltzmann factor and truncated after the second term. 

The pure cosine model has a transition entropy of about As = 0.016. When 
looking at fig. 8, we see that this is precisely the difference between the internal 
energies of the cosine and the mixed model above the transition. Since these models 

differ in the inclusion of the random surfaces of strength two we conclude that the 
transition entropy is carried almost entirely by these surfaces. 

For completeness, we have compared the Boltzmann factor of the Villain model 
near the critical point with the corresponding e/~ cos 0 and e/~ cos o + r ~os20 expressions in 

fig. 9. 
Finally, let us mention that due to the focus on the lower Fourier components, 

neither the ordinary Villain approximation nor our improvement of it can be used to 
calculate reliably expectations or correlations of cosines of multiple angles, This is 
illustrated in fig. 10. 

* See ref. [Sa]. The proof is based on a combination of the result of Coleman and Weinberg [Sb] with 
the duality transformation of the U(1) lattice gauge theory to the abetian Higgs model of one of the 
authors [8c]. 
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Fig. 8. The internal energy and the specific heat of the U(1) lattice gauge Villain model obtained on a 4 4 

lattice with 150 and 750 sweeps for equilibration and measurement,  respectively. The lower data points 
are obtained from Monte Carlo simulations of the /~cos 0 model (on the same latticc) transformed 
according to the original Villain prescription. The stars which fall practically on top of the Villain data are 
from a simulat ion of a model with action cos0  + ycos20  treated according to our improved Villain 
approximat ion (19). The removal of the discrepancy is due to the inclusion of random surfaces of strength 

two in the high-temperature expansion. 
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Fig. 9. Comparison of the Bohzmann factors of the three models of the Ull)  lattice gauge theory at 
[¢v=  0.8. Villain Z,,e (1:I,,/2)(0- 2r;,,) 2 ( }, e s~<''° ( . .  ), related via (4), e l/<`,'° ' v~<,,2o (___) related via 

(19), and e t~''~° ~v~,,,20 (oo.) related by Jers'ak et al., ref. [7]. 
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Fig. 10. The expectation of cosines of multiple angles in the Villain model as compared with the ,g cos 0 
model, related via (4), or the f l c o s O + y c o s 2 0  model, related via (19). For large multiples, the 
approximation becomes rapidly worse. The internal energy is mostly due to cos 0 and a little cos 20 and 

thus approximated very well. 
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Appendix 
THE ASYMPTOTIC LIMIT fl -~ oo 

Assuming/3 + 4), > 0, the integral 

I~( /3 )=  f d0 eflC°S°+Vc°s2° 
,,2Tr 

(A.1) 

has a maximum at 0 = O. In the limit fl --, oo, ),//3 = const > - ¼, we expand 

dO 
IoV(/3) = e/3+vf' 2~r 

x e x p [ -  ~(/3 + 4y)0  2 + 214 (/3 + 163,)0 4 - v~d(fl + 64y) 06 + "'" ]. 

Changing variables to 0' - ~/l(fl + 4y)  0 we calculate 

~/ 1 fo~ dO 02 ( 1 fl + 167 4 
I(~'(/3)=e/~+v 2~r ( f l+4y )  _~o~-~ e 1 +  ~ ( ~ + ~ y ) 2 O  

1 f l + 6 4 7  1 1 (/3+16"I,) 2 
06+ 08+ . . .  

90 ( / 3 + 4 y )  3 2 36 (/3+4-1,) 4 
(A.2) 

by using the integrals 

dO 0202 n (2n - 1)!! 

and find the series 

e ~+~ [ 3 /3 + 16)' 
I g ( / 3 ) =  ~/2Tr(/3+4V) / 1 +  

15 /3 + 643, 

4 . 6  (#+4- t , )  2 8"90 ( f i + 4 ) ' )  3 

This gives 

105 (/3 + 16y) 2 
- ~ -  - { -  o o , 

2 - 3 6 - 1 6  ( / 3 + 4 ) ' )  4 

log 13(/3 ) =/3 + y - ½1og[2w(/3 + 4,/)] + 
1 /3+16)' 
8 (fi + 4V) 2 

° (A.3) 

+ 
1 f12 + 20/3)' + 162T  2 

+ . . . .  (A.4)  
16 ( f l  + 43,) 4 
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F r o m  this we find 

I~( fi ) 
I ('( ( fl ) 

0 
- -  - O f f  log  I0V(fl) 

1 1 fl + 28-f f12 + 26fly + 472] ,2 
- 1  + ' - - ,  

2(f l  + 4y)  8 (,8 + 4"),) 3 8(f l  + 41/) 5 

(A.5) 

I ~ ( f l )  3 
l('((fl) ~ y  log l(~'(fl) 

2 f l -  87 1 f12 + 6 8 f l 7 -  51272 
= 1 + - + - + - - . .  (A.6) 

p + 4y (fl  + 4 y )  3 4 (fl  + 4 y )  5 

We  now impose  the condit ion 

12T(/~) = ]lY(/~)14 
(A.7) 

F r o m  (A.5), the r ight-hand side is equal to 

2 f i -  87 f i2_ 28fly + 640y 2 
1 + (A.8) 

fl + 47 (fl  + 4y)  3 4(f i  + 4y)  5 

C o m p a r i n g  this with (A.6), we see that only the last term brings in a possible 
difference be tween the two sides in (A.7). We can therefore determine "f f rom the 

quadra t ic  equat ion  

Y 2 + l~flY + ~4fl 2 = 0, (A.9) 

or 

T1 = (A.10) 

Only  the second solution satisfies the condit ion y/ f l  > - 1 and gives the correct 
answer  (see the curve in fig. 7 which shows also the next term to be "/---, - ~6/? - 

0.22 + O(1 / f l ) ) .  F rom eq. (A.5) we read off directly 

f ly -  ~ fi + 4 y  = 3fl + . . .  ( A . 1 1 )  

and fi ~ ~flv4 + 0.6; 3' ~ - <fi12 v - 0.26 (see fig. 6 for the constants).  
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Finally, it is worth pointing out that the weak coupling expansion of the partition 
function of the mixed model can be obtained directly from eq. (A.2) by replacing 

0 2 ~  ~ 0 p  2 . 
p 

It is then easy to see that on the Villain locus, ~, = -  ll/~-const, the leading 
corrections to the (gaussian) Dulong-Petit law are of order 1//~ 2, whereas for y = 0 
(Wilson model) they start out with the usual 1 /B  term. 
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