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The Ising spin glass in the Sherrington-Kirkpatrick (SK) mean field and the three-dimensional
Edwards-Anderson (EA) nearest-neighbour formulations are investigated by means of Monte
Carlo simulations. To this end, we employ a combination of the multioverlap algorithm with
parallel tempering methods. In this report we focus on the finite-size scaling behaviour of the
free-energy barriers which are visible in the probability density of the Parisi overlap parameter.
Assuming that the mean barrier height diverges with the number of spinsN asNα, our data
for the SK model show good agreement with the theoretical prediction α = 1/3. We compare
the scaling behaviour to the data from the EA model.

1 Introduction

A major open problem in statistical physics is the nature of the “glassy” low-temperature
phase of finite-dimensional spin-glass systems. It is stillunresolved whether the replica
symmetry-breaking theory or the phenomenological dropletpicture yields the correct de-
scription (for reviews, see Refs. 1–4). Even at the mean-field level, only very recently
a mathematical proof5 of Parisi’s replica solution6 for the Sherrington-Kirkpatrick (SK)
model7 was given.

In the thermodynamic limit the frozen phase of the mean field spin glass shows many
stable and metastable states. Such a feature is the consequence of the disorder and the frus-
tration characterising spin glasses in general, leading toa rugged free-energy landscape
with probable regions (low free energy) separated by rare-event states (high free energy).
But also for finite systems the free-energy landscape shows an intricate, corrugated struc-
ture. Therefore, it is hard to measure the free-energy barriers by means of conventional
Monte Carlo simulations directly. The aim of this project isto study the free-energy bar-
riers of the SK mean field spin-glass model and the three-dimensional Edwards-Anderson
(EA) nearest-neighbour model8 using a combination of the multioverlap Monte Carlo al-
gorithm9 with parallel tempering methods10. By using this combined algorithm we are
able to perform simulations at much lower temperatures for the EA model than in previ-
ous studies11. This is necessary, because for temperatures close to the spin-glass transition
significant deviations from the theoretical mean-field prediction were found in both the
three- and four-dimensional EA model. Since one possible explanation for these devia-
tions are strong finite-size effects close to the spin-glasstransition, by measuring at lower
temperatures these effects should become less pronounced.

2 Model and Simulation Techniques

The Hamiltonian of the Sherrington-Kirkpatrick mean-fieldmodel reads

HSK = −
∑

i<j

Jijsisj , (1)
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wheresi = ±1, i = 1,. . . , N , with N denoting the number of spins. The exchange
coupling constantsJij are quenched, independent random variables with a Gaussiandis-
tribution of zero mean and varianceN−1. The critical temperature of the infinite sys-
tem isTc = 1. The SK model gives a mean-field formulation of spin glasses,while the
Edwards-Anderson model describes a finite-dimensional spin glass. Here, the sum in the
Hamiltonian runs only over nearest-neighbour pairs of Ising spins,

HEA = −
∑

〈ij〉
Jijsisj , (2)

where we consider a simple cubic lattice withN = L3 spins and periodic boundary con-
ditions. In the EA model we draw the exchange coupling constants from a symmetric
bimodal distribution such thatJij = ±1, with equal probability. The spin-glass transition
temperature in the three-dimensional EA model was found to beTc ≈ 1.15.12

The fact that there is no explicit order parameter which allows one to exhibit the free-
energy barriers led us to use the Parisi overlap parameter6,

q =
1

N

N∑

i=1

s
(1)
i s

(2)
i , (3)

where the spin superscripts label two independent (real) replicas for the same realization
of randomly chosen exchange coupling constantsJ = {Jij}. For givenJ the probability
density ofq is denoted byPJ (q), and the functionP (q) is obtained as

P (q) = [PJ (q)]av =
1

#J

∑

J
PJ (q) , (4)

where[. . . ]av symbolises the quenched average and#J is the number of realizations con-
sidered. For a given realization ofJ the nontrivial (i.e., away fromq = ±1) minima are
related to the free-energy barriers of this disordered system. We are, therefore, interested
in the whole range of the probability densityPJ (q). Conventional, canonical Monte Carlo
simulations are not suited for such systems because the likelihood to generate the corre-
sponding rare-event configurations in the Gibbs canonical ensemble is very small. This
problem can be overcome by non-Boltzmann sampling13, 14with the multi-overlap weight9

wJ (q) = exp



β
∑

ij

Jij

(
s
(1)
i s

(1)
j + s

(2)
i s

(2)
j

)
+ SJ (q)



 , (5)

where the sum runs over all pairs of spins for the SK model and only over nearest-
neighbour pairs for the EA model. The two replicas are coupled bySJ (q) in such a way
that a broad multi-overlap histogramPmuq

J (q) over the entire accessible range−1 ≤ q ≤ 1
is obtained. When simulating with the multi-overlap weight, canonical expectation values
of any quantityO can be reconstructed by reweighting,

〈O〉canJ = 〈O exp(−SJ )〉J /〈exp(−SJ )〉J . (6)

Ideally the weight functionWJ ≡ exp(SJ ) should satisfy

Pmuq
J (q) = P can

J WJ = const. , (7)
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i.e., should give rise to a completely flat multi-overlap probability densityPmuq
J (q). Of

course,P can
J (q) is a priori unknown and one has to proceed by iteration. An efficient way

to construct the weight functionWJ is to use an accumulative recursion, in which the
new weight factor is computed from all available data accumulated so far15, 16. The multi-
overlap algorithm combined with this recursion allows an almost automatic simulation.

The efficiency of the multi-overlap algorithm decreases with lowering the temperature,
and since we are mainly interested in the low-temperature behaviour of the spin-glass mod-
els we had to seek for suitable algorithmic improvements. Asa result of this investigation,
we developed a combination of the multi-overlap algorithm9 with the parallel tempering
(PT) update scheme10, where configurations simulated at different temperaturesare tried to
be exchanged via a Monte Carlo process that typically follows the Metropolis acceptance
rules.17 This renders the combined algorithm particularly suited for a parallel computer
such as JUMP at NIC Jülich. For the PT procedure we used a set of NT temperature val-
ues in the rangeTmin < Tc < Tmax. Once for each temperature the entire range ofq was
covered, the accumulative recursion for the weight functions was stopped. Due to large
differences in the free-energy landscape for different disorder realizationsJ , the number
of recursion steps varied for differentJ . After the weight functions were constructed, they
were kept fixed and we took our measurements. Thereby, we recorded time series of the
overlap parameterq and the canonicalPJ (q) distribution for all temperature values, for an
EA example see Fig. 1.

3 Analysis Method

To analyse the low temperature behaviour we computed the barrier autocorrelation timeτq
B

for each of these samplesJ by employing the same method as Berget al.11 used for the EA
Ising spin-glass model. For clarity, we recall the basic idea here. The free-energy barrier
F q

B for a givenPJ (q) is defined through the autocorrelation time of a one-dimensional
Markov process which has the canonicalPJ (q) distribution as equilibrium state. The
transition probabilitiesTi,j are given by

T =




1− w2,1 w1,2 0 . . .
w2,1 1− w1,2 − w3,2 w2,3 . . .
0 w3,2 1− w2,3 − w4,3 . . .
0 0 w4,3 . . .
...

...
...

. . .



, (8)

wherewi,j (i 6= j) is a probability à la Metropolis to jump from stateq = qj to q = qi
(qi = i/N , i ∈ [−N,−N + 2, . . . ,+N ]),

wi,j =
1

2
min

(
1,
PJ (qi)

PJ (qj)

)
. (9)

The transition matrixT fulfills the detailed balance condition (withPJ ), and as a con-
sequence it has only real eigenvalues. The largest eigenvalue (equal to one) is non-
degenerate, and the second largest eigenvalueλ1 determines the autocorrelation time of
the Markov chain,

τq
B = − 1

N log(λ1)
. (10)

231



The associated free-energy barrier for realizationJ is defined as

F q
B = ln(τq

B) . (11)

Note that the definition of the autocorrelation time (10) takes only barriers inq into account,
but not other barriers which may well exist in the multidimensional configuration space.

4 Numerical Details and Results

Let us start with the SK model where we studied systems withN = 32, 64, 128, 256, 512,
and1024 spins and used a set of32 temperature values in the rangeT = 1/3− 1.6 for all
of our systems apart from the largest, where we used64 temperature values for the same
temperature interval. We took about100 000 measurements, with five sweeps between the
measurements. A sweep consisted ofN spin flips with the multioverlap algorithm and one
parallel tempering update. To average over the disorder we used1000 realizations of the
disorder forN ≤ 512 and100 forN = 1024.

For the EA model we studied systems withN = 43, 63, 83, 103, and123 spins within
a temperature range ofT = 0.5 – 1.5. Up to N = 103 we used11 equally spaced
temperature values and for the largest system the spacing below T = 1 was halved, leading
to 16 replicas. Due to the larger autocorrelation times for the EAmodel we took at least
107 measurements and for the disorder average we used more than1000 realizations.

For each temperature value we performed least-squares fits of the finite-size scaling
(FSS) ansatzF q

B = cNα which corresponds to the exponential FSS behaviour

τq
B ∝ ecNα

. (12)

The results for the SK model18 depicted in Fig. 2 are consistent with previous results in
the literature19–26using analytical and different numerical methods. The horizontal line in
Fig. 2 indicates the theoretical predictionα = 1/3 of Ref. 24. The figure shows fits with
different lower boundsNmin of the fit range, while the upper bound was always our largest
systemN = 1024. From these fits we observe a strong finite-size effect forT → Tc = 1.
At lower temperatures we find a linearly increasing deviation from the theoretical value.
This is presumably also a finite-size effect, because the slope of the deviation becomes
flatter when increasing the lower bound of the fit range and there is no physical reason
for a change of behaviour of the barrier autocorrelation time in the glassy phase. Using
ansatz (12) for the EA model, the value of the exponentα varies from0.49 to 0.46 in the
intervalTc ≥ T ≥ 0.8, but the quality of the fits is unacceptably low. Only for the smallest
temperatures the goodness-of-fit parameterQ is significantly larger then zero, c.f. Fig. 2.
We therefore performed power-law fits as in Ref. 11,

τq
B = cNα, (13)

which corresponds to a fit of the formF q
B = log(c) + α log(N). TheQ-values for these

fits are much closer to unity, see Fig. 2. Our data favour them strongly over the exponential
finite-size scaling behaviour (12), which confirms previousresults11 for T = 1 and extends
them to considerably lower temperatures.

One possible explanation for this deviation from the theoretical value is the lack of self-
averaging of the finite volume Parisi overlap parameter distributionPJ in the SK model.27

This has been confirmed numerically for the SK model18 as well as for the EA model11.
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Figure 1. EA model: The logarithm of the canonicalP (q) distribution for a83 lattice as a function of temperature
for a typical disorder realisation.
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Figure 2. SK model (left plot): Dependence of the exponentα on the lower bound of the fit range[Nmin, 1024]
as a function of temperature. The horizontal line indicatesthe theoretical valueα = 1/3. EA model (right plot):
Goodness-of-fit parameterQ as a function of temperature for different types of fits.

We already mentioned that the distribution of the free-energy barriers becomes broader
for low temperatures. In recent work Dayalet al. have found that the tunnelling times
of their flat-histogram sampling simulations of the 2D±J Ising spin glass are distributed
according to the Fréchet extreme-value distribution for fat-tailed distributions.28 In general,
extreme-value statistics can be classified into different universality classes29, 30, depending
on whether the tails of the original distribution are fat tailed (algebraic), exponential, or thin
tailed (decaying faster then exponential). Assuming that the tunnelling times respectively
free-energy barriers are distributed according to an extreme-value distribution, we use the
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Figure 3. SK model (left plot): Distribution of free-energybarriersF q
B

for N = 256 at different temperatures.
The inset shows the distribution forT = 1/3 for different numbers of spins. EA model (right plot): The same
graph as for the SK model forN = 43 at different temperatures and the inset shows the distribution for T = 0.8
for different lattice sizes.

integrated probability density of the generalized extreme-value distribution (GEV),

Fξ; µ; σ(x) = exp

[
−
(

1 + ξ
x− µ
σ

)−1/ξ
]

(14)

for 1 + ξ(x − µ)/σ > 0, to fit our data. We find that the free-energy barriers show fat
tails for T < Tc with shape parameterξ > 0, i.e., a Fréchet distribution. In Fig. 3 we
plot the resulting distribution for the SK model for different temperatures below the spin-
glass transition and find that the tails become fatter and fatter as the temperature goes to
zero. The histograms for low temperatures show deviations from the Fréchet distribution
for small values ofF q

B , so a much larger number of disorder realizations would be needed
to determine both tails of the distribution properly. We determined the parametersσ, µ
andξ for different temperatures and found thatσ grows linearly andµ logarithmically
with inverse temperature1/T , whereasξ stays more or less constant atξ ≈ 0.33. As an
example we show in Fig. 4 the results forN = 512. If we keep the temperature fixed and
look at the size dependence of the distribution, we find that for a larger number of spins
the distribution becomes broader, c.f. the inset of Fig. 3. To quantify this behaviour we
use the scaling relationsσ ∝ Nα(σ) andµ ∝ Nα(µ), which lead toα(σ) ≈ 0.25 and
α(µ) ≈ 0.31 for our lowest temperatures, see the inset of Fig. 4. We find a temperature
dependence of the exponentsα(σ) andα(µ) with negative and positive slope for increasing
T , respectively. For the EA model we also find fat-tailed distributions, but the broadening
of the distribution with increasing number of spins is much weaker than for the SK model,
see Fig. 3.

5 Conclusion

We found that the free-energy barriers of the SK model are non-self-averaging and dis-
tributed according to the Fréchet extreme-value distribution. These particular features were
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Figure 4. SK model: Temperature dependence of the parametersσ andµ of the Fréchet distribution forN = 512.
The inset shows the size dependence ofσ andµ for T = 0.394, indicated by the arrows.

also found for the EA nearest-neighbour model and such similarities support the position
that the Parisi replica symmetry breaking solution of the SKmodel is the limit of the
short-range model on a lattice in dimensiond whend → ∞, with a proper rescaling of
the strength of the Hamiltonian. On the other hand, we also found that the free-energy
barriers diverge with the theoretically predicted valueα = 1/3, which is in contrast to
our results for the EA model in three dimensions and previousfindings for the three- and
four-dimensional EA model11.
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