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We review recent large-scale Monte Carlo simulations of thethree-dimensionalq-state Potts
ferromagnet withq = 2 and 4 subject to quenched, random bond dilution. For the Ising model
(q = 2) both finite-size and temperature scaling are investigatedin order to estimate the critical
exponents associated with the disorder fixed point and to elucidate the cross-over between pure,
disorder and percolation critical behaviour. For the 4-state Potts model the rather strong first-
order phase transition of the pure system is found to persistfor small dilutions, whereas for
larger dilutions the theoretically expected softening to acontinuous transition is confirmed and
quantified. The properties of the underlying disorder distributions of thermal observables are
discussed and illustrated with a few selected examples.

1 Introduction

Experiments on phase transitions in magnetic materials areusually subject to randomly
distributed impurities. At continuous phase transitions,depending on the temperature re-
solution and the concentration of the impurities, the disorder may significantly influence
measurements of critical exponents1. To emphasize this effect, in some experiments2 non-
magnetic impurities are introduced in a controlled way; seeFig. 1 for an example. Since
the mobility of impurities is usually much smaller than the typical time scale of spin fluctu-
ations, one may model the disorder effects in a completely “frozen”, so-called “quenched”
approximation. This limit is opposite to “annealed” disorder which refers to the case where
the two relevant time scales are of the same order.

With the additional assumption that the quenched, randomlydistributed impurities are
completely uncorrelated, Harris3 showed a long time ago under which conditions acon-
tinuoustransition of an idealised pure material is modified by disorder coupling to the
energy of the system. Another interesting case are random fields4 coupling to the order
parameter which we shall not, however, consider here. According to this so-called Harris
criterion, the critical behaviour of the pure system aroundthe transition temperatureTc

is stable against quenched disorder when the critical exponentαpure of the specific heat,
C ∝ |T − Tc|

−αpure , is negative. In renormalization-group language the perturbation is
then “irrelevant” and the values of all critical exponentsα, β, γ, . . . remain unchanged.
On the other hand, whenαpure > 0, then quenched disorder should be “relevant” and the
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Figure 1. Neutron scattering measurements of the susceptibility in Mn0.75Zn0.25F2 close to critical-
ity, governed by the disorder fixed point of the Ising model over the reduced temperature interval
4 × 10−4 < |T/Tc − 1| < 2 × 10−1. The solid lines show power-law fits with exponentγ = 1.364(76)
above and belowTc (after Mitchellet al.2).

renormalization-groupflow approaches a new disorder fixed point governed by altered crit-
ical exponents. An example is the three-dimensional (3D) Ising model universality class
with αpure ≈ 0.110 > 0. The intermediate situationαpure = 0 is a special, “marginal”
case where no easy predictions can be made. A typical examplefor the latter situation
is the two-dimensional (2D) Ising model where quenched disorder is known to generate
logarithmic modifications.

If the pure system exhibits afirst-order phase transition, quenched disorder always
leads to a softening effect and may even turn the transition into a continuous one5. In
two dimensions this is always the case, independent of the concentration (“strength”) of
the disorder6. In three (and higher) dimensions, on the other hand, the concentration of
disorder does matter and at a finite concentration a tricritical point may be observed which
separates “non-softened” first-order and “softened” second-order regimes7, 8.

In 2D the scenarios sketched above have been confirmed experimentally for many dif-
ferent materials, and also for simple lattice models by a variety of different theoretical
methodologies, including field theoretic renormalization-group analyses, transfer-matrix
studies, high-temperature series expansions and Monte Carlo simulations, to mention the
most important ones9. In 3D an experimental verification of the qualitative influence of
disorder is shown in Fig. 1 where the measured critical exponentγ = 1.364(76) of the
susceptibilityχ ∝ |T − Tc|

−γ is clearly different from that of the pure 3D Ising model,
γpure = 1.2396(13). Theoretical results, on the other hand, remained relatively scarce in
3D until recently. Most analytical renormalization group and computer simulation studies
focused on the Ising model10, 11, usually assumingsitedilution when working numerically.
Only quite recently thesite-diluted 3-state Potts model12, which exhibits a first-order phase
transition in the pure case, has been added to this short list.
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This motivated us to set up a systematic Monte Carlo (MC) computer simulation study
of the 3D 4-state Potts model withbonddilution13, 14. Since the pure model’s first-order
transition is much stronger than that of the 3-state model studied in Ref. 12, we expected
that our choice would lead to a much more conclusive characterisation of the tricritical
point. For a better overview and to gauge our simulation tools we also considered the 3D
2-state (Ising) model, again withbonddilution15. Modelling the disorder by bond dilution
enabled us to test the expected universality with respect tothe type of disorder distribution
and in addition facilitates for both models a quantitative comparison with recent high-
temperature series expansions16, 17.

The remainder of this mini-review is organised as follows. In Sec. 2 we define the
models considered and briefly describe the simulation setup. Section 3 is devoted to a
summary of our results, first for the Ising and then for the 4-state Potts model. Finally, in
Sec. 4 we close with our conclusions.

2 Model and Simulation Setup

The 3D bond-dilutedq-state Potts model is defined by the Hamiltonian

H = −
∑

〈ij〉

Jijδσi,σj
, σi = 1, . . . , q , (1)

where the sum extends over all nearest-neighbour pairs of a cubic lattice of sizeL3 with
periodic boundary conditions, and the couplingsJij are distributed according to the distri-
bution

℘(Jij) = pδ(Jij − J) + (1 − p)δ(Jij) . (2)

The dilution parameterp is thus the concentration of magnetic bonds in the system, i.e.,
p = 1 corresponds to the pure case. Below the percolation threshold18 pc = 0.248 812 6(5)
one does not expect any finite-temperature phase transitionsince without a percolating
(infinite) cluster of spins long-range order cannot develop.

The model (1), (2) was studied by means of large-scale MC simulations using the
Swendsen-Wang (SW) cluster algorithm19 in the regime of second-order transitions, and
multibondic simulations20–22 in the regime where the first-order transition of the pure
4-state Potts model persists, i.e., at weak dilutions closeto p = 1. To arrive at final results,
for each dilution, temperature and lattice size, the MC estimates〈Q{J}〉 of thermodynamic
quantitiesQ{J} for a given random distribution{J} of diluted bonds have to be averaged
over many different disorder realisations,

Q ≡ [〈Q{J}〉]av =
1

#{J}

∑

{J}

〈Q{J}〉 , (3)

where#{J} is the number of realisations considered. Denoting the empirically deter-
mined distribution of〈Q{J}〉 by P(〈Q{J}〉), this so-called quenched average can also be
obtained from

Q =

∫

DJij℘(Jij)〈Q{J}〉 =

∫

d〈Q{J}〉P(〈Q{J}〉)〈Q{J}〉 , (4)
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where a discretized evaluation of the integrals for finite#{J} is implicitly implied. While
conceptually straightforward, the quenched average in (3)is computationally very demand-
ing since the number of realisations#{J} usually must be large, often of the order of a few
thousands. In fact, if this number is chosen too small one mayobservetypical rather than
average values23 which may differ significantly when the distributionP(〈Q{J}〉) exhibits
a long tail (which in general is hard to predict beforehand).

3 Results

3.1 3D Bond-Diluted Ising Model

Let us first discuss the Ising model where for all dilutions abovepc second-order phase
transitions are expected. To get a rough overview of the dependence of the susceptibil-
ity peaks on the dilution, we first performed forp = 0.95, 0.90, . . . , 0.36 and moderate
system sizes SW cluster MC simulations withNMCS = 2 500 MC sweeps (MCS) each.
By performing quite elaborate analyses of autocorrelationtimes, this statistics was judged
to be reasonable (NMCS > 250 τe). By applying histogram reweighting to each disorder
realisation and then averaging the curves over2 500− 5 000 realisations we finally arrived
at the data shown in Fig. 2. From the locations of the maxima wederived the phase dia-
gram of the model in thep− T plane which turned out to be in excellent agreement with a
single-bond effective-medium (EM) approximation24,

KEM
c (p) = ln

[

(1 − pc)e
Kc(1) − (1 − p)

p − pc

]

, (5)

whereKc(1) = J/kBTc(1) = 0.443 308 8(6) is the precisely known transition point of
the pure 3D Ising model25, so we can refrain from reproducing it here. As an independent
confirmation of (5), the phase diagram also coincides extremely well with recent results
from high-temperature series expansions16.

The quality of the disorder averages was judged by looking atthe distributionsP(χ{J})
and computing running averages over the number of realisations taken into account. As can

0.4 0.6 0.8 1 1.2 1.4 1.6
J/k

B
T

0

50

100

[χ
L
] av

p = 0.95 p = 0.36

Figure 2. The average magnetic susceptibility[χL]av of the 3D bond-diluted Ising model versusK = J/kBT
for several concentrationsp andL = 8, 10, 12, 14, 16, 18, and20. For each value ofp and each lattice sizeL,
the curves are obtained by standard histogram reweighting of the simulation data at one value ofK.
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Figure 3. Disorder distribution of the susceptibility for the 3D Ising and 4-state Potts model with a concentration
of magnetic bonds of0.55 and0.56, respectively, atKc(L) (= 0.8649 resp.1.12945) for L = 64. In the latter
case, the concentrationp = 0.56 belongs to the second-order regime. The running average over the samples is
shown by the black line.

be seen in Fig. 3, the dispersion of the values ofχ{J} is not very large and the fluctuations
in the running average disappear already after a few hundreds of realisations.

In order to study the critical behaviour in more detail, we concentrated on the three
particular dilutionsp = 0.7, 0.55, and0.4. In a first set of simulations we focused on the
finite-size scaling (FSS) behaviour for lattice sizes up toL = 96. From previous FSS stud-
ies it is known that ratios of critical exponents are very similar for the pure and disordered
model, e.g.,γ/ν = 1.966(6) (pure26) andγ/ν = 1.963(5) (disordered27). The only dis-
tinguishing quantity is the correlation length exponentν which can be extracted, e.g., from
the derivative of the magnetisation versus inverse temperature,[d lnm/dK]av ∝ L1/ν, at
Kc or the locations of the susceptibility maxima. Using the latter unbiased option and per-
forming least-square fits including data fromLmin to Lmax = 96 we obtained the effective
critical exponents shown in Fig. 4. For the dilution closestto the pure model (p = 0.7), the
system is influenced by the pure fixed point with1/ν = 1.5863(33). On the other hand,
when the bond concentration is small (p = 0.4), the vicinity of the percolation fixed point
where1/ν ≈ 1.12 induces a decrease of1/ν below its expected disorder value. The dilu-
tion for which the cross-over effects are the least is aroundp = 0.55 which suggests that the
scaling corrections should be rather small for this specificdilution. For the exponents ratios
we obtainedβ/ν = 0.515(5), 0.513(5), and0.510(5), andγ/ν = 1.965(10), 1.977(10),
and2.000(10), for p = 0.7, 0.55, and0.4, respectively.

The main problem of the FSS study is the competition between different fixed points
(pure, disorder, percolation) in combination with corrections-to-scaling terms∝ L−ω,
which we found hard to control for bond dilution. In contrastto recent claims for the
site-diluted model thatω ≈ 0.4, we were not able to extract a reliable estimate ofω from
our data.

In the second set of simulations we examined the temperaturescaling of the magneti-
sation and susceptibility for lattice sizes up toL = 40. From this data one can directly
extract the exponentsβ andγ whose relative deviation from the pure model is compara-
ble to that ofν, e.g.γ = 1.2396(13) (pure26) andγ = 1.342(10) (disordered27). The
results for the susceptibility andp = 0.7 are shown in Fig. 5. We see that for the greatest
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Figure 4. Effective exponents(1/ν)eff as a function of1/Lmin for p = 0.4, 0.55, and0.7.

sizes, the effective critical exponentγeff(|t|) = −d ln[χ]av/d ln |t| is stable around1.34
when|t| = |K − Kc| is not too small, i.e., when the finite-size effects are not too strong.
The plot ofγeff(|t|) vs. the rescaled variableL1/ν |t| shows that the critical power-law be-
haviour holds in different temperature ranges for the different sizes studied. As expected,
the size-effects are more sensitive when the lattice size issmall and the critical behaviour
is better described when the size increases.
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Figure 5. Variation of the temperature dependent effectivecritical exponentγeff (|t|) = −d ln[χ]av/d ln |t|
in the low-temperature phase of the 3D bond-diluted Ising model for p = 0.7 and several lattice sizes
L = 10, 14, 18, 22, 30, 35, 40 as a function of the reduced temperature|t| (top left) andL1/ν |t| (bottom).
The horizontal dashed and solid lines indicate the pure and site-diluted values ofγ. The susceptibility vs. the
coupling strengthK = J/kBT in the ordered phase is shown in the upper right plot.
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3.2 3D Bond-Diluted 4-State Potts Model

Let us now turn to the 4-state Potts model which exhibits a rather strong first-order phase
transition in the pure case. In order to map out the phase diagram of the diluted model
we considered all concentrationsp in the interval[0.28, 1] in steps of0.04 and determined
again the locations of the maxima of the susceptibility for agiven lattice sizeL. The
resulting phase diagram is again in very good agreement withthe effective-medium ap-
proximation (5), here with13 Kc(1) = 0.62863(2), and estimates from high-temperature
series expansions17.

In a second step, the order of the phase transitions was investigated. To satisfy our
criterionNMCS > 250 τe, here the number of MC sweeps had to be increased to much
larger values (up to15 000 − 30 000) than in the Ising case. In fact, a first indication for
a crossover between first- and second-order transitions with decreasing dilutionp could be
derived from the autocorrelation times. In the first-order regime we performed multibondic
simulations20 and estimated the interface tension from

σod =
1

2L2
log

Pmax

Pmin
, (6)

wherePmax is the maximum of the probability density reweighted to the temperature where
the two peaks are of equal height, andPmin is the minimum in between, see Fig. 6. The
linear extrapolations ofσod in 1/L in the lower part of Fig. 6 imply non-vanishing interface
tensions only forp = 0.84 and above. Forp ≤ 0.76, σod seems to vanish in the infinite-
volume limit, being indicative of the expected softening toa second-order phase transition.
The tricritical point would thus be located aroundp = 0.76−0.84, in good agreement with
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Figure 6. Probability density of the energy of the 3D bond-diluted 4-state Potts model reweighted to equal peak
height forp = 0.56 (top left) andp = 0.84 (top right). Interface tension versus inverse lattice size(bottom).
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Figure 7. Time series and histogram of the magnetisation atp = 0.36 (L = 16). The upper part shows the
time evolution for a rare event with high susceptibility andthe lower one a typical event where the magnetisation
fluctuations are reduced. On the right part the resulting (thermal) probability distributions are shown.

the estimate ofp = 0.80 derived from our analysis of autocorrelation times.
Below this concentration, the system exhibits a second-order transition. This can be

illustrated qualitatively by typical single-peak order-parameter probability distributions at
the transition temperature as shown in Fig. 7. To confirm the softening to second-order
phase transitions forp ≤ 0.76 we performed a detailed FSS13 study atp = 0.56 with
lattice sizes ranging up toL = 96 and the number of realisations varying between 2 000
and 5 000. As can be inspected in Fig. 3, the variance of theχ{J} measurements is some-
what larger than in the Ising model and the distribution exhibits a long tail towards large
susceptibilities, reflecting the first-order like signal ofa few rare-events such as that shown
in the upper part of Fig. 7.

The choice ofp = 0.56 is motivated by our observation that in this range of dilu-
tions the corrections to asymptotic FSS of the effective transition points are minimal. The
log-log plot for [χ]av,max in Fig. 8 indeed suggests that for this quantity the corrections
become quite small aboveL = 30, and fits of the formaχLγ/ν starting atLmin > 30 yield
γ/ν = 1.50(2). Using the data forL < 30 only, on the other hand, we obtained perfect
fits assuming percolation exponents18, γ/ν ≈ 2.05, cf. Fig. 8. Similarly, the FSS of the
quantity[(d lnm/dK)Kmax

]av ∝ L1/ν gives forLmin > 30 an estimate of the exponent
1/ν = 1.33(3), consistent with the stability condition28 1/ν ≤ D/2 = 1.5 at the disorder
fixed point. The same procedure was applied to the magnetisation [mKmax

]av ∝ L−β/ν,
but here the associated critical exponent turned out to be not yet stable. We therefore
also considered the FSS behaviour of higher (thermal) moments of the magnetisation,
[〈µn〉]av, which should scale with an exponentnβ/ν. The results for the first moments
exhibit, however, again much stronger corrections to scaling than we observed for[χ]av or
[d lnm/dK]av, leading to quite a conservative final estimate ofβ/ν = 0.65(5). We never-
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Figure 8. FSS behaviour of the susceptibility,[d ln m/dK]av, and magnetisation atKmax for the 3D bond-
diluted 4-state Potts model atp = 0.56 (with vertical offsets added for the sake of clarity). The scaling behaviour
for small lattice sizes below a crossover length scale is presumably governed by the percolation fixed point.

theless note that our results do not fit satisfactorily the hyperscaling law2β/ν = D−γ/ν.
The reason could be strong corrections-to-scaling at the disorder fixed point which are hard
to cope with for medium-sized systems13.

4 Conclusions

By performing large-scale Monte Carlo simulations we have investigated the influence of
bond dilution on the critical properties of the 3D Ising and 4-state Potts models. In the
3D Ising case the universality class of the disordered modelis modified by disorder but
its precise characterisation turned out be difficult because of the competition between the
different fixed points which induce crossover effects, evenfor relatively large lattice sizes.

Applying similar techniques to the 3D 4-state Potts model weobtained clear evidence
for softening to a continuous transition at strong disorder, with estimates for the critical
exponents ofν = 0.752(14), γ = 1.13(4), andβ = 0.49(5) at p = 0.56. The analysis of
both the autocorrelation time and the interface tension leads to the conclusion of a tricritical
point aroundp = 0.80.
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J.J. Ruiz-Lorenzo, Phys. Rev. B61, 3215 (2000).

13. C. Chatelain, B. Berche, W. Janke, and P.-E. Berche, Phys. Rev. E64, 036120 (2001).
14. C. Chatelain, P.-E. Berche, B. Berche, and W. Janke, Nucl. Phys. B (Proc. Suppl.)

106&107, 899 (2002); Comp. Phys. Comm.147, 431 (2002).
15. P.-E. Berche, C. Chatelain, B. Berche, and W. Janke, Comp. Phys. Comm.147, 427

(2002).
16. M. Hellmund and W. Janke, Comp. Phys. Comm.147, 435 (2002).
17. M. Hellmund and W. Janke, Nucl. Phys. B (Proc. Suppl.)106&107, 923 (2002);

Phys. Rev. E67, 026118 (2003).
18. C.D. Lorenz and R.M. Ziff, Phys. Rev. E57, 230 (1998).
19. R.H. Swendsen and J.S. Wang, Phys. Rev. Lett.58, 86 (1987).
20. W. Janke and S. Kappler, Phys. Rev. Lett.74, 212 (1995); M.S. Carroll, W. Janke,

and S. Kappler, J. Stat. Phys.90, 1277 (1998).
21. B.A. Berg, Fields Inst. Commun.26, 1 (2000).
22. W. Janke, Physica A254, 164 (1998).
23. B. Derrida, Phys. Rep.103, 29 (1984); A. Aharony and A.B. Harris, Phys. Rev. Lett.

77, 3700 (1996); S. Wiseman and E. Domany, Phys. Rev. Lett.81, 22 (1998).
24. L . Turban, Phys. Lett. A75, 307 (1980); J. Phys. C13, L13 (1980).
25. A.L. Talapov and H.W.J. Blöte, J. Phys. A29, 5727 (1996).
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