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This chapter starts with an overview of Monte Carlo computer simulation
methodologies which are ill ustrated for the simple case of the Ising model. Af-
ter reviewing importance sampling schemes based on Markov chains and stan-
dard local update rules (Metropolis, Glauber, heat-bath), nonlocal cluster-update
algorithms are explained which drastically reduce the problem of criti cal slow-
ing down at second-order phase transitions and thus improve the performanceof
simulations. How this can be quantified is explained in the section onstatisti-
cal error analyses of simulation data including the effect of temporal correlations
and autocorrelation times. Histogram reweighting methods are explained in the
next section. Eventually, more advanced generalized ensemble methods (sim-
ulated and parallel tempering, multicanonical ensemble, Wang-Landau method)
arediscussed which areparticularly important for simulationsof first-order phase
transitions and, in general, of systems with rare-event states. The setup of scal-
ing and finite-sizescaling analyses is the content of the following section. The
chapter concludes with two advanced applications to complex physical systems.
The first example deals with a quenched, diluted ferromagnet, and in the sec-
ond application we consider the adsorption properties of macromolecules such
as polymers and proteins to solid substrates. Such systems often require espe-
cially tailored algorithms for their efficient andsuccessful simulation.
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1. Introduction

Classical statistical physicsisconceptually awell understoodsubject which poses,
however, many difficult problemswhen specific propertiesof interactingsystems
are considered. In almost all non-trivial applications, analytical methodscan only
provide approximate answers. Experiments, on the other hand, are often plagued
by side effects which are difficult to control. Numerical computer simulations
are, therefore, an important third complementary method of modern physics. The
relationship between theory, experiment, and computer simulation is sketched in
Fig. 1. On the one hand a computer simulation allows one to assessthe range of
validity of approximate analytical work for generic modelsand onthe other hand
it can bridgethe gap to experiments for real systems with typically fairly compli -
cated interactions. Computer simulationsare thushelpful on our way to a deeper
understanding of complex physical systems such asdisorderedmagnetsand(spin)
glassesor of biologically motivated problems such asprotein foldingandadsorp-
tion of macromolecules to solid substrates, to mention only a few. Quantum sta-
tistical problems in condensed matter or the broad field of elementary particle
physics and quantum gravity are other major applications which, after suitable
mappings, basically rely on thesamesimulation techniques.

Thischapter providesan overview of computer simulationsemployingMonte
Carlo methods based onMarkov chain importancesampling. Most methods can
be ill ustrated with the simple Ising spin model. Not all aspects can be discussed
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Fig. 1. Sketch of the relationship between theory, experiment and computer simulation.

in detail and for further study the reader is referred to recent textbooks,1–4 where
some of the material presented here is discussed in more depth. The rest of this
chapter is organized as follows. In the next Sect. 2, first the definition of the
standard Isingmodel isbriefly recalled. Then thebasic method underlyingall i m-
portancesampling Monte Carlo simulations is described and some properties of
local update algorithms (Metropolis, Glauber, heat-bath) are discussed. The fol-
lowingsubsection isdevoted to non-local cluster algorithmswhich in some cases
can dramatically speed upthe simulations. A fairly detailed account of statistical
error analyses is given in Sect. 3. Here temporal correlation effects and auto-
correlation times are discussed, which explain the problemswith critical slowing
down at a continuousphase transition and exponentially large flipping times at a
first-order transition. Reweighting techniques are discussed in Sect. 4 which are
particularly important for finite-sizescaling studies. More advanced generalized
ensemble simulation methods are briefly outlined in Sect. 5, focusing onsimu-
lated and parallel tempering, the multicanonical ensemble and the Wang-Landau
method. In Sect. 6 suitable observables for scaling analyses (specific heat, mag-
netization, susceptibilit y, correlation functions, . . .) are briefly discussed. Some
characteristic properties of phase transitions, scaling laws, the definition of criti -
cal exponents and the method of finite-size scaling are summarized. In order to
ill ustrate how all these techniquescan be put to good use, in Sect. 7 two concrete
applicationsarediscussed: Thephasediagram of aquenched, diluted ferromagnet



June 18, 2012 13:35 World Scientific Review Volume - 9in x 6in master

96 W. Janke

and the adsorption properties of polymers to solid substrates. Finally, in Sect. 8
this chapter closeswith a few concludingremarks.

2. The Monte Car lo Method

Thegoal of MonteCarlo simulations is to estimate expectation values

〈O〉 ≡
∑

statesσ

O(σ)e−βH(σ)/Z , (1)

whereO stands for any quantity of thesystem defined by its HamiltonianH and

Z = e−βF =
∑

statesσ

e−βH(σ) =
∑

E

Ω(E)e−βE (2)

is the (canonical) partition function. The first sum runs over all possible mi-
crostates of the system and the second sum runs over all energies, where the
density of states Ω(E) counts the number of microstates contributing to a given
energy E. The state spacemay be discrete or continuous (where sums become
integralsetc.). As usual β ≡ 1/kBT denotes the inverse temperaturefixed by an
external heat bath andkB is Boltzmann’sconstant.

In the following most simulation methodswill be ill ustrated for the minimal-
istic Isingmodel5 where

H(σ) = −J
∑

〈ij〉

σiσj − h
∑

i

σi , σi = ±1 . (3)

Here J is a coupling constant which is positive for a ferromagnet (J > 0) and
negative for an anti-ferromagnet (J < 0), h is an external magnetic field, and
the symbol 〈ij〉 indicates that the latticesum is restricted to all nearest-neighbor
pairs of spins living at the lattice sites i. In the examples discussed below, usu-
ally D-dimensional simple-cubic lattices with V = LD spins subject to periodic
boundary conditionsare considered. From now onwewill alwaysassumenatural
units in which kB = 1 andJ = 1.

For any realistic number of degrees of freedom, complete enumeration of all
microstatescontributingto (1) or (2) is impossible. For the Isingmodel with only
two statesper site, enumerationstill worksup to a, say, 6× 6 square latticewhere
236 ≈ 6.9 × 1010 microstates contribute. Since this yields the exact expectation
value of any quantity, enumeration for very small systems is a useful exercise
for comparison with the numerical methods discussed here. However, already
for a moderate 103 lattice, the number of terms would be astronomically large:a

21000 ≈ 10300.
aFor comparison, astandard estimate for the number of protons in the Universe is1080.
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2.1. Random sampling

One way out is stochastic sampling of the hugestate space. Simple random sam-
pling, however, does not work for statistical systems with many degrees of free-
dom. Here the problem is that the region of state spacethat contributes signifi-
cantly to canonical expectation valuesat agiven temperatureT ≪ ∞ isextremely
narrow and hencefar toorarely hit by random sampling. In fact, random sampling
correspondsto settingβ = 1/T = 0, i.e., exploringmainly thetypical microstates
at infinite temperature. Of course, the low-energy states in the tails of this distri-
bution contain theoretically (that is, for infinite statistics) all i nformation about
thesystem’spropertiesat finite temperature, too, but this is of very littl e practical
relevance since the probabilit y to hit this tail i n random sampling is by far too
small . With finite statistics consisting of typically 109 − 1012 randomly drawn
microstates, this tail region isvirtually not sampled at all .

2.2. Importance sampling

Thesolutionto thisproblemhasbeen knownsincelongas importancesampling6,7

where a Markov chain8–10 is set up to draw a microstate σi not at random but
accordingto the given equili brium distribution

Peq
i ≡ Peq(σi) = e−βH(σi)/Z . (4)

For definiteness, on the r.h.s. a canonical ensemble governed by the Boltzmann
weight e−βH(σi) wasassumed, but this isnot essential for most of the following.

A Markov chain is defined by the transition probabilit y Wij ≡ W (σi →
σj) for a given microstateσi to “evolve” into another microstateσj (which may
be again σi) subject to the condition that this probabilit y only depends on the
precedingstateσi but not onthehistory of thewholetrajectory in statespace, i.e.,
the stochastic processis almost local in time. Mnemonically this can be depicted
as

· · · W−→ σ(k) W−→ σ(k+1) W−→ σ(k+2) W−→ . . . ,

whereσ(k) is the current stateof thesystem after thekth step of theMarkovchain.
To ensure that, after an initial transient or equili bration period, microstates occur
with the given probabilit y (4), the transition probabilit y Wij has to satisfy three
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conditions:

i) Wij ≥ 0 ∀ i, j , (5)

ii)
∑

j

Wij = 1 ∀ i , (6)

iii)
∑

i

WijPeq
i = Peq

j ∀ j . (7)

Thefirst two conditionsmerely formalizethat, for any initial stateσi, Wij should
be aproperly normalized probabilit y distribution. The equal sign in (5) may oc-
cur and, in fact, does so for almost all pairs of microstates i, j in any realistic
implementation of the Markov process. To ensure ergodicity one additionally
has to require that starting from any given microstate σi any other σj can be
reached in a finite number of steps, i.e., an integer n < ∞ must exist such that
(Wn+1)ij =

∑

k1,k2,...,kn
Wik1

Wk1k2
. . .Wknj > 0. In other words, at least one

(finite) path connecting σi and σj must exist in state spacethat can be realized
with non-zero probabilit y.b

The balance condition (7) implies that the transition probabilit y W has to be
chosen such that thedesired equili brium distribution(4) isafixed point of W , i.e.,
an eigenvector of W with unit eigenvalue. Theusually employeddetailed balance
is a stronger, sufficient condition:

Wij Peq
i = Wji Peq

j . (8)

By summing over i and using the normalization condition (6), one easily proves
themoregeneral balance condition(7).

After an initial equili bration period, expectation values can be estimated as
arithmetic mean over theMarkov chain,

〈O〉 =
∑

σ

O(σ)Peq(σ) ≈ O ≡ 1

N

N
∑

k=1

O(σ(k)) , (9)

whereσ(k) standsfor amicrostate at “ time” k.c Sincein equili brium 〈O(σ(k))〉 =
〈O〉 at any “ time” k, oneimmediately seesthat 〈O〉 = 〈O〉, showingthat themean
valueO is a so-called unbiased estimator of the expectation value 〈O〉. A more
detailed exposition of the mathematical concepts underlying any Markov chain
MonteCarlo algorithm can be foundin many textbooksandreviews.1–4,11–13

bIn practice, one may nevertheless observe “effective” ergodicity breaking when (Wn+1)ij is so
small that this event will t ypically not happen in finite simulation time.
cIn Monte Carlo simulations, “ time” refers to thestochastic evolution in state space and isnot directly
related to physical time as for instance in molecular dynamics simulations where the trajectories are
determined by Newton’s deterministic equation.
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2.3. Local update algorithms

The Markov chain conditions (5)–(7) are rather general and can be satisfied with
many different transition probabiliti es. A very flexibleprescription is the original
Metropolis algorithm,14 which is applicable in practically all cases (lattice/off-
lattice, discrete/continuous, short-range/long-range interactions, . . .). Here one
first proposeswith selection probabilit y

fij = f(σi −→ σj) , fij ≥ 0 ,
∑

j

fij = 1 , (10)

a potential update from the current “old” microstateσo = σi to some microstate
σj . The proposed microstateσj is then accepted as the “new” stateσn = σj with
an acceptanceprobabilit y

wij = w(σi −→ σj) = min

(

1,
fji
fij

Peq
j

Peq
i

)

, (11)

wherePeq is the desired equili brium distribution specified in (4). Otherwise the
system remains in the old microstate, σn = σo, which may also trivially happen
when fii 6= 0.

Keeping this in mind, one readily sees that the transition probabilit y Wij is
given as

Wij =

{

fijwij j 6= i

fii +
∑

j 6=i fij(1− wij) j = i
. (12)

Since fij ≥ 0 and 0 ≤ wij ≤ 1, the first Markov condition Wij ≥ 0 follows
immediately. Also thesecondcondition(6) iseasy to prove:

∑

j

Wij = Wii +
∑

j 6=i

Wij

= fii +
∑

j 6=i

fij(1− wij) +
∑

j 6=i

fijwij =
∑

j

fij = 1 . (13)

Finally we show that Wij satisfies the detailed balance condition (8). We first
consider the case fjiPeq

j > fijPeq
i . Then, from (11), one immediately finds

WijPeq
i = fijPeq

i for the l.h.s. of (8). SinceWji = fjimin
(

1,
fij
fji

Peq

i

Peq

j

)

, the

r.h.s. of (8) becomes

WjiPeq
j = fji

fij
fji

Peq
i

Peq
j

Peq
j = fijPeq

i , (14)

which completes the proof. For the second case fjiPeq
j < fijPeq

i , the proof
proceedsprecisely alongthe same lines.
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Theupdateprescription(10), (11) is still very general: (a) Theselection prob-
abilit y may be asymmetric (fij 6= fji), (b) it has not yet been specified how to
pick the trial state σj given σo, and (c) Peq could be “some” arbitrary probabil -
ity distribution. The last point (c) is obviously trivial, but the resulting formulas
simpli fy when a Boltzmannweight as in (4) is assumed. Then

Peq
j

Peq
i

= e−β∆E (15)

where∆E = Ej −Ei = En −Eo is the energy differencebetween theproposed
new and the old microstate. The second point (b), on the other hand, is of great
practical relevance since an arbitrary proposal for σn would typically lead to a
large∆E and hence ahigh rejectionrate if β > 0. One therefore commonly tries
to updateonly onedegreeof freedom at a time. Then σn differsonly locally from
σo. For short-range interactions this automatically has the additional advantage
that only the local neighborhood of the selected degreeof freedom contributes to
∆E, so that there is no need to compute the total energies in each update step.
These two specializations are usually employed, but the selection probabiliti es
may still be chosen asymmetrically. If this is the case, one refers to this update
prescriptionas theMetropolis-Hastings15 update algorithm. For a recent example
with asymmetric fij in the context of polymer simulations see, e.g., Ref. 16.

2.3.1. Metropolisalgorithm

In generic applications, however, the fij are symmetric. For instance, if we pick
oneof theV Isingspinsat random and proposeto flip it, then fij = 1/V doesnot
depend oni and j and hence is trivially symmetric. In this case the acceptance
probabilit y simplifies to

wij = min

(

1,
Peq
j

Peq
i

)

= min
(

1, e−β∆E
)

=

{

1 En < Eo

exp [−β(En − Eo)] En ≥ Eo
. (16)

ThisisthestandardMetropolisupdate algorithm, which isvery easy to implement.
If the proposed update lowers the energy, it is always accepted. On the other

hand, when the new microstate has a higher energy, the update has still t o be ac-
cepted with probabilit y (16) in order to ensure the proper treatment of entropic
contributions– in thermal equili brium, it is the freeenergy F = U − TS which
has to be minimized and not the energy. Only in the limit of zero temperature,
β → ∞, the acceptance probabilit y for new states with higher energy tends to
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zero and the Metropolis method degenerates to a minimization algorithm for the
energy functional. With some additional refinements, this is thebasis for thesim-
ulated annealing technique,17 which is often applied to hard optimization and
minimization problems.

For the Isingmodel with only two statesper spin, aspin flip is theonly admis-
sible local update proposal. Hence in this simple example there is no parameter
available by which one could tune the acceptanceratio, which is defined as the
fraction of trial moves that are accepted. For models with many states per spin
(e.g., q-statePottsor Zn clock models) or in continuous systems(e.g., Heisenberg
spin model or off- latticemolecular systems), however, it is in the most cases not
recommendable to propose the new state uniformly out of all available possibili -
ties. Rather, one usually restricts the trial states to a neighborhood of the current
“old” state. For example, in a continuousatomic system, a trial movemay consist
of displacingarandomly chosenatom by arandomstep sizeupto somemaximum
Smax in each Cartesian direction. If Smax is small , almost all attempted moves
will be accepted and the acceptanceratio is close to unity, but the configuration
spaceis explored slowly. On the other hand, if Smax is large, a successful move
would make alarge step in configuration space, but many trial moves would be
rejected because configurationswith low Boltzmannweight arevery likely, yield-
ing an acceptance ratio close to zero. As a compromise of these two extreme
situations, one often applies the common rule of thumb that Smax is adjusted to
achieve an acceptanceratio of 0.5.18,19

Empirically this valueprovesto be areasonablebut at best heuristically justi-
fied choice. In principle, oneshould measurethestatistical error barsasafunction
of Smax for otherwise identical simulation conditions and then choose that Smax

which minimises thestatistical error. In general theoptimal Smax dependson the
model at handandeven onthe considered observable, so finally some “best aver-
age” would haveto beused. At any rate, the correspondingacceptanceratio would
certainly not coincide with 0.5. Example computationsof this type reported val-
ues in the range0.4− 0.6 (Refs. 18,20) but for certain modelsalso much smaller
(or larger) valuesmay befavourable. Incidentally, there appeared recently aproof
in the mathematical lit erature21 claiming an optimal acceptance ratio of 0.234

which, however, relies on assumptions22 not met in a typical statistical physics
simulation.d

Whether relying onthe rule of thumb value 0.5 or trying to optimise Smax,
this should be done before the actual simulation run. Trying to maintain a given
acceptanceratio automatically during the run by periodically updatingSmax is at

dThanks are due to Yuko Okamoto who pointed to this paper and to Bob Swendsen who immediately
commented onit during the CompPhys11 Workshopin November 2011in Leipzig.
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least potentially dangerous.19 The reason is that the accumulated average of the
acceptanceratio and hencethe updated Smax are dependent on the recent history
of the Monte Carlo trajectory – and not only on the current configuration –what
violates the Markovian requirement. Consequently the balance condition is no
longer fulfilled which may lead to moreor less severesystematicdeviations(bias).
As claimed already a while ago in Ref. 18 and reemphasized recently in Ref. 20,
by following a carefully determined schedule for the adjustments of Smax, the
systematic error may bekept smaller than thestatistical error in a controlled way,
but to beonthesafesideoneshould bevery cautiouswith thistypeof refinements.

Finally a few remarks on the practical implementation of the Metropolis
method. To decide whether a proposed update should be accepted or not, one
drawsa uniformly distributed random number r ∈ [0, 1), and if r ≤ wij , the new
state is accepted. Otherwise one keeps the old configuration and continues with
the next spin. In computer simulations, random numbersare generated by means
of “pseudo-random number generators” (RNGs), which produce – according to
some deterministic rule – (more or less) uniformly distributed numbers whose
values are “very hard” to predict.23 In other words, given a finite sequence of
subsequent pseudo-random numbers, it should be (almost) impossible to predict
thenext oneor to even uncover thedeterministic ruleunderlyingtheir generation.
The “goodness” of a RNG is thus assessed by the difficulty to derive its underly-
ing deterministic rule. Related requirementsare the absenceof correlationsanda
very long period, what can beparticularly important in high-statistics simulations.
Furthermore, aRNG should beportable among different computer platformsand,
very importantly, it should yield reproducibleresults for testing purposes. Thede-
sign of RNGs isasciencein itself, andmany thingscan gowrongwith them.e As
a recommendation one should better not experiment too much with some fancy
RNG picked up somewhere from the WWW, say, but rely on well -documented
andwell -tested subroutines.

2.3.2. Glauber algorithm

As indicated earlier the Markov chain conditions (5)–(7) are rather general and
the Metropolis rule (11) or (16) for the acceptanceprobabilit y wij is not the only
possible choice. For instance, when flipping a spin at site i0 in the Ising model,
wij can also be taken as25

wij = w(σi0 → −σi0) =
1

2
[1− σi0 tanh (βSi0 )] , (17)

eA prominent example is the failure of the by then very prominent and apparently well -tested R250
generator when applied to the single-cluster algorithm.24
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Fig. 2. Comparison of the acceptance ratio for a spin flip in the two-dimensional Ising model with
the Glauber (or equivalently heat-bath) and Metropolis update algorithm for three different inverse
temperatures β.

where Si0 =
∑

k σk + h is an effective spin or field collecting all neighboring
spins (in their “old” states) interacting with the spin at site i0 and h is the ex-
ternal magnetic field. This is the Glauber update algorithm. Detailed balance is
straightforward to prove. Rewriting σi0 tanh (βSi0) = tanh (βσi0Si0) (making
use of σi0 = ±1 and the point symmetry of the hyperbolic tangent) and noting
that ∆E = En −Eo = 2σi0Si0 (whereσi0 is the “old” spin value and(−σi0 ) the
“new” one), Eq. (17) becomes

w(σi0 → −σi0) =
1

2
[1− tanh (β∆E/2)] =

e−β∆E/2

eβ∆E/2 + e−β∆E/2
, (18)

showing explicitly that the acceptanceprobabilit y of the Glauber algorithm also
only depends on the total energy change as in the Metropolis case. In this form
it is thus possible to generalize the Glauber update rule from the Ising model
with only two states per spin to any general model that can be simulated with the
Metropolis procedure. The acceptance probabilit y (18) is plotted in Fig. 2 as a
function of ∆E for various (inverse) temperatures and compared with the corre-
sponding probabilit y (16) of the Metropolisalgorithm. Note that for all valuesof
∆E and temperature, theMetropolisacceptanceprobabilit y ishigher than that of
theGlauber algorithm. Asweshall seein thenext paragraph, for the Isingmodel,
theGlauber and heat-bath algorithmsare identical.

The Glauber update algorithm for the Ising model is also theoretically of
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interest since for the one-dimensional case the dynamics of the Markov chain
can be calculated analytically. For the relaxation time of the magnetisation
one finds the remarkably simple result25 m(t) = m(0) exp(−t/τrelax) with
τrelax = 1/[1 − tanh(2β)]. For two and higher dimensions, however, no exact
solutionsareknown.

2.3.3. Heat-bath algorithm

The heat-bath algorithm is different from the two previous update algorithms in
that it does not follow the previous scheme “update proposal plus accept/reject
step” . Rather, thenew valueof σi0 at a randomly selected site i0 isdetermined by
testingall it spossiblestates in the “heat bath” of its (fixed) neighbors(e.g., 4 ona
square lattice and 6 ona simple-cubic latticewith nearest-neighbor interactions).
For models with a finite number of states per degreeof freedom the transition
probabilit y reads

w(σo → σn) =
e−βH(σn)

∑

σi0
e−βH(σo)

=
e−β

∑
k
Hi0k

∑

σi0
e−β

∑
k
Hi0k

, (19)

where
∑

k Hi0k collect all termsinvolvingthespin σi0 . All other contributionsto
the energy not involvingσi0 cancel due to the ratio in (19), so that for the update
at each site i0 only a small number of computations isnecessary (e.g, about 4 for
a square and 6for a simple-cubic latticeof arbitrary size). Detailed balance(8) is
obviously satisfied since

e−βH(σo)
e−βH(σn)

∑

σi0
e−βH(σn)

= e−βH(σn)
e−βH(σo)

∑

σi0
e−βH(σo)

. (20)

How is the probabilit y (19) realized in practice? Due to the summation over
all l ocal states, special tricks are necessary when each degree of freedom can
take many different states, and only in special cases the heat-bath method can
be efficiently generalized to continuous degrees of freedom. In many applica-
tions, however, the admissible local states of σi0 can be labeled by a small num-
ber of integers, say n = 1, . . . , N , which occur with probabiliti es pn according
to (19). Since this probabilit y distribution is normalized to unity, the sequence
(p1, p2, . . . , pn, . . . , pN ) decomposes the unit interval into segments of length
∝ pn. If one now draws a random number R ∈ [0, 1) and compares the accu-
mulated probabiliti es

∑n
k=1 pk with R, then the new staten is the smallest upper

boundthat satisfies
∑n

k=1 pk ≥ R. Clearly, for a large number of possible local
states, the determination of n can become quite time-consuming (in particular,
if many small pn are at the beginning of the sequence, in which case a clever
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permutation of the pn by relabeling the admissible local states can improve the
performance).

In the special case of the Ising model with only two states per spin, σi = ±1,
(19) simplifies to

w(σo → σn) =
eβσi0

Si0

eβSi0 + e−βSi0

, (21)

whereσi0 is thenew spin value andSi0 =
∑

k σk+h representsthe effectivespin
interactingwith σi0 asdefined already below (17). And since∆E = En − Eo =

−(σi0 − (−σi0))Si0 = −2σi0Si0 , the probabilit y for a spin flip becomes26

w(−σi0 → σi0 ) =
e−β∆E/2

eβ∆E/2 + e−β∆E/2
. (22)

This is identical to the acceptanceprobabilit y (18) for a spin flip in the Glauber
update algorithm, that is, for the Ising model, the Glauber and heat-bath update
rulesgiveprecisely thesame results.

2.4. Temporal correlations

Datagenerated with aMarkov chain methodalwaysexhibit temporal correlations
which can be estimated from the autocorrelationfunction

A(k) =
〈OiOi+k〉 − 〈Oi〉〈Oi〉

〈O2
i 〉 − 〈Oi〉〈Oi〉

, (23)

whereO denotesany measurable quantity, for example the energy or magnetiza-
tion (technical issues and the way in which temporal correlationsenter statistical
error estimates will be discussed in more detail i n Sect. 3.1.3). For large time
separationsk, A(k) decaysexponentially (a = const),

A(k)
k→∞−→ ae−k/τO,exp , (24)

which defines the exponential autocorrelation time τO,exp. At smaller distances
usually also other modescontribute andA(k) behavesno longer purely exponen-
tially.

This is ill ustrated in Fig. 3 for the 2D Ising model on a rather small 16 × 16

square lattice with periodic boundary conditions at the infinite-volume critical
point βc = ln(1 +

√
2)/2 = 0.440 686 793 . . . . The spins were updated in se-

quential order by proposing always to flip a spin and accepting or rejecting this
proposal according to (16). The raw data of the simulation are collected in a
time-seriesfile, storing1 000 000 measurementsof the energy and magnetization
taken after each sweep over thelattice, after discarding(quitegenerously) thefirst
200 000 sweepsfor equili bratingthesystem from adisordered start configuration.
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Fig. 3. (a) Part of the time evolution of the energy e = E/V for the 2D Ising model on a 16 × 16
lattice at βc = ln(1 +

√
2)/2 = 0.440 686 793 . . . and (b) the resulting autocorrelation function. In

the inset the same data are plotted ona logarithmic scale, revealing a fast initial drop for very small k
and noisy behaviour for large k. The solid lines show a fit to the ansatz A(k) = a exp(−k/τe,exp)
in the range10 ≤ k ≤ 40 with τe,exp = 11.3 anda = 0.432.

The last 1000sweeps of the time evolution of the energy are shown in Fig. 3(a).
Usingthe completetimeseriesthe autocorrelationfunctionwascomputedaccord-
ing to (23) which is shown in Fig. 3(b). On the linear-log scale of the inset we
clearly seethe asymptotic linear behaviour of lnA(k). A linear fit of the form
(24), lnA(k) = ln a− k/τe,exp, in the range10 ≤ k ≤ 40 yieldsan estimate for
the exponential autocorrelation time of τe,exp ≈ 11.3. In the small k behaviour
of A(k) we observe an initial fast drop, corresponding to faster relaxing modes,
before the asymptotic behaviour sets in. This is the generic behaviour of auto-
correlation functions in realistic modelswhere the small -k deviationsare, in fact,
often much morepronounced than for the2D Isingmodel.

Theinfluenceof autocorrelationtimesisparticular pronouncedfor phasetran-
sitions and critical phenomena.27–30 For instance, close to a critical point, the
autocorrelationtime typically scales in the infinite-volumelimit as

τO,exp ∝ ξz , (25)

wherez ≥ 0 is the so-called dynamical critical exponent. Sincethe spatial corre-
lation length ξ ∝ |T − Tc|−ν → ∞ when T → Tc, also the autocorrelation time
τO,exp divergeswhen the critical point isapproached, τO,exp ∝ |T −Tc|−νz . This
leadsto thephenomenon of critical slowing down at a continuousphasetransition
which can be observed experimentally for instancein critical opalescence.31 The
reason is that local spin-flip Monte Carlo dynamics (or diffusion dynamics in a
lattice-gaspicture) describesat least qualitatively the true physical dynamicsof a
system in contact with a heat bath. In a finite system, the correlation length ξ is
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limited by the linear system sizeL, so that the characteristic length scale is then
L and thescaling law (25) is replaced by

τO,exp ∝ Lz . (26)

For local dynamics, the critical slowing down effect isquitepronouncedsince
thedynamical critical exponent takesa rather largevalue around

z ≈ 2 , (27)

which is only weakly dependent on the dimensionality and can be understood by
a simple random-walk or diffusion argument in energy space. Non-local update
algorithms such asmultigrid schemes32–36or in particular the cluster methodsdis-
cussed in the next sectioncan reducethevalueof thedynamical critical exponent
z significantly, albeit in a strongly model-dependent fashion.

At a first-order phase transition, a completely different mechanism leads to
an even more severe “slowing-down” problem.37,38 Here, the keyword is “phase
coexistence”. A finite system close to the (pseudo-) transition point can flip be-
tween the coexisting pure phases by crossing a two-phase region. Relative to the
weight of the pure phases, this region of state spaceis strongly suppressed by an
additional Boltzmann factor exp(−2σLd−1), where σ denotes the interfaceten-
sion between the coexisting phases, Ld−1 is the(projected) “area”of theinterface
andthe factor 2 accounts for periodic boundary conditions, which enforce always
an even number of interfaces for simple topological reasons. The time spent for
crossing this highly suppressed rare-event region scales proportional to the in-
verse of this interfacial Boltzmann factor, implying that the autocorrelation time
increasesexponentially with thesystem size,

τO,exp ∝ e2σL
d−1

. (28)

In the literature, this behaviour is sometimes termed supercritical slowing down,
even though, strictly speaking, nothing is “critical” at a first-order phase transi-
tion. Since this type of slowing-down problem is directly related to the shape of
the probabilit y distribution, it appears for all types of update algorithms, i.e., in
contrast to the situation at a second-order transition, here it cannot be cured by
employing multigrid or cluster techniques. It can be overcome, however, at least
in part by meansof multicanonical methodswhich arebriefly discussed at the end
of this chapter in Sect. 5.

2.5. Cluster algorithms

The critical slowing down at a second-order phase transition reflects that exci-
tations on all l ength scales become important, leading to diverging spatial cor-
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relations. This suggests that some sort of non-local update rules should be able
to alleviate this problem. Natural candidates are rules where whole clusters or
droplets of spins are flipped at a time. Still , it took until 1987 before Swend-
sen and Wang39 proposed the first legitimate cluster update procedure satisfying
detailed balance. For the Isingmodel this follows from the identity

Z =
∑

{σi}

exp



β
∑

〈ij〉

σiσj



 (29)

=
∑

{σi}

∏

〈ij〉

eβ
[

(1 − p) + pδσi,σj

]

(30)

=
∑

{σi}

∑

{nij}

∏

〈ij〉

eβ
[

(1 − p)δnij ,0 + pδσi,σj
δnij ,1

]

, (31)

where

p = 1− e−2β . (32)

Here the nij are bond occupation variables which can take the values nij = 0

or 1, interpreted as “deleted” or “active” bonds. The representation (30) follows
from the observation that the product σiσj of two Ising spins can only take the
two values ±1, so that exp(βσiσj) = x + yδσiσj

can easily be solved for x

and y. And in the third line (31) we made use of the trivial (but clever) identity
a+b =

∑1
n=0 (aδn,0 + bδn,1). Going onestep further and performingin (31) the

summation over spins, one arrives at the so-called Fortuin-Kasteleyn representa-
tion.40–43

2.5.1. Swendsen-Wangmultiple-cluster algorithm

According to (31) a cluster update sweep consists of two alternating steps. One
first updates the bond variablesnij for given spins and then updates the spinsσi

for agiven bondconfiguration:

(1) If σi 6= σj , set nij = 0, or if σi = σj , assign values nij = 1 and 0 with
probabilit y p and1− p, respectively, cf. Fig. 4.

(2) Identify stochastic clusters of spins that are connected by “active” bonds
(nij = 1).

(3) Draw a random value±1 independently for each cluster (including one-site
clusters), which is then assigned to all spins in a cluster.

Technically the cluster identification part is the most complicated step, but there
are efficient algorithmsfrom percolationtheory available for this task.44–47
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nij=0 nij=1 nij=0

always p1=p p0=1-p

Fig. 4. Illustration of the bond variable update. The bond between unlike spins is always “deleted”
as indicated by the dashed line. A bond between like spins is only “active” with probabilit y p =
1− exp(−2β). Only at zero temperature (β −→ ∞) stochastic and geometrical clusters coincide.

Noticethedifferencebetween the just defined stochastic clustersandgeomet-
rical clusters whose boundaries are defined by drawing lines through bonds be-
tween unlikespins. In fact, sincein thestochastic cluster definition bondsbetween
likespinsare “deleted” with probabilit y p0 = 1−p = exp(−2β), stochastic clus-
tersareonthe averagesmaller than geometrical clusters. Only at zero temperature
(β −→ ∞) p0 approacheszero andthetwo cluster definitionscoincide. It isworth
pointing out that at least for the2D Isingandmoregenerally 2D Pottsmodels the
geometrical clusters also doencode critical properties – albeit those of different
but related (tricritical) models.48

As described above, the cluster algorithm is referred to as Swendsen-Wang
(SW) or multiple-cluster update.39 The distinguishing point is that the whole lat-
tice is decomposed into stochastic clusters whose spins are assigned a random
value+1 or −1. In onesweep onethusattempts to update all spinsof the lattice.

2.5.2. Wolff single-cluster algorithm

In thesingle-cluster algorithm of Wolff49 one constructsonly theone cluster con-
nected with a randomly chosen site and then flipsall spinsof this cluster. Typical
configuration plots before and after the cluster flip are shown in Fig. 5, which
also ill ustrates the difference between stochastic and geometrical clusters men-
tioned in the last paragraph: The upper right plot clearly shows that, due to the
randomly distributed inactive bonds between like spins, the stochastic cluster is
much smaller than the underlying black geometrical cluster which connects all
neighboringlikespins.

In the single-cluster variant some care is necessary with the definition of the
unit of “ time” since the number of flipped spins varies from cluster to cluster. It
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Fig. 5. Illustration of the Wolff single-cluster update for the 2D Ising model on a100 × 100 square
lattice at 0.97 × βc. Upper left: Initial configuration. Upper r ight: The stochastic cluster is marked.
Notehow it isembedded into thelarger geometric cluster connecting all neighboring like(black) spins.
Lower left: Final configuration after flipping the spins in the cluster. Lower r ight: Theflipped cluster.

also dependscrucially ontemperaturesincethe average cluster size automatically
adapts to the correlation length. With 〈|C|〉 denoting the average cluster size, a
sweep isusually defined to consist of V/〈|C|〉 single cluster steps, assuringthat on
the averageV spinsareflipped in onesweep. With thisdefinition, autocorrelation
timesaredirectly comparablewith resultsfromtheSwendsen-Wang or Metropolis
algorithm. Apart from being somewhat easier to program, Wolff’ s single-cluster
variant is usually more efficient than the Swendsen-Wang multiple-cluster algo-
rithm, especially in 3D. The reason is that with the single-cluster method, on the
average, larger clustersareflipped.
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2.5.3. Embedded cluster algorithm

While for q-statePottsmodels50 with HamiltonianHPotts = −∑〈ij〉 δσiσj
, σi =

1, . . . , q, thegeneralization of (29)–(32) is straightforward (because also thePotts
spin-spin interaction δσiσj

contributes only two possible values to the energy, as
in the Isingmodel), for O(n) spin modelswith n ≥ 2 defined by theHamiltonian

HO(n) = −J
∑

〈ij〉

~σi · ~σj , ~σi = (σi,1, σi,2, . . . , σi,n) , |~σi| = 1 , (33)

one needs a new strategy.49,51–53 The basic idea is to isolate Ising degrees of
freedom by projecting thespins~σi onto a randomly chosen unit vector ~r,

~σi = ~σ
‖
i + ~σ⊥

i , ~σ
‖
i = ǫi |~σi · ~r|~r , ǫi = sign(~σi · ~r) . (34)

Inserting this in (33) one endsupwith an effectiveHamiltonian

HO(n) = −
∑

〈ij〉

Jijǫiǫj + const , (35)

with positive random couplingsJij = J |~σi · ~r||~σj · ~r| ≥ 0, whose Ising degrees
of freedom ǫi can be updated with a cluster algorithm asdescribed above.

2.5.4. Performanceof cluster algorithms

Beside the generalization to O(n)-symmetric spin models, cluster update algo-
rithms have also been constructed for many other models.36 Close to criticality,
they clearly outperform local algorithmswith dynamical critical exponent z ≈ 2,
that is, for both cluster variants much smaller values of z have been obtained
in 2D and 3D.36,54–59 For a rigorous lower boundfor the autocorrelation time of
the Swenden-Wang algorithm, seeRef. 60. In 2D, the efficiencies of Swendsen-
WangandWolff cluster updatesare comparable, whereas in 3D, theWolff update
is favourable.

2.5.5. Improved estimators

The intimate relationship of cluster algorithms with the correlated percolation
representation of Fortuin and Kasteleyn40–43 leads to another quite important im-
provement which is not directly related with the dynamical properties discussed
so far. Within the percolation picture, it is quite natural to introduce alternative
estimators(“measurement prescriptions” ) for most standard quantitieswhich turn
out to be so-called “ improved estimators” . By this one means measurement pre-
scriptions that yield the same expectation value as the standard ones but have a
smaller statistical variancewhich helps to reducethe statistical errors.
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Suppose we want to estimate the expectation value 〈O〉 of an observable
O. Then any estimator Ô satisfying 〈Ô〉 = 〈O〉 is permissible. This does
not determine Ô uniquely since there are infinitely many other possible choices,
Ô′ = Ô+X̂ , aslongasthe addedestimator X̂ haszeroexpectation, 〈X̂ 〉 = 0. The
varianceof the estimator Ô′, however, can bequitedifferent andisnot necessarily
related to any physical quantity (contrary to thestandard mean-value estimator of
the energy, for instance, whose varianceis proportional to the specific heat). It is
exactly thisfreedomin the choiceof Ô which allowsthe construction of improved
estimators.

For the single-cluster algorithm an improved “cluster estimator” for the spin-
spin correlation function in the high-temperaturephase, G(~xi − ~xj) ≡ 〈~σi · ~σj〉,
isgiven by53

Ĝ(~xi − ~xj) = n
V

|C|~r · ~σi ~r · ~σj ΘC(~xi)ΘC(~xj) , (36)

where~r is thenormal of themirror planeused in the construction of the cluster of
size |C| andΘC(~x) is its characteristic function (=1 if ~x ∈ C and 0 otherwise).
In the Isingcase (n = 1), this simplifies to

Ĝ(~xi − ~xj) =
V

|C|ΘC(~xi)ΘC(~xj) , (37)

i.e., to the test whether the two sites ~xi and ~xj belongto same stochastic cluster
or not. Only in the former case, the average over clusters is incremented by one,
otherwisenothingisadded. This impliesthat Ĝ(~xi−~xj) is strictly positivewhich
is not the case for the standard estimator ~σi · ~σj , where±1 contributionshave to
average to a positive value. It is therefore at least intuitively clear that the cluster
(or percolation) estimator has a smaller variance and is thus indeed an improved
estimator, in particular for largeseparations |~xi − ~xj |. For the Fourier transform,
G̃(~k) =

∑

~x G(~x) exp(−i~k · ~x), Eq. (36) implies the improved estimator

ˆ̃G(~k) =
n

|C|





(

∑

i∈C

~r · ~σi cos~k~xi

)2

+

(

∑

i∈C

~r · ~σi sin~k~xi

)2


 , (38)

which, for ~k = ~0, reduces to an improved estimator for the susceptibilit y χ′ =

βV 〈m2〉 in thehigh-temperaturephase,

ˆ̃G(~0) = χ̂′/β =
n

|C|

(

∑

i∈C

~r · ~σi

)2

. (39)

For the Ising model (n = 1) this reduces to χ′/β = 〈|C|〉, i.e., the improved
estimator of the susceptibilit y is just the average cluster sizeof the single-cluster
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update algorithm. For the XY (n = 2) and Heisenberg (n = 3) modelsone finds
empirically that in two aswell asin threedimensions〈|C|〉 ≈ 0.81χ′/β for n = 2

(Refs. 51,58) and 〈|C|〉 ≈ 0.75χ′/β for n = 3 (Refs. 53,59), respectively.
Close to criticality, the average cluster sizebecomes large, growing in a finite

system of linear length L (cf. Sect. 6) as χ′ ∝ Lγ/ν ≃ L2, since γ/ν = 2 −
η with η usually small , and the advantage of cluster estimators diminishes. In
fact, in particular for short-rangequantities such as the energy (thenext-neighbor
correlation) it may even degenerateinto a “deproved” or “deteriorated” estimator,
whilelong-rangequantities such asG(~xi−~xj) for largedistances |~xi−~xj | usually
still profit from it. A significant reduction of varianceby meansof the estimators
(36)–(39) can, however, always be expected outside the critical region where the
average cluster sizeis small compared to thevolumeof the system.

3. Statistical Analysisof MonteCar lo Data

3.1. Statistical errors and autocorrelation times

3.1.1. Estimators

When discussing the importance sampling idea in Sect. 2.2 we already saw in
Eq. (9) that within Markov chain Monte Carlo simulations, the expectation value
〈O〉 of some quantity O, for instance the energy, can be estimated as arithmetic
mean,

〈O〉 =
∑

σ

O(σ)P eq(σ) ≈ O =
1

N

N
∑

k=1

Ok , (40)

wherethe “measurement” Ok = O(σ(k)) isobtained from thekth microstateσ(k)

andN is the number of measurement sweeps. Of course, this is only valid after
a sufficiently longthermalization period without measurements, which is needed
to equili brate the system after starting the Markov chain in an arbitrarily chosen
initial configuration.

Conceptually it is important to distinguish between the expectation value〈O〉,
an ordinary number representing the exact result (which is usually unknown, of
course), and the mean valueO, which is a so-called estimator of the former. In
contrast to 〈O〉, the estimator O isa randomvariablewhich for finiteN fluctuates
around the theoretically expected value. Certainly, from a single Monte Carlo
simulation with N measurements, we obtain only a single number for O at the
end of the day. For estimating the statistical uncertainty due to the fluctuations,
i.e., the statistical error, it seems at first sight that one would have to repeat the
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wholesimulation many times. Fortunately, this is not so becauseone can express
thevarianceof O,

σ2
O
= 〈[O − 〈O〉]2〉 = 〈O2〉 − 〈O〉2 , (41)

in terms of the statistical properties of the individual measurements Ok, k =

1, . . . , N , of a singleMonteCarlo run.

3.1.2. Uncorrelated measurements

Inserting(40) into (41) gives

σ2
O

= 〈O2〉 − 〈O〉2

=
1

N2

N
∑

k=1

(

〈O2
k〉 − 〈Ok〉2

)

+
1

N2

N
∑

k 6=l

(〈OkOl〉 − 〈Ok〉〈Ol〉) , (42)

where we have collected diagonal and off-diagonal terms. The second, off-
diagonal term encodes the “temporal” correlations between measurements at
“ times” k and l and thus vanishes for completely uncorrelated data (which is, of
course, never really the case for importancesampling Monte Carlo simulations).
Assuming equili brium, the variances σ2

Ok
= 〈O2

k〉 − 〈Ok〉2 of individual mea-
surements appearing in the first, diagonal term do not depend on“ time” k, such
that σ2

Ok
= σ2

O and (42) simplifies to

σ2
O
= σ2

O/N . (43)

Whatever form the distributionP(Ok) assumes (which, in fact, is often close to
Gaussian becausetheOk areusually already lattice averagesover many degreesof
freedom), by the central li mit theorem thedistribution of themean value isGaus-
sian, at least for weakly correlated data in the asymptotic limit of largeN . The
varianceof themean, σ2

O
, is the squared width of this (N dependent) distribution

which is usually taken as the “one-sigma” squared error, ǫ2
O

≡ σ2
O

, and quoted

together with the mean value O. Under the assumption of a Gaussian distribu-
tion for themean, the interpretationis that about 68% of all simulationsunder the
same conditionswould yield a mean value in the range [〈O〉 − σO, 〈O〉 + σO].

61

For a “two-sigma” interval which also is sometimes used, this percentage goes
up to about 95.4%, and for a “three-sigma” interval which is rarely quoted, the
confidencelevel ishigher than 99.7%.

3.1.3. Correlated measurementsand autocorrelationtimes

For correlated data the off-diagonal term in (42) does not vanish and things be-
come more involved.62–65 Using the symmetry k ↔ l to rewrite the summation



June 18, 2012 13:35 World Scientific Review Volume - 9in x 6in master

Monte Carlo Simulations in Statistical Physics 115

∑N
k 6=l as 2

∑N
k=1

∑N
l=k+1, reordering the summation, and using time-translation

invariancein equili brium, oneobtains66

σ2
O
=

1

N

[

σ2
O + 2

N
∑

k=1

(

〈O1O1+k〉 − 〈O1〉〈O1+k〉
)

(

1− k

N

)

]

, (44)

where, due to the last factor (1 − k/N), thek = N term may be trivially kept in
thesummation. Factoring out σ2

O, this can bewritten as

σ2
O
=

σ2
O

N
2τO,int , (45)

wherewehave introduced the integrated autocorrelationtime

τO,int =
1

2
+

N
∑

k=1

A(k)

(

1− k

N

)

, (46)

with

A(k) ≡ 〈O1O1+k〉 − 〈O1〉〈O1+k〉
σ2
O

k→∞−→ ae−k/τO,exp (47)

being the normalized autocorrelation function (A(0) = 1). In any meaningful
simulation study one choosesN ≫ τO,exp, so that A(k) is already exponentially
small before the correction term (1 − k/N) in (46) becomes important. It is
thereforeoften omitted for simplicity.

As far as the accuracy of Monte Carlo data is concerned, the important point
of Eq. (45) is that due to temporal correlationsof themeasurementsthestatistical

error ǫO ≡
√

σ2
O

on the Monte Carlo estimator O is enhanced by a factor of
√

2τO,int. This can be rephrased by writing the statistical error similar to the

uncorrelated case as ǫO =
√

σ2
O/Neff , but now with a parameter

Neff = N/2τO,int ≤ N , (48)

describing theeffectivestatistics. This showsmore clearly that only every 2τO,int

iterationsthemeasurementsare approximately uncorrelatedand givesabetter idea
of the relevant effective sizeof the statistical sample. In view of the scaling be-
haviour of the autocorrelationtime in (25), (26) or (28), it is obviousthat without
extra care thiseffectivesamplesizemay becomevery small close to a continuous
or first-order phasetransition, respectively.
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3.1.4. Bias

A toosmall effectivesamplesizedoesnot only affect the error bars, but for some
quantitieseven themean valuescan beseverely underestimated. Thishappensfor
so-called biased estimators, as is for instance the case for the specific heat and
susceptibilit y. The specific heat can be computed asC = β2V

(

〈e2〉 − 〈e〉2
)

=

β2V σ2
e , with thestandard estimator for thevariance

σ̂2
O = O2 −O2

= (O −O)2 =
1

N

N
∑

k=1

(

Ok −O
)2

. (49)

Subtractingandadding 〈O〉2, onefinds for theexpected valueof σ̂2
O,

〈σ̂2
O〉 = 〈O2 −O2〉 =

(

〈O2〉 − 〈O〉2
)

−
(

〈O2〉 − 〈O〉2
)

= σ2
O + σ2

O
. (50)

Using (45) thisgives

〈σ̂2
O〉 = σ2

O

(

1− 2τO,int

N

)

= σ2
O

(

1− 1

Neff

)

6= σ2
O . (51)

The estimator σ̂2
O in (49) thus systematically underestimates the true value by

a term of the order of τO,int/N . Such an estimator is called weakly biased
(“weakly” because the statistical error ∝ 1/

√
N is asymptotically larger than the

systematic bias; for medium or small N , however, also prefactorsneed to be care-
fully considered).

We thus seethat for large autocorrelation times, the bias may be quite large.
Sincefor local update algorithmsτO,int scalesquitestrongly with thesystem size,
some care isnecessary when choosingtheruntimeN . Otherwise thesystem-size
dependenceof thespecific heat or susceptibilit y may besystematically influenced
by temporal correlations.67 Any serious simulation should therefore provide at
least a rough order-of-magnitude estimate of autocorrelationtimes.

3.1.5. Numerical estimation of autocorrelationtimes

The above considerations show that not only for the error estimation but also for
the computation of static quantities themselves, it is important to have control
over autocorrelations. Unfortunately, it is very difficult to give reliable a priori
estimates, and an accurate numerical analysis is often too time consuming. As
a roughestimate it is about ten times harder to get precise information on dy-
namic quantities than on static quantities like critical exponents. Similar to the
estimator (49) for the variance a(weakly biased) estimator Â(k) for the autocor-
relation function is obtained by replacing in (47) the expectation values (ordinary
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Fig. 6. (a) Integrated autocorrelation time approaching τe,int ≈ 5.93 for large upper cutoff kmax

and (b) binning analysis for the energy of the 2D Ising model on a 16 × 16 lattice at βc, using the
samedata as in Fig. 3. Thehorizontal li ne in (b) shows2τe,int with τe,int read off fr om (a).

numbers) by mean values (random variables), e.g., 〈O1O1+k〉 by O1O1+k. With
increasing separation k the relative varianceof Â(k) diverges rapidly. To get at
least an ideaof theorder of magnitudeof τO,int andthusthe correct error estimate
(45), it isuseful to record the “running” autocorrelationtime estimator

τ̂O,int(kmax) =
1

2
+

kmax
∑

k=1

Â(k) , (52)

which approachesτO,int in the limit of largekmax where, however, the statistical
error rapidly increases. As an example, Fig. 6(a) shows results for the 2D Ising
model from an analysisof thesameraw data as in Fig. 3.

Asa compromisebetween systematic andstatistical errors, an often employed
procedureis to determinetheupper limit kmax self-consistently by cutting off the
summation oncekmax ≥ 6τ̂O,int(kmax), whereA(k) ≈ e−6 ≈ 10−3. In this case
an a priori error estimate is available,34,35,63

ǫτO,int
= τO,int

√

2(2kmax + 1)

N
≈ τO,int

√

12

Neff
. (53)

For a 5% relative accuracy one thus needs at least Neff ≈ 5 000 or N ≈
10 000 τO,int measurements. For an order of magnitude estimate consider the
2D Ising model on a square lattice with L = 100 simulated with a local update
algorithm. Closeto criticality, theintegrated autocorrelationtimefor thisexample
is of the order of Lz ≈ L2 ≈ 1002 (ignoring an unknown prefactor of “order
unity” which depends on the considered quantity), implyingN ≈ 108. Since in
each sweepL2 spinshaveto beupdated andassuming that each spin updatetakes
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about 0.1 µsec, we end upwith a total time estimate of about 105 seconds ≈ 1
CPU-day to achievethisaccuracy.

An alternative is to approximate the tail end of A(k) by a single exponential
as in (24). Summing upthesmall k part exactly, onefinds68

τO,int(kmax) = τO,int − ce−kmax/τO,exp , (54)

where c is a constant. The latter expressionmay be used for a numerical estimate
of both the exponential and integrated autocorrelationtimes.68

3.2. Binning analysis

It should be clear by now that ignoring autocorrelation effects can lead to severe
underestimatesof statistical errors. Applyingthefull machinery of autocorrelation
analysesdiscussed above, however, isoften toocumbersome. On aday by day ba-
sisthefollowing binninganalysisismuchmore convenient (thoughsomewhat less
accurate). By grouping theN original time-series data into NB non-overlapping
bins or blocks of length nB (such thatf N = NBnB), one forms a new, shorter
timeseriesof block averages,

O(B)
j ≡ 1

nB

nB
∑

i=1

O(j−1)nB+i , j = 1, . . . , NB , (55)

which bychoosingtheblock lengthnB ≫ τ are almost uncorrelated andcan thus
be analyzed bystandardmeans. Themean valueover all block averagesobviously
satisfiesO(B) = O and their variance can be computed accordingto the standard
(unbiased) estimator, leading to thesquared statistical error of the mean value,

ǫ2
O
≡ σ2

O
= σ2

B/NB =
1

NB(NB − 1)

NB
∑

j=1

(O(B)
j −O(B))2 . (56)

By comparing with (45) we see that σ2
B/NB = 2τO,intσ

2
O/N . Recalli ng the

definition of theblock length nB = N/NB, this shows that onemay also use

2τO,int = nBσ
2
B/σ

2
O (57)

for the estimation of τO,int. This isdemonstrated in Fig. 6(b). Estimatesof τO,int

obtained in thisway areoften referred to as “blockingτ ” or “binningτ ” .
A simple toy model (bivariatetimeseries), wherethebehaviour of the “block-

ingτ ” andalso of τO,int(kmax) for finitenB resp. kmax can beworked out exactly,
is discussed in Ref. 26. These analytic formulasare very useful for validating the
computer implementations.
fHere we assume that N was chosen cleverly. Otherwise one has to discard some of the data and
redefineN .



June 18, 2012 13:35 World Scientific Review Volume - 9in x 6in master

Monte Carlo Simulations in Statistical Physics 119

3.3. Jackknife analysis

Even if the data are completely uncorrelated in time, one still has to handle the
problem of error estimation for quantities that are not “directly” measured in the
simulation but are computed as a non-linear combination of “basic” observables
such as 〈O〉2 or 〈O1〉/〈O2〉. This problem can either be solved by error propa-
gation or by using the Jackknife method,69,70 where instead of considering rather
small blocks of length nB and their fluctuations as in the binning analysis, one
formsNB largeJackknifeblocksO(J)

j containingall databut thejth block of the
previousbinningmethod,

O(J)
j =

NO − nBO(B)
j

N − nB
, j = 1, . . . , NB , (58)

cf. the schematic sketch in Fig. 7. Each of the Jackknife blocks thus consists of
N − nB = N(1 − 1/NB) data, i.e., it contains almost as many data as the orig-
inal time series. When non-linear combinations of basic variables are estimated,
the bias is hence comparable to that of the total data set (typically 1/(N − nB)

compared to 1/N ). TheNB Jackknife blocks are, of course, trivially correlated
because one and the same original data is re-used in NB − 1 different Jackknife
blocks. This trivial correlationcaused by re-using the original data over and over
again has nothing to dowith temporal correlations. As a consequence, the Jack-
nife block varianceσ2

J will be much smaller than the variance estimated in the
binning method. Because of the trivial nature of the correlations, however, this
reductioncan be corrected bymultiplyingσ2

J with a factor (NB − 1)2, leading to

ǫ2
O
≡ σ2

O
=

NB − 1

NB

NB
∑

j=1

(O(J)
j −O(J))2 . (59)

To summarizethis section, any realization of aMarkov chain MonteCarlo up-
date algorithm is characterised by autocorrelation times which enter directly into
thestatistical errorsof MonteCarlo estimates. Sincetemporal correlationsalways
increase the statistical errors, it is thus a very important issue to develop Monte
Carlo update algorithmsthat keep autocorrelationtimesas small aspossible. This
is the reasonwhy cluster and other non-local algorithmsare so important.

4. Reweighting Techniques

The physics underlying reweighting techniques71,72 is extremely simple and the
basic ideahas been known since long (seethe list of references in Ref. 72), but
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Fig. 7. Sketch of theorganization of Jackknife blocks. Thegrey part of theN datapoints isused for
calculating the total and the Jackknife block averages. The white blocks enter into the more conven-
tional binning analysis using non-overlapping blocks.

their power in practicehas been realized only relatively late in 1988. The impor-
tant observation byFerrenberg and Swendsen71,72 was that the best performance
is achieved near criticality where histograms are usually broad. In this sense
reweightingtechniquesare complementary to improvedestimators, which usually
perform best off criticality.

4.1. Single-histogram technique

Thesingle-histogram reweightingtechnique71 isbased onthefollowing very sim-
ple observation. Denoting the number of states (spin configurations) that have
the same energy e = E/V by Ω(e), the partition functionat the simulation point
β0 = 1/kBT0 can alwaysbe written asg

Z(β0) =
∑

σ

e−β0H(σ) =
∑

e

Ω(e)e−β0E ∝
∑

e

Pβ0
(e) , (60)

wherewehave introduced theunnormalized energy histogram (density)

Pβ0
(e) ∝ Ω(e)e−β0E . (61)

If we would normalizePβ0
(e) to unit area, the r.h.s. would have to be divided by

∑

e Pβ0
(e) = Z(β0), but the normalizationwill be unimportant in what follows.

Let usassumewehaveperformedaMonteCarlo simulationat inversetemperature
gFor simplicity we consider hereonly modelswith discreteenergies. If the energy varies continuously,
sums have to be replaced by integrals, etc. Also lattice size dependences are suppressed to keep the
notation short.
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β0 and thusknow Pβ0
(e). It is then easy to seethat

Pβ(e) ∝ Ω(e)e−βE = Ω(e)e−β0Ee−(β−β0)E ∝ Pβ0
(e)e−(β−β0)E , (62)

i.e., the histogram at any point β can be derived, in principle, by reweighting the
simulated histogram at β0 with the exponential factor exp[−(β − β0)E]. Notice
that in reweighted expectation values,

〈f(e)〉(β) =
∑

e

f(e)Pβ(e)/
∑

e

Pβ(e) , (63)

the normalization of Pβ(e) indeed cancels. This gives for instance the energy
〈e〉(β) and the specific heat C(β) = β2V [〈e2〉(β) − 〈e〉(β)2], in principle, as
a continuous function of β from a single Monte Carlo simulation at β0, where
V = LD is thesystem size.

As an example of this reweighting procedure, using actual Swendsen-Wang
cluster simulation data (with 5000sweeps for equili bration and 50 000sweeps
for measurements) of the 2D Ising model at β0 = βc = ln(1 +

√
2)/2 =

0.440 686 . . . on a 16 × 16 lattice with periodic boundary conditions, the
reweighted datapoints for thespecific heat C(β) areshown in Fig. 8(a) andcom-
pared with the continuous curve obtained from the exact Kaufman solution73,74

for finiteLx ×Ly lattices. Note that the location of thepeak maximum is slightly
displaced from the infinite-volume transition point βc due to the rounding and
shifting of C(β) caused by finite-size effects discussed in more detail i n Sect. 6.
This comparison clearly demonstrates that, in practice, the β-range over which
reweighting can be trusted is limited. The reason for this limitation are un-
avoidable statistical errors in the numerical determination of Pβ0

using a Monte
Carlo simulation. In the tails of the histograms the relative statistical errors are
largest, and the tails are exactly the regions that contribute most when multiply-
ing Pβ0

(e) with the exponential reweighting factor to obtain Pβ(e) for β-values
far off the simulation point β0. This is ill ustrated in Fig. 8(b) where the simu-
lated histogram at β0 = βc is shown together with the reweighted histograms at
β = 0.375 ≈ β0 − 0.065 andβ = 0.475 ≈ β0 + 0.035, respectively. For the 2D
Isingmodel thequality of thereweighted histogramscan be judged bycomparing
with the curvesobtained from Beale’s75 exact expressionfor Ω(e).

4.1.1. Reweightingrange

As a rule of thumb, the range over which reweighting should produce accurate
results can be estimated by requiringthat thepeak location of the reweighted his-
togram should not exceed the energy value at which the input histogram had de-
creased to about onehalf or one third of itsmaximum value. In most applications
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Fig. 8. (a) Thespecific heat of the2D Isingmodel ona16×16 square lattice computed byreweight-
ing from a single Monte Carlo simulation at β0 = βc, marked by the filled data symbol. The con-
tinuous line shows for comparison the exact solution of Kaufman.73,74 (b) The corresponding energy
histogram at β0, andreweighted toβ = 0.375 andβ = 0.475. Thedashed lines show for comparison
the exact histograms obtained from Beale’s expression.75

this rangeiswide enoughto locatefrom asinglesimulation, e.g., thespecific-heat
maximum by employing a standard maximization subroutine to the continuous
functionC(β). This is by far more convenient, accurate and faster than the tradi-
tional way of performingmany simulations close to the peak of C(β) and trying
to determinethemaximum by splinesor least-squaresfits.

For an analytical estimate of the reweighting range we now require that the
peak of thereweighted histogramiswithin thewidth 〈e〉(T0)±∆e(T0) of theinput
histogram (where aGaussian histogram would have decreased to exp(−1/2) ≈
0.61 of itsmaximum value),

|〈e〉(T )− 〈e〉(T0)| ≤ ∆e(T0) , (64)

wherewe assumed that for a not tooasymmetric histogramPβ0
(e) themaximum

location approximately coincides with 〈e〉(T0). Recalli ng that the half width
∆e of a histogram is related to the specific heat via (∆e)2 ≡ 〈(e − 〈e〉)2〉 =

〈e2〉 − 〈e〉2 = C(β0)/β
2
0V and using the Taylor expansion 〈e〉(T ) = 〈e〉(T0) +

C(T0)(T − T0) + . . . , this can bewritten asC(T0)|T − T0| ≤ T0

√

C(T0)/V or

|T − T0|
T0

≤ 1√
V

1
√

C(T0)
. (65)

SinceC(T0) is known from the input histogram this isquite ageneral estimateof
the reweighting range. For the example in Fig. 8 with V = 16 × 16, β0 = βc ≈
0.44 andC(T0) ≈ 1.5, this estimate yields |β − β0|/β0 ≈ |T − T0|/T0 ≤ 0.05,
i.e., |β − β0| ≤ 0.02 or 0.42 ≤ β ≤ 0.46. By comparisonwith the exact solution
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weseethat this is indeed afairly conservative estimateof thereliablereweighting
range.

If we only want to know the scaling behaviour with system sizeV = LD, we
can go onestep further by consideringthreegeneric cases:

i) Off-critical, whereC(T0) ≈ const, such that

|T − T0|
T0

∝ V −1/2 = L−D/2 . (66)

ii ) Critical, whereC(T0) ≃ a1+a2L
α/ν , with a1 anda2 beingconstants, andα

and ν denoting the standard critical exponentsof the specific heat and corre-
lation length, respectively. For α > 0, the leadingscaling behaviour becomes
|T − T0|/T0 ∝ L−D/2L−α/2ν . Assuming hyperscaling(α = 2 −Dν) to be
valid, this simplifies to

|T − T0|
T0

∝ L−1/ν , (67)

i.e., the typical scaling behaviour of pseudo-transition temperatures in the
finite-size scaling regime of a second-order phase transition.76 For α < 0,
C(T0) approaches asymptotically a constant and the leading scaling be-
haviour of the reweightingrange isas in theoff-critical case.

iii ) First-order transitions, whereC(T0) ∝ V = LD. Thisyields

|T − T0|
T0

∝ V −1 = L−D , (68)

which is again the typical finite-size scaling behaviour of pseudo-transition
temperaturesclose to afirst-order phase transition.38

4.1.2. Reweighting of non-conjugateobservables

If we also want to reweight other quantities such as the magnetizationm = 〈µ〉
we have to go one step further. The conceptually simplest way would be to
store two-dimensional histograms Pβ0

(e, µ) where e = E/V is the energy and
µ =

∑

i σi/V the magnetization. We could then proceed in close analogy to
the preceding case, and even reweighting to non-zero magnetic field h would be
possible, which enters via the Boltzmann factor exp(βh

∑

i σi) = exp(βV hµ).
However, the storage requirementsmay be quite high (of the order of V 2), and it
is often preferable to proceed in the following way. For any function g(µ), e.g.,
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Fig. 9. Microcanonical expectation values for (a) the absolute magnetization and (b) the magnetiza-
tion squared obtained from the 2D Ising model simulations shown in Fig. 8.

g(µ) = µk, we can write

〈g(µ)〉 =
∑

σ

g(µ(σ))e−β0H(σ)/Z(β0) =
∑

e,µ

Ω(e, µ)g(µ)e−β0E/Z(β0)

=
∑

e

∑

µ Ω(e, µ)g(µ)
∑

µ Ω(e, µ)

∑

µ

Ω(e, µ)e−β0E/Z(β0) . (69)

Recalli ng that
∑

µ Ω(e, µ)e
−β0E/Z(β0) = Ω(e)e−β0E/Z(β0) = Pβ0

(e) and
defining the microcanonical expectation value of g(µ) at fixed energy e (some-
timesdenoted asa “list” ),

〈〈g(µ)〉〉(e) ≡
∑

µ Ω(e, µ)g(µ)
∑

µ Ω(e, µ)
, (70)

we arrive at

〈g(µ)〉 =
∑

e

〈〈g(µ)〉〉(e)Pβ0
(e) . (71)

Identifying 〈〈g(µ)〉〉(e) with f(e) in Eq. (63), the actual reweighting procedure
is precisely as before. An example for computing 〈〈|µ|〉〉(e) and 〈〈µ2〉〉(e) using
the dataof Fig. 8 is shown in Fig. 9. Mixed quantities, e.g. 〈ekµl〉, can be treated
similarly. One caveat of this method is that one has to decide beforehand which
“ lists” 〈〈g(µ)〉〉(e) onewants to storeduringthesimulation, e.g., which powersk
in 〈〈µk〉〉(e) are relevant.

An alternative and more flexible method is based on time series. Suppose
we have performed a Monte Carlo simulation at β0 and stored the time series
of N measurements e1, e2, . . . , eN and µ1, µ2, . . . , µN . Then the most general
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expectation valuesat another inverse temperatureβ can simply beobtained from

〈f(e, µ)〉 =
N
∑

i=1

f(ei, µi)e
−(β−β0)Ei/

N
∑

i=1

e−(β−β0)Ei , (72)

i.e., in particular all moments 〈ekµl〉 can be computed. Notice that this can also
bewritten as

〈f(e, µ)〉 = 〈f(e, µ)e−(β−β0)E〉0/〈e−(β−β0)E〉0 , (73)

where the subscript 0 refers to expectation values taken at β0. Another very im-
portant advantage of the last formulation is that it works without any systematic
discretizationerror also for continuously distributed energiesandmagnetizations.

As nowadays hard-disk spaceis no real li mitation anymore, it is advisable
to store time series in any case. This guarantees the greatest flexibilit y in the
data analysis. As far as the memory requirement of the actual reweighting code
is concerned, however, the method of choice is sometimes not so clear. Using
directly histogramsandlists, onetypically hasto store about (6− 8)V data, while
working directly with the timeseriesoneneeds2N computer words. The cheaper
solution (also in terms of CPU time) thus obviously dependson both, the system
sizeV andtherunlengthN . It ishencesometimesfaster to generatefromthetime
seriesfirst histogramsandtherequired listsandthen proceedwith reweightingthe
latter quantities.

4.2. Multi-histogram technique

Thebasic ideaof themulti -histogram technique77 can besummarized as follows:

i) Performm MonteCarlo simulationsat β1, β2, . . . , βm withNi, i = 1, . . . ,m,
measurements,

ii ) reweight all runs to a commonreferencepoint β0,
iii ) combine at β0 all i nformation bycomputingerror weighted averages,
iv) reweight the “combined histogram” to any other β.

Since aweighted combination of several histograms enters this methodit is also
referred to as “weighted histogram analysismethod” or “WHAM”.78,79 In fact, in
chemistry and biochemistry the multi -histogram methodis basically only known
under thisacronym.

To proceed we first note that the exact normalized energy distribution at β =

βi can we written as

Pi(e) ≡ Pβi
(e) =

Ω(e)e−βiE

Zi
, (74)
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whereZi ≡ Z(βi) so that
∑

e Pi(e) = 1. Thiscan be estimated by the empirical
histogramHi(e) obtained from the simulationat βi,

P̂i(e) =
Hi(e)

Ni
, (75)

which also satisfies thenormalizationconstraint
∑

e P̂i(e) = 1. Rearranging(74)
and replacing the exact Pi(e) by its estimator P̂i(e) yields an estimator for the
density of states (this corresponds to choosing the common reference point as
β0 = 0):

Ω̂i(e) = Zie
βiE

Hi(e)

Ni
. (76)

Notice that we have introduced a subscript i to label the m estimators Ω̂i(e).
The expectation value of each Ω̂i(e) should be the exact Ω(e), but being random
variablestheir statistical propertiesaredifferent ascan bequantified byestimating
their variance. This is simplest done by interpreting the histogram entriesHi(e)

as result of measuringO = δet,e where et denotes the energy after the t’s sweep
of thesimulationat βi:

Hi(e)

Ni
= δet,e =

1

Ni

Ni
∑

t=1

δet,e . (77)

As in (40) and (41) the expected value is 〈Hi(e)/Ni〉 = (1/Ni)
∑Ni

t=1〈δet,e〉 =

Pi(e) and, neglecting temporal correlationsfor themoment,
〈

(

Hi(e)

Ni

)2
〉

=

〈

1

N2
i

Ni
∑

t,t′=1

δet,eδet′ ,e

〉

=
1

N2
i

[

Ni(Ni − 1)〈δet,e〉〈δet′ ,e〉+Ni〈δet,eδet′ ,e〉
]

(78)

= Pi(e)
2 +

1

Ni
Pi(e)[1− Pi(e)] ,

such that

σ2
Hi(e)/Ni

=

〈

(

Hi(e)

Ni
−
〈

Hi(e)

Ni

〉)2
〉

=
1

Ni
Pi(e)[1− Pi(e)] . (79)

For sufficiently many energy bins, the normalized probabiliti es Pi(e) are much
smaller than unity, such that thesecondterm [1−Pi(e)] can usually beneglected.
Taking autocorrelations into account, as in (45) the variance (79) would be en-
hanced by a factor 2τint,i(e). Recall that the subscript i of τint,i(e) refers to the
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simulation point and the argument e to the energy bin. Note that the autocorrela-
tion timesof thehistogram binsareusually much smaller than the autocorrelation
timeτint,e of themean energy. For thefollowingit isuseful to definethe effective
statistics parameter Neff,i(e) = Ni/2τint,i(e). Recalli ng (76), the varianceof the
m estimators Ω̂i(e) can then bewritten as

σ2
Ω̂i(e)

=
Z2
i e

2βiE

Neff,i(e)
Pi(e) =

Zie
βiE

Neff,i(e)
Ω(e) . (80)

Asusual the error weighted average

Ω̂opt(e) =

∑m
i=1 wi(e)Ω̂i(e)
∑m

i=1 wi(e)
(81)

with wi(e) = 1/σ2
Ω̂i(e)

is an optimised estimator with minimal variance

σ2
Ω̂opt(e)

= 1/
∑m

i=1 wi(e). Thiscan besimplified to

Ω̂opt(e) =

∑m
i=1 Hi(e)/2τint,i(e)

∑m
i=1 Neff,i(e)Z

−1
i e−βiE

(82)

and

σ2
Ω̂opt(e)

/Ω2(e) =
1

∑m
i=1〈Hi(e)〉/2τint,i(e)

. (83)

So far thepartitionfunction valuesZi ≡ Z(βi) havebeen assumed to be exact
(albeit usually unknown) parameters which are now self-consistently determined
from

Zj =
∑

e

Ω̂opt(e)e
−βjE =

∑

e

∑m
i=1 Hi(e)/2τint,i(e)

∑m
i=1(Ni/2τint,i(e))Z

−1
i e−βiE

e−βjE , (84)

up to an unimportant overall constant. A goodstarting point for the recursion is
to fix, say, Z1 = 1 and use single histogram reweighting to get an estimate of
Z2/Z1 = exp[−(F̂2 − F̂1)], where F̂i = βiF (βi). OnceZ2 is determined, the
same procedure can be applied to estimateZ3 and so on. In the limit of infinite
statistics, thiswould already yield thesolution of (84). In realistic simulationsthe
statistics isof courselimited andtheremainingrecursionsaveragethisuncertainty
to get a self-consistent set of Zi. In order to work in practice, the histograms at
neighboringβ-values must have sufficient overlap, i.e., the spacings of the simu-
lation points must be chosen according to the estimates (66)–(68). The issue of
optimal convergenceof theWHAM equations(84) hasrecently been discussed in
detail i n Ref. 80.

Multiple-histogram reweighting hasbeen employed in awidespectrum of ap-
plications. In many applications the influence of autocorrelations has been ne-
glected since it is quite cumbersome to estimate the τint,i(e) for each of the m
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simulations and all energy bins. For work dealing with autocorrelations in this
context see, e.g., Refs. 81,82. Note that, even when ignoring the τint,i(e), the er-
ror weighted averagein (81) does still give a correct estimator for Ω(e) – it isonly
no longer properly optimised. Moreover, sincefor each energy bin typically only
the histograms at neighboring simulation points contribute significantly, the two
or threeτint,i(e) valuesrelevant for each energy bin e are closeto each other. And
since an overall constant dropsout of the WHAM equation (84), the influenceof
autocorrelationsonthe final result turnsout to bevery minor anyway.

Alternatively59 one may also compute from each of the m independent sim-
ulations by reweighting all quantities of interest as a function of β, together
with their proper statistical errors including autocorrelation effects as discussed
in Sect. 3.1.3. As a result one obtains, at each β-value, m estimates, e.g.
e1(β) ± ∆e1, e2(β) ± ∆e2, . . . , em(β) ± ∆em, which may be optimally com-
bined accordingto their error bars to givee(β) ±∆e, where

e(β) =

(

e1(β)

(∆e1)
2 +

e2(β)

(∆e2)
2 + · · ·+ em(β)

(∆em)
2

)

(∆e)
2

, (85)

and

1

(∆e)
2 =

1

(∆e1)
2 +

1

(∆e2)
2 + · · ·+ 1

(∆em)
2 . (86)

Noticethat by thismethodthe averagefor each quantity can be individually opti-
mised.

5. Generalized Ensemble Methods

All Monte Carlo methods described so far assumed a conventional canonical en-
semble where the probabilit y distribution of microstates is governed by a Boltz-
mann factor ∝ exp(−βE). A simulation at some inverse temperature β0 then
covers a certain range of the state spacebut not all (recall the discussion of the
reweighting range). In principle a broader range can be achieved by patching
several simulations at different temperatures using the multi -histogram method.
Loosely speaking generalized ensemble methods aim at replacing this “static”
patching bya single simulation in an appropriately defined “generalized ensem-
ble”. The purposeof this section is to give at least a brief survey of the available
methods.
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5.1. Simulated tempering

One approacharetemperingmethodswhich may be characterized as“dynamical”
multi -histogramming. Similarly to thestatic reweightingapproach, in “simulated”
as well as in “parallel” tempering one considersm simulation pointsβ1 < β2 <

· · · < βm which here, however, are connected already during the simulation in a
specific, dynamical way.

In simulated temperingsimulations83,84 one starts from a joint partition func-
tion (expanded ensemble)

ZST =
m
∑

i=1

egi
∑

σ

e−βiH(σ) , (87)

where gi = βif(βi) and the inverse temperature β is treated as an additional
dynamical degreeof freedom that can take the values β1, . . . , βm. Employing a
Metropolisupdate algorithm, a proposed move from β = βi to βj with σ fixed is
accepted with probabilit y

w = min {1, exp[−(βj − βi)H(σ) + gj − gi]} . (88)

Similar to multi -histogram reweighting (and also to multicanonical simulations
discussed below), the free-energy parameters gi are a priori unknown and have
to be adjusted iteratively. To assure areasonable acceptancerate for theβ-update
moves (usually between neighboring βi-values), the histograms at βi and βi+1,
i = 1, . . . ,m−1, must overlap. An estimatefor asuitablespacing∆β = βi+1−βi

of thesimulation pointsβi ishenceimmediately given bytheresults (66)–(68) for
the reweightingrange,

∆β ∝







L−D/2 off-critical ,

L−1/ν critical ,

L−D first-order .

(89)

Overall thesimulated temperingmethodshows somesimilarities to the “avoiding
rare events” variant of multicanonical simulationsbriefly discussed in subsection
5.3.

5.2. Parallel tempering

In parallel tempering or replica exchangeor multiple Markov chain Monte Carlo
simulations,85–88 the starting point is a product of partition functions (extended
ensemble),

ZPT =

m
∏

i=1

Z(βi) =

m
∏

i=1

∑

σi

e−βiH(σi) , (90)
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and all m systems at different simulation pointsβ1 < β2 < · · · < βm are simu-
lated in parallel, using any legitimate update algorithm (Metropolis, cluster,. . .).
This freedom in the choice of update algorithm is a big advantage of a paral-
lel tempering simulation88 which is a special case of the earlier replica exchange
MonteCarlo method85 proposed in the context of spin-glass simulations(to some
extent thefocusonthis special application hidesthegeneral aspectsof themethod
as becomes clearer in Ref. 86). After a certain number of sweeps, exchanges of
the current configurations σi and σj are attempted (equivalently, the βi may be
exchanged, as is done in most implementations). Adapting the Metropolis crite-
rion (16) to the present situation, the proposed exchange will be accepted with
probabilit y

w = min{1, exp[(βj − βi)(Ej − Ei)]} (91)

whereEi ≡ E(σi). To assure areasonable acceptancerate, usually only “nearest-
neighbor” exchanges (j = i ± 1) are attempted and, as a first rough guess, the
βi could again be spaced by∆β given in (89). By carefully monitoring the dy-
namicsof the algorithm, recently much morerefined prescriptionsfor theoptimal
choiceof the simulation pointsβi have been proposed.89,90 In most applications,
thesmallest inversetemperatureβ1 ischosen in thehigh-temperaturephasewhere
the autocorrelation time is expected to be very short and the system decorrelates
rapidly. Conceptually thisapproach followsagain the “avoidingrare events” strat-
egy.

Notice that in parallel tempering no free-energy parameters have to be ad-
justed. Themethodis thusvery robust andmoreover can be almost trivially paral-
lelized. For instanceit it straightforward to implement thisalgorithmonagraphics
card and perform “parallel temperingGPU computations” .91

5.3. Multicanonical ensembles

To concludethis introductionto simulationtechniques, at least avery brief outline
of multicanonical ensembles92,93 shall begiven. For moredetails, in particular on
practical implementations, seethe earlier reviews94–97and the textbook byBerg.4

Similarly to the tempering methods of the last section, multicanonical simula-
tionsmay also beinterpretedasadynamical multi -histogramreweightingmethod.
This interpretation is stressed by the notation used in the original papersby Berg
and Neuhaus92,93 and explains the name “multicanonical” . At the same time, this
methodmay also beviewed asaspecific realization of non-Boltzmannsampling98

which has been known sincelongto be alegitimate alternative to the more stan-
dard Monte Carlo approaches.99 The practical significance of non-Boltzmann
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sampling was first realized in the so-called “umbrella sampling” method,100 but
it tookmany yearsbefore the introduction of the multicanonical ensemble turned
non-Boltzmannsamplingintoawidely appreciated practical tool incomputer sim-
ulation studies of phase transitions. Once the feasibilit y of such a generalized
ensemble approach was realized, many related methods and further refinements
were developed. By now the applications of the methodrange from physics and
chemistry to biophysics, biochemistry and biologyto engineering problems.

Conceptually the method can be divided into two main strategies. The first
strategy can be best described as “avoidingrare events” which isclose in spirit to
the alternative tempering methods. In this variant one tries to connect the impor-
tant parts of phase spaceby “easy paths” which goaroundsuppressed rare-event
regions which hence cannot be studied directly. The second approach is based
on “enhancing the probabilit y of rare event states” , which is for example the typ-
ical strategy for dealing with the highly suppressed mixed-phase region of first-
order phase transitions38,97 and the very rugged free-energy landscapes of spin
glasses.101–104Thisallowsadirect study of propertiesof therare-event states such
as, e.g., interfacetensionsor moregenerally free energy barriers, which would be
very difficult (or practically impossible) with canonical simulationsandalso with
the temperingmethodsdescribed in Sects. 5.1 and 5.2.

In general the idea goes as follows. With σ representing generically the
degrees of freedom (discrete spins or continuous field variables), the canonical
Boltzmann distribution

Pcan(σ) ∝ e−βH(σ) (92)

is replaced byan auxili ary multicanonical distribution

Pmuca(σ) ∝ W (Q(σ))e−βH(σ) ≡ e−βHmuca(σ) , (93)

introducingamulticanonical weight factor W (Q) whereQ standsfor any macro-
scopic observable such as the energy or magnetization. This defines formally
Hmuca = H − (1/β) lnW (Q) which may be interpreted as an effective “multi -
canonical” Hamiltonian. The Monte Carlo sampling can then be implemented as
usual by comparingHmuca before andafter aproposed updateof σ, andcanonical
expectation valuescan berecovered exactly by inversereweighting,

〈O〉can = 〈OW−1(Q)〉muca/〈W−1(Q)〉muca , (94)

similarly to Eq. (73). Thegoal isnow to findasuitableweight factor W such that
thedynamicsof themulticanonical simulation profitsmost.

To bespecific, let usassumein thefollowingthat therelevant macroscopicob-
servableisthe energyE itself. Thisis for instancethe case at atemperaturedriven
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Fig. 10. The canonical energy density Pcan(E) of the2D 7-state Pottsmodel ona60× 60 lattice at
inverse temperatureβeqh,L, where the two peaksareof equal height, together with themulticanonical
energy density Pmuca(E), which is approximately constant between the two peaks.

first-order phase transition, where the canonical energy distributionPcan(E) de-
velopsa characteristic double-peak structure.38 Asan ill ustration, simulation data
for the 2D 7-state Potts model105 are shown in Fig. 10. With increasing sys-
tem size, the region between the two peaks becomes more and more suppressed
by the interfacial Boltzmann factor ∝ exp(−2σodL

D−1), where σod is the (re-
duced) interfacetension, LD−1 the cross-section of aD-dimensional system, and
the factor 2 accounts for the fact that with the usually employed periodic bound-
ary condition at least two interfaces are present due to topological reasons. The
time needed to cross this strongly suppressed rare-event two-phase region thus
grows exponentially with the system sizeL, i.e., the autocorrelation time scales
as τ ∝ exp(+2σodL

D−1). In the literature, this is sometimes termed “super-
critical slowing down” (even though nothing is “critical” here). Given such a
situation, one usually adjustsW = W (E) such that the multicanonical distribu-
tionPmuca(E) isapproximately constant between thetwo peaksof Pcan(E), thus
aiming at a random-walk (pseudo-) dynamics of the Monte Carlo process,106,107

cf. Fig. 10.
The crucial non-trivial point is, of course, how this can be achieved. On a

pieceof paper, W (E) ∝ 1/Pcan(E) – but we do not know Pcan(E) (otherwise
there would be littl e need for the simulation . . .). The solution of this problem is
a recursive computation. Starting with the canonical distribution, or some initial
guessbased onresults for already simulated smaller systems together with finite-
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size scaling extrapolations, one performs a relatively short simulation to get an
improved estimateof the canonical distribution. When this is inverted oneobtains
a new estimate of the multicanonical weight factor, which then is used in the
next iteration and so on. In this naive variant only the simulation data of the last
iterationare used in the construction of the improved weight factor.

A more sophisticated recursion, in which the updated weight factor, or more
conveniently theratioR(E) = W (E +∆E)/W (E), is computed from all avail -
abledata accumulated so far, worksas follows:97,108–110

1. Perform a simulationwithRn(E) to obtain thenth histogramHn(E).
2. Compute thestatistical weight of thenth run:

p(E) = Hn(E)Hn(E +∆E)/[Hn(E) +Hn(E +∆E)] . (95)

3. Accumulatestatistics:

pn+1(E) = pn(E) + p(E) , (96)

κ(E) = p(E)/pn+1(E) . (97)

4. Updateweight ratios:

Rn+1(E) = Rn(E) [Hn(E)/Hn(E +∆E)]
κ(E)

. (98)

Goto 1.

Therecursion is initialized with p0(E) = 0. To derivethis recursion one assumes
that (unnormalized) histogram entries Hn(E) have an a priori statistical error
√

Hn(E) and(quite crudely) that all data areuncorrelated. Due to the accumula-
tion of statistics, thisprocedureis rather insensitive to the length of thenth run in
thefirst step and hasproved to berather stable andefficient in practice.

In most applications local update algorithms have been employed, but for
certain classes of models also non-local multigrid methods34,35,111 are applica-
ble.68,112 A combination with non-local cluster update algorithms, on the other
hand, is not straightforward. Only by making direct use of the random-cluster
representationasastarting point, amultibondicvariant113–115hasbeen developed.
For a recent application to improved finite-size scaling studies of second-order
phasetransitions, seeRef. 116. If Pmuca wascompletely flat and theMonteCarlo
update moves would perform an ideal random walk, one would expect that af-
ter V 2 local updates the system has travelled on average a distance V in total
energy. Since one lattice sweep consists of V local updates, the autocorrelation
time should scale in this idealized picture as τ ∝ V . Numerical tests for vari-
ousmodelswith afirst-order phasetransition haveshown that in practicethedata
are at best consistent with a behaviour τ ∝ V α, with α ≥ 1. While for the
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temperature-driven transitions of 2D Potts models the multibondic variant seems
to saturate the bound,113–115employing local update algorithms, typical fit results
areα ≈ 1.1− 1.3, and due to the limited accuracy of the data even a weak expo-
nential growth law cannot be excluded.

In fact, at least for the field-driven first-order transition of the2D Isingmodel
below Tc, where one works with the magnetization instead of the energy (some-
timescalled “multimagnetical” simulations), it hasbeen demonstrated recently117

that evenfor aperfectly flat multicanonical distributionthere aretwo “hidden” free
energy barriers(in directions“orthogonal” to themagnetization) which lead to an
exponential growth of τ with lattice size, which is albeit much weaker than the
leading “supercritical slowing down” of the canonical simulation. Physically the
two barriers are related to the nucleation of a large droplet of the “wrong phase”
(say “−” spins in the background of “+” spins)118–123and the transition of this
large, more or less spherical droplet to the strip phase (coexisting strips of “−”
and “+” spins, separated by two straight interfaces) aroundm = 0.124

5.4. Wang-Landau method

Another more recently proposed method deals directly with estimators Ω(E) of
thedensity of states.125 By flippingspinsrandomly, thetransition probabilit y from
energy level E1 to E2 is

w(E1 → E2) = min

[

1,
Ω(E1)

Ω(E2)

]

. (99)

Each time an energy level is visited, the estimator ismultiplicatively updated,

Ω(E) → f Ω(E) , (100)

where initially Ω(E) = 1 and f = f0 = e1. Once the accumulated energy
histogram is sufficiently flat, the factor f is refined,

fn+1 =
√

fn , n = 0, 1, . . . , (101)

andthe energy histogramreset to zero until somesmall valuesuch asf = e10
−8 ≈

1.00000001 is reached.
For the 2D Isingmodel thisprocedure convergesvery rapidly towards the ex-

actly known density of states, and also for other applications a fast convergence
has been reported. Since the procedure violates the Markovian requirement and
hencedoesnot satisfy thebalance condition(7), some care isnecessary in setting
upa proper protocol for the recursion(this is similar in spirit to the automatic up-
dating of theoptimal step sizeSmax in theMetropolisupdate algorithm discussed
in Sect. 2.3.1). Most authors who employ the obtained density of states directly
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to extract canonical expectation values by standard reweighting argue that, once
f is close enoughto unity, systematic deviations become negligible. While this
claim can be verified empirically for the 2D Ising model (where exact results are
available for judgement), possible systematic deviations are difficult to assessin
the general case. A safe way would be to consider the recursion(99)–(101) as an
alternative methodto determine the multicanonical weights, and then to perform
a usual multicanonical simulationemploying thesefixed weights. Asemphasized
earlier, any deviationsof multicanonical weights from their optimal shape do not
show up in the final canonical expectation values; they rather only influence the
dynamicsof themulticanonical simulations.

6. Scaling Analyses

Equipped with the various technical tools discussed above, the purpose of this
sectionisto outlinetypical scalingandfinite-sizescaling(FSS) analysesof Monte
Carlo simulations of second-order phase transitions. The described procedure is
generally applicable but to keep the notation short, all formulas are formulated
for Ising like systems. For instance for O(n) symmetric models, m should be
replaced by ~m etc. The main results of such studies are usually estimates of the
critical temperature andthe critical exponentscharacterisingtheuniversality class
of the transition.

Basic observables are the internal energy per site, u = U/V , with U =

−d lnZ/dβ = 〈H〉 ≡ 〈E〉, and thespecific heat,

C =
du

dT
= β2

(

〈E2〉 − 〈E〉2
)

/V = β2V
(

〈e2〉 − 〈e〉2
)

, (102)

wherewe haveset H ≡ E = eV with V denotingthenumber of latticesites, i.e.,
the “latticevolume”. In simulations one usually employs the variancedefinition
(since any discretized numerical differentiationwould introducesomesystematic
error). Themagnetization per sitem = M/V andthesusceptibilit y χ aredefined



June 18, 2012 13:35 World Scientific Review Volume - 9in x 6in master

136 W. Janke

ash

m = 〈|µ|〉 , µ =
1

V

∑

i

σi , (103)

and

χ = βV
(

〈µ2〉 − 〈|µ|〉2
)

. (104)

In the disordered phase for T > Tc, wherem = 〈µ〉 = 0 by symmetry, oneoften
workswith thedefinition

χ′ = βV 〈µ2〉 . (105)

The correlation between spinsσi andσj at sites labeled byi andj can bemea-
sured byconsideringcorrelationfunctionslike thetwo-point spin-spin correlation

G(~r) = G(i, j) = 〈σiσj〉 − 〈σi〉〈σj〉 , (106)

where ~r = ~rj − ~ri (assuming translational invariance). Away from criticality
and at large distances |~r| ≫ 1 (assuming a lattice spacing a = 1), G(~r) decays
exponentially,

G(~r) ∼ |~r|−κe−|~r|/ξ , (107)

where ξ is the spatial correlation length and the exponent κ of the power-law
prefactor depends in general on the dimension and on whether one studies the
ordered or disordered phase. Strictly speakingξ dependson thedirection of ~r.

6.1. Critical exponents and scaling relations

Themost characteristic featureof asecond-order phasetransitionisthedivergence
of the correlation length at Tc. As a consequencethermal fluctuationsare equally
important on all length scales, and one therefore expects power-law singularities

hNotice that here and in the following formulas, |µ| is used instead of µ as would follow from the
formal definition of the zero-field magnetization m(β) = (1/V β) limh→0 ∂ lnZ(β, h)/∂h. The
reason is that for a symmetric model on finite lattices one obtains 〈µ〉(β) = 0 for all temperatures
due to symmetry. Only in the proper infinite-volume limit, that is limh→0 limV →∞, spontaneous
symmetry breaking can occur below Tc. In a simulation onfinite lattices, this is reflected by a sym-
metric double-peak structure of the magnetization distribution (provided the runs are long enough).
By averaging µ one thus gets zero by symmetry, while the peak locations ±m0(L) are close to the
spontaneous magnetization so that the average of |µ| is a goodestimator. Things become more in-
volved for slightly asymmetric models, where this recipe would produce asystematic error and thus
cannot be employed. For strongly asymmetric models, on the other hand, one peak clearly dominates
and the average of µ can usually be measured without too many problems.
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in thermodynamic functions. The leading divergenceof the correlation length is
usually parameterized in thehigh-temperaturephase as

ξ = ξ0+ |1− T/Tc|−ν + . . . (T ≥ Tc) , (108)

wherethe. . . indicatesub-leadinganalytical aswell asconfluent corrections. This
defines the critical exponent ν > 0 and the critical amplitude ξ0+ on the high-
temperature side of the transition. In the low-temperature phase one expects a
similar behaviour,

ξ = ξ0−(1− T/Tc)
−ν + . . . (T ≤ Tc) , (109)

with the same critical exponent ν but a different critical amplitudeξ0− 6= ξ0+ .
Thesingularitiesof thespecific heat, magnetization(for T < Tc), andsuscep-

tibilit y are similarly parameterized by the critical exponentsα, β, and γ, respec-
tively,

C = Creg + C0|1− T/Tc|−α + . . . , (110)

m = m0(1− T/Tc)
β + . . . , (111)

χ = χ0|1− T/Tc|−γ + . . . , (112)

whereCreg is a regular backgroundterm, and the amplitudesare again in general
different on the two sides of the transition. Right at the critical temperature Tc,
two further exponentsδ andη aredefined through

m ∝ h1/δ (T = Tc) , (113)

G(~r) ∝ r−D+2−η (T = Tc) . (114)

An important consequenceof the divergenceof the correlation length is that
qualitative properties of second-order phase transitions should not depend on
short-distance details of the Hamiltonian. This is the basis of the universality
hypothesis126 which means that all (short-ranged) systems with the same sym-
metriesand same dimensionality should exhibit similar singularitiesgoverned by
one and the same set of critical exponents. For the amplitudesthis is not true, but
certain amplituderatios such as ξ0+/ξ0− or χ0+/χ0− are also universal.

In the1960s, Rushbrooke,127 Griffiths,128 Josephson,129 andFisher130 showed
that thesix critical exponentsdefined above arerelated via four inequaliti es. Sub-
sequent experimental evidenceindicated that these scaling relations were in fact
equaliti es which are now firmly established by renormalization group(RG) con-
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siderationsand fundamentally important in the theory of critical phenomena:

2β + γ = 2− α (Rushbrooke’s law) , (115)

β(δ − 1) = γ (Griffiths’ law) , (116)

ν(2 − η) = γ (Fisher’s law) . (117)

Thefourth equality involvesthedimensionD. It is therefore a(somewhat weaker)
so-called hyperscalingrelation:

Dν = 2− α (Josephson’s law) . (118)

In the conventional scaling scenario, Rushbrooke’sand Griffiths’ laws can be de-
duced from the Widom scaling hypothesis that the Helmholtz free energy is a
homogeneousfunction.131 Widom scalingandtheremainingtwo lawscan in turn
be derived from the Kadanoff block-spin construction132 and ultimately from RG
considerations.133 Josephson’s law can also be derived from the hyperscaling hy-
pothesis, namely that thefree-energy density behavesnear criticality astheinverse
correlation volume: f ∼ ξ−D. Twicedifferentiatingthis relationandinsertingthe
scaling law (110) for the specific heat gives immediately (118).

The paradigm model for systems exhibiting a continuous (or, roughly speak-
ing, second-order) phase transition is the Ising model. When the temperature is
varied the system passes at Tc from an ordered low-temperature to a disordered
high-temperaturephase. In two dimensions(2D), the thermodynamic limit of this
model in zero external field has been solved exactly by Onsager,134 and even for
finiteLx × Ly lattices the exact partition function is known.73,74 Also the exact
density of states can be calculated by means of computer algebra up to reason-
ably large latticesizes.75 This providesa very useful testing groundfor any new
algorithmic idea in computer simulations. For infinite lattices, the correlation
length has been calculated in arbitrary latticedirections.135,136 The exact magne-
tization for h = 0, apparently already known to Onsager,137 was first derived by
Yang138 and later generalized by Chang.139 The only quantity which up to date
is not truly exactly known is the susceptibilit y. However, its propertieshavebeen
characterized to very high precision140–142 (for both, low- and high-temperature
series expansions, 2000terms are known exactly141). In threedimensions (3D)
no exact solutions are available, but analytical and numerical results from vari-
ous methods give a consistent and very precise picture. In four dimensions (4D)
the so-called upper critical dimensionDu is reached and for D ≥ Du = 4 the
critical exponents take their mean-field values (in 4D up to multiplicative loga-
rithmic corrections143). The critical exponentsof the Isingmodel are collected in
Table1.144–146
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Table 1. Critical exponents of the Ising model. All 2D exponents are exactly known.144,145

For the 3D Ising model the “world-average” for ν andγ calculated in Ref. 146is quoted. The
other exponents follow from hyperscaling (α = 2 − Dν) and scaling (β = (2 − α − γ)/2,
δ = γ/β + 1, η = 2 − γ/ν) relations. For all D ≥ Du = 4 the mean-field exponents are
valid (in 4D up to multiplicative logarithmic corrections).

ν α β γ δ η

D = 2 1 0 (log) 1/8 7/4 15 1/4
D = 3 0.630 05(18) 0.109 85 0.326 48 1.237 17(28) 4.7894 0.036 39
D ≥ 4 1/2 0 (disc) 1/2 1 3 0

6.2. Finite-size scaling (FSS)

In computer simulation studies, the (linear) system sizeL is always necessarily
finite. The correlation length may hence become large (of the order of L) but
never diverges in a mathematical sense. For the divergences in other quantities
this implies that they are also rounded and shifted.11,147–149 How this happens
is described by finite-size scaling (FSS) theory, which in a nut-shell may be ex-
plained as follows: Near Tc the role of ξ is taken over by the linear sizeL of the
system. By rewriting(108) or (109) and replacingξ byL, it iseasy to seethat

|1− T/Tc| ∝ ξ−1/ν −→ L−1/ν . (119)

It follows that the scaling laws (110)–(112) have to be replaced by the finite-size
scaling (FSS) ansatz,

C = Creg + aLα/ν + . . . , (120)

m ∝ L−β/ν + . . . , (121)

χ ∝ Lγ/ν + . . . , (122)

whereCreg isaregular, smooth backgroundterm anda a constant. Asamnemonic
rule, a critical exponent x in a temperaturescaling law is replaced by−x/ν in the
correspondingFSSlaw. Thisdescribes the rounding of the singularitiesquantita-
tively.

In general thesescaling lawsarevalid in avicinity of Tc as longas thescaling
variable

x = (1− T/Tc)L
1/ν (123)

is kept fixed.11,147–149 In this more general formulation the scaling law for, e.g.,
thesusceptibilit y reads

χ(T, L) = Lγ/νf(x) , (124)
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where f(x) is a scaling function. By plotting χ(T, L)/Lγ/ν versus the scaling
variable x, one thus expects that the data for different T and L fall onto a mas-
ter curve described by f(x). This is a nicevisual method for demonstrating the
scaling properties.

For givenL themaximum of χ(T, L) asa function of temperaturehappensat
somexmax. For the locationTmax of the maximum this impliesa FSSbehaviour
of the form

Tmax = Tc(1− xmaxL
−1/ν + . . . ) = Tc + cL−1/ν + . . . . (125)

This quantifies the shift of so-called pseudo-critical points which dependson the
observables considered. Only in the thermodynamic limit L → ∞ all quantities
diverge at thesametemperatureTc.

Further useful quantitiesin FSSanalysesarethe energetic fourth-order param-
eter

V (β) = 1− 〈e4〉
3〈e2〉2 , (126)

themagnetic cumulants(Binder parameters)

U2(β) = 1− 〈µ2〉
3〈|µ|〉2 , (127)

U4(β) = 1− 〈µ4〉
3〈µ2〉2 , (128)

and their slopes

dU2(β)

dβ
=

V

3〈|µ|〉2

[

〈

µ2
〉

〈e〉 − 2

〈

µ2
〉

〈|µ|e〉
〈|µ|〉 + 〈µ2e〉

]

= V (1− U2)

[

〈e〉 − 2
〈|µ|e〉
〈|µ|〉 +

〈µ2e〉
〈µ2〉

]

, (129)

dU4(β)

dβ
= V (1− U4)

[

〈e〉 − 2
〈µ2e〉
〈µ2〉 +

〈µ4e〉
〈µ4〉

]

. (130)

TheBinder parameters scale accordingto

U2p = fU2p
(x)[1 + . . . ] , (131)

i.e., for constant scaling variablex, U2p takesapproximately thesamevaluefor all
latticesizes, in particular U∗

2p ≡ fU2p
(0) at Tc. Applyingthedifferentiationto this

scaling representation, onepicksupa factor of L1/ν from thescaling function,

dU2p

dβ
= (dx/dβ)f ′

U2p
[1 + . . . ] = L1/νfU ′

2p
(x)[1 + . . . ] . (132)
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As a function of temperature the Binder parameters for different L hence cross
around(Tc, U

∗
2p) with slopes∝ L1/ν , apart from corrections-to-scalingcollected

in [1 + . . . ] explainingsmall systematic deviations. From a determination of this
crossing point, one thus obtains a basically unbiased estimate of Tc, the critical
exponent ν, andU∗

2p. Notethat in contrast to thetruly universal critical exponents,
U∗
2p is only weakly universal. By this one means that the infinite-volume limit of

such quantitiesdoesdependin particular ontheboundary conditionsand geomet-
rical shapeof the considered lattice, e.g., on the aspect ratio r = Ly/Lx.150–157

Further quantitieswith a useful FSSbehaviour are thederivativesof themag-
netization,

d〈|µ|〉
dβ

= V (〈|µ|e〉 − 〈|µ|〉〈e〉) , (133)

d ln〈|µ|〉
dβ

= V

( 〈|µ|e〉
〈|µ|〉 − 〈e〉

)

, (134)

d ln〈µ2〉
dβ

= V

( 〈µ2e〉
〈µ2〉 − 〈e〉

)

. (135)

These latter five quantities are goodexamples for expectation values depending
on both e andµ. By applying the differentiation to the scaling form of 〈|µ|〉, one
readsoff that

d〈|µ|〉
dβ

= L(1−β)/νfµ′(x)[1 + . . . ] , (136)

d ln〈|µ|p〉
dβ

= L1/νfdµp(x)[1 + . . . ] . (137)

For first-order phase transitions similar considerations show37,38,158–160 that
there the delta function like singularities in the thermodynamic limit, originating
from phase coexistence, are smeared out for finite systems as well .161–165 They
are replaced by narrow peaks whose height grows proportional to the volume
V = LD, analogously to (120) or (122), with a peak width decreasing as 1/V

and a shift of the peak location from the infinite-volume transition temperature
proportional to 1/V , analogously to (125).37,38,166–170

6.3. Organisation of the analysis

To facilit ate most flexibilit y in the analysis, it is advisable to store during data
production the time series of measurements. Standard quantities are the energy
andmagnetization, but depending onthemodel at hand it may beuseful to record
also other observables. In thisway thefull dynamical informationcan be extracted
still after the actual simulation runsanderror estimationcan be easily performed.
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For exampleit isno problem to experiment with thesize and number of Jackknife
bins. Since areasonable choicedependson the a priori unknown autocorrelation
time, it is quite cumbersometo doa reliable error analysis “on the flight” during
the simulation. Furthermore, basing data reweighting ontime-seriesdata is more
efficient since histograms, if needed or more convenient, can still be produced
from thisdatabut working in the reversedirection isobviously impossible.

For some models it is sufficient to perform for each latticesize asingle long
run at some coupling β0 close to the critical point βc. This is, however, not al-
ways the case and also depends on the observablesof interest. In this more gen-
eral case, onemay useseveral simulation pointsβi andcombinetheresultsby the
multi -histogramreweightingmethod or may apply arecently developedfinite-size
adapted generalized ensemblemethod.116,171 In both situations, one can compute
the relevant quantities from the time series of the energies e = E/V (if E hap-
pens to be integer valued, this should be stored of course) andµ =

∑

i σi/V by
reweighting.

By using one of these techniquesone first determines the temperaturedepen-
denceof C(β), χ(β), . . . , in the neighborhood of the simulation point β0 ≈ βc

(a reasonably “good” initial guess for β0 is usually straightforward to obtain).
Once the temperature dependence is known, one can determine the maxima,
e.g., Cmax(βmaxC

) ≡ maxβ C(β), by applying standard extremization routines:
When reweighting is implemented asa subroutine, for instanceC(β) can behan-
dled as a normal function with a continuously varying argument β, i.e., no inter-
polation or discretization error is involved when iterating towards the maximum.
Thelocationsof themaximaof C, χ, dU2/dβ, dU4/dβ, d〈|µ|〉/dβ, d ln〈|µ|〉/dβ,
and d ln〈µ2〉/dβ provide us with seven sequences of pseudo-transition points
βmaxi

(L) which all should scale according to βmaxi
(L) = βc + aiL

−1/ν + . . . .
In other words, thescaling variablex = (βmaxi

(L)− βc)L
1/ν = ai + . . . should

be constant, if weneglect thesmall higher-order correctionsindicated by . . . .
Noticethat while the precise estimates of ai do depend onthe value of ν, the

qualitative conclusion that x ≈ const for each of the βmaxi
(L) sequences does

not require any a priori knowledgeof ν or βc. Usingthis information onethushas
several possibiliti es to extract unbiased estimatesof the critical exponentsν, α/ν,
β/ν, and γ/ν from least-squares fits assuming the FSSbehaviours (120), (121),
(122), (132), (136), and (137).

Considering only the asymptotic behaviour, e.g., d ln〈|µ|〉/dβ = aL1/ν , and
taking the logarithm, ln(d ln〈|µ|〉/dβ) = c + (1/ν) ln(L), one ends up with a
linear two-parameter fit yielding estimates for the constant c = ln(a) and the
exponent 1/ν. For small l attice sizes the asymptotic ansatz is, of course, not
justified. Taking into account the (effective) correction term [1 + bL−w] would
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result in a non-linear four-parameter fit for a, b, 1/ν andw. Even if wewould fix
w to some “theoretically expected” value (as is sometimes done), we would still
be left with a non-linear fit which is usually much harder to control than a linear
fit (where only a set of linear equations with a unique solution has to be solved,
whereas a non-linear fit involves a numerical minimization of the χ2-function,
possessing possibly several local minima). The alternative method is to use the
linear fit ansatz andto discard successively more andmoresmall l atticesizesuntil
the χ2 per degree-of-freedom or the goodness-of-fit parameter61 Q has reached
an acceptablevalue and doesnot show any further trend. Of course, all this relies
heavily on correct estimates of the statistical error bars on the original data for
d ln〈|µ|〉/dβ.

Onceν isestimated one can usethescalingformβmaxi
(L) = βc+aiL

−1/ν+

. . . to extract βc andai. Asauseful check, oneshould repeat thesefitsat the error
margins of ν, but usually this dependenceturns out to be very weak. As a use-
ful cross-check one can determine βc also from the Binder parameter crossings,
which is the most convenient and fastest method for a first roughestimate. As
a rule of thumb, an accuracy of about 3 − 4 digits for βc can be obtained with
this method without any elaborate infinite-volume extrapolations – the crossing
points lie usually much closer to βc than the variousmaxima locations. For high
precision, however, it isquite cumbersometo control thenecessary extrapolations
and often more accurate estimates can be obtained by considering the scaling of
themaximalocations. Also, error estimatesof crossing points involvethedatafor
two different latticesizeswhich tends to bequiteunhandy.

Next, similarly to ν, theratiosof critical exponentsα/ν, β/ν, andγ/ν can be
obtained from fits to (120), (121), (122), and (136). Again the maxima of these
quantities or any of the FSSsequences βmaxi

can be used. What concerns the
fitting procedure the same remarks apply as for ν. The specific heat C usually
plays a special role in that the exponent α is difficult to determine. The reason
is that α is usually relatively small (3D Ising model: α ≈ 0.1), may be zero
(logarithmicdivergence asin the2D Isingmodel) or even negative(asfor instance
in the3D XY andHeisenberg models). In all these cases, the constant background
contributionCreg in (120) becomesimportant, which enforcesanon-linear three-
parameter fit with the just described problems. Also for the susceptibilit y χ, a
regular backgroundterm cannot be excluded, but it isusually much lessimportant
sinceγ ≫ α. Therefore, in (121), (122), and (136), similar to the fits for ν, one
may take the logarithm and deal with much morestable linear fits.

As a final step one may re-check the FSSbehaviour of C, χ, dU2/dβ, . . .

at the numerically determined estimate of βc. These fits should be repeated also
at βc ± ∆βc in order to estimate by how much the uncertainty in βc propagates
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into the thus determined exponent estimates. In (the pretty rare) cases where βc

is known exactly (e.g., throughself-duality), this latter option is by far the most
accurate one. This is the reason, why for such models numerically estimated
critical exponentsare usually quiteprecise.

When combining the various fit results for, e.g. βc or ν, to a final average
value, some care is necessary with the optimal weighted average and the final
statistical error estimate, sincethevariousfitsfor determiningβc or ν areof course
correlated (since they all use the data from one and the same simulation). In
principle this can bedealt with byapplyinga cross-correlationanalysis.172

7. Applications

7.1. Disordered ferromagnets

Experimentson phasetransitions in magnetic materialsareusually subject to ran-
domly distributed impurities. At continuous phase transitions, depending onthe
temperature resolution and the concentration of the impurities, the disorder may
significantly influencemeasurements of critical exponents.173 To emphasizethis
effect, in some experiments174 non-magnetic impurities are introduced in a con-
trolled way; seeFig. 11for an example. Sincethemobilit y of impuritiesisusually
much smaller than the typical time scale of spin fluctuations, one may model the
disorder effects in a completely “ frozen” , so-called “quenched” approximation.
This limit is opposite to “annealed” disorder which refers to the case where the
two relevant time scalesareof thesameorder.

With the additional assumptionthat thequenched, randomly distributed impu-
ritiesare completely uncorrelated, Harris175 showed a longtime ago under which
conditionsacontinuoustransition of an idealised purematerial ismodified by dis-
order couplingto the energy of thesystem. Accordingto this so-called Harriscri-
terion, the critical behaviour of thepuresystem aroundthe transition temperature
Tc is stable against quenched disorder when the critical exponentαpure of thespe-
cific heat,C ∝ |T −Tc|−αpure , isnegative. In renormalization-grouplanguagethe
perturbationisthen “ irrelevant” andthevaluesof all critical exponentsα, β, γ, . . .
remain unchanged. On the other hand, when αpure > 0, then quenched disor-
der should be “relevant” and the renormalization-groupflow approaches a new
disorder fixed point governed by altered critical exponents. An example is the
three-dimensional (3D) Ising model universality classwith αpure ≈ 0.110 > 0.
The intermediatesituationαpure = 0 is a special, “marginal” case where noeasy
predictions can be made. A typical example for the latter situation is the two-
dimensional (2D) Isingmodel wherequenched disorder isknown to generatelog-
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Fig. 11. Neutron scattering measurements of the susceptibilit y in Mn0.75Zn0.25F2 close to criti -
cality, governed by the disorder fixed point of the Ising model, over the reduced temperature inter-
val 4 × 10−4 < |T/Tc − 1| < 2 × 10−1. The solid lines show power-law fits with exponent
γ = 1.364(76) above and below Tc [after Mitchell et al. (Ref. 174)].

arithmic modifications.176

Figure 11 shows an experimental verification of the qualitative influence of
disorder for athree-dimensional Ising-likesystem wherethemeasured critical ex-
ponent γ = 1.364(76) of the susceptibilit y χ ∝ |T − Tc|−γ is clearly different
from that of the pure 3D Ising model, γpure = 1.2396(13). Theoretical results,
on the other hand, remained relatively scarce in 3D until recently. Most analyt-
ical renormalization groupand computer simulation studies focused onthe Ising
model,177,178 usually assumingsite dilutionwhen working numerically. Thismo-
tivated us to consider the case of bonddilution179–181which enables one to test
the expected universality with respect to the type of disorder distribution and, in
addition, facilit atesaquantitative comparisonwith recent high-temperatureseries
expansions.182–184

TheHamiltonian (in a Pottsmodel normalisation) isgiven as

−βH =
∑

〈i,j〉

Kijδσi,σj
, (138)

where the spins take the values σi = ±1 and the sum goes over all nearest-
neighbor pairs 〈i, j〉. The coupling strengths Kij are drawn from the bimodal
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distribution

℘[Kij] =
∏

〈i,j〉

P (Kij) =
∏

〈i,j〉

[pδ(Kij −K) + (1 − p)δ(Kij −RK)] . (139)

Besides bond dilution (R = 0), which we will consider here, this also includes
random-bondferromagnets (0 < R < 1) and the physically very different class
of spin glasses (R = −1) as special cases. For the case of bond dilution, the cou-
plings are thus allowed to take two different valuesKij = K ≡ Jβ ≡ J/kBT

and0 with probabiliti esp and1−p, respectively, with c = 1−p beingthe concen-
tration of missing bonds, which play theroleof thenon-magnetic impurities. The
pure case thus corresponds to p = 1. Below the bond-percolation threshold185

pc = 0.248 812 6(5) one does not expect any finite-temperature phase transition
sincewithout a percolating (infinite) cluster of spins long-rangeorder cannot de-
velop.

The model (138), (139) with R = 0 was studied by means of large-scale
Monte Carlo simulations using the Swendsen-Wang (SW) cluster algorithm39

(which in the strongly diluted case is better suited than the single-cluster Wolff
variant). To arrive at final results in the quenched case, for each dilution, tem-
perature andlatticesize, theMonteCarlo estimates for 〈Q{J}〉 of thermodynamic
quantitiesQ{J} for a given random distribution{J} of diluted bonds(realized as
usual by averagesover the timeseriesof measurements) haveto be averaged over
many different disorder realisations,

Q ≡ [〈Q{J}〉]av =
1

#{J}
∑

{J}

〈Q{J}〉 , (140)

where#{J} is the number of realisations considered. Denoting the empirically
determined distribution of 〈Q{J}〉 byP(〈Q{J}〉), this so-called quenchedaverage
can also be obtained from

Q =

∫

DJij℘(Jij)〈Q{J}〉 =
∫

d〈Q{J}〉P(〈Q{J}〉)〈Q{J}〉 , (141)

where adiscretized evaluation of the integrals for finite #{J} is implicitly im-
plied. While conceptually straightforward, thequenched averagein (140) iscom-
putationally very demandingsincethenumber of realisations#{J} usually must
belarge, often of theorder of afew thousands. In fact, if thisnumber ischosen too
small onemay observe typical rather than averagevalues186 which may differ sig-
nificantly when the distributionP(〈Q{J}〉) exhibits a longtail (which in general
ishard to predict beforehand).

To get a rough overview of the phase diagram we first studied the depen-
dence of the susceptibilit y peaks on the dilution, where the susceptibilit y χ =
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KV (〈µ2〉 − 〈|µ|〉2) with µ = (1/V )
∑

i σi is defined as usual. To this end we
performed for p = 0.95, 0.90, . . . , 0.36 and moderate system sizes SW cluster
MC simulations with NMCS = 2 500 MC sweeps (MCS) each. By performing
quite elaborate analyses of autocorrelation times, this statistics was judged to be
reasonable (NMCS > 250 τe). By applying single-histogram reweighting to the
data for each of the 2 500− 5 000 disorder realisation and then averaging the re-
sultingχ(K) curves, we finally arrived at thedata shown in Fig. 12.

From the locationsof themaximaoneobtains thephasediagram of themodel
in thep−T planeshown in Fig. 13which turned out to be in excellent agreement
with a “single-bondeffective-medium” (EM) approximation,187

KEM
c (p) = ln

[

(1− pc)e
Kc(1) − (1 − p)

p− pc

]

, (142)

whereKc(1) = J/kBTc(1) = 0.443 308 8(6) is the precisely known transition
point of the pure 3D Ising model.188 As an independent confirmation of (142),
the phase diagram also coincides extremely well with recent results from high-
temperatureseriesexpansions.184

Thequality of thedisorder averagescan be judged as in Fig. 14 bycomputing
running averages over the disorder realisations taken into account and looking at

0.4 0.6 0.8 1 1.2 1.4 1.6
J/k

B
T

0

50

100

[χ
L
] av

p = 0.95 p = 0.36

Fig. 12. The averagemagnetic susceptibilit y [χL]av of the3D bond-diluted Isingmodel versusK =
J/kBT for several concentrations p andL = 8, 10, 12, 14, 16, 18, and 20. For each value of p and
each latticesizeL, the curvesareobtained bystandard single-histogram reweighting of thesimulation
data at onevalue of K.
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Fig. 13. Phase diagram of the bond-diluted Ising model on a three-dimensional simple cubic lattice
in the dilution-temperature plane. The percolation point pc ≈ 0.2488 is marked by the diamondand
p = 1 is the pure case without impurities. The results from the Monte Carlo (MC) simulations are
compared with analyses of high-temperature series (HTS) expansions and with (properly normalized)
mean-field and effective-medium approximations.

thedistributionsP(χi). Theplots show that thefluctuationsin therunningaverage
disappear alreadyafter afew hundredsof realisationsandthat thedispersion of the
χi values is moderate. The histogram also shows, however, that the distributions
of physical observables typically do not become sharper with increasing system
size at a finite-randomnessdisorder fixed point. Rather their relative widths stay
constant, aphenomenoncalled non-self-averaging. Morequantitatively, non-self-
averaging can be checked by evaluating the normalized squared width Rχ(L) =

Vχ(L)/[χ(L)]
2
av, where Vχ(L) = [χ(L)2]av − [χ(L)]2av is the variance of the

susceptibilit y distribution. Figure 15 shows this ratio for three concentrations of
thebond-diluted Isingmodel asafunction of inverselatticesize. Thefact that Rχ

approachesa constant when L increases, as predicted by Aharony and Harris,189

is the signature of a non-self-averagingsystem, in qualitative agreement with the
resultsof Wiseman andDomany190 for the site-diluted 3D Isingmodel.i

In order to study the critical behaviour in moredetail , we concentrated onthe
threeparticular dilutions p = 0.4, 0.55, and 0.7. In a first set of simulations we
focused on the FSSbehaviour for lattice sizes up to L = 96. It is well known
that ratios of critical exponents are almost equal for pure and disordered mod-

iOur estimate of Rχ is about an order of magnitude smaller sincewe worked with χ = KV (〈µ2〉 −
〈|µ|〉2) whereas in Ref. 190the “high-temperature” expressionχ′ = KV 〈µ2〉 was used.
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els, e.g., γ/ν = 1.966(6) (pure191) and γ/ν = 1.963(5) (disordered192). The
only distinguishing quantity is the correlationlength exponent ν which can be ex-
tracted, e.g., from the derivativeof the magnetisation versus inverse temperature,
d ln[m]av/dK ∝ L1/ν , at Kc or the locations of the susceptibilit y maxima. Us-
ingthe latter unbiased optionand performingleast-squarefits including data from
Lmin toLmax = 96 weobtained the effective critical exponents shown in Fig. 16.
For the dilution closest to the pure model (p = 0.7), the system is influenced by
the pure fixed point with 1/ν = 1.5863(33). On the other hand, when the bond
concentration is small (p = 0.4), the vicinity of the percolationfixed point where
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1/ν ≈ 1.12 induces a decrease of 1/ν below its expected disorder value. The
dilution for which the cross-over effects are the least is aroundp = 0.55 which
suggests that the scaling corrections should be rather small for this specific dilu-
tion.

Themain problem of theFSSstudy is the competition between different fixed
points (pure, disorder, percolation) in combination with corrections-to-scaling
terms ∝ L−ω, which we found hard to control for bond dilution. In contrast to
recent claims for the site-diluted model that ω ≈ 0.4, we were not able to extract
a reliable estimate of ω from our data for bond dilution.

In a second set of simulations we examined the temperature scaling of the
magnetisation and susceptibilit y for lattice sizes up to L = 40. This data al-
lows direct estimates of the exponents β and γ whose relative deviation from
the pure model is comparable to that of ν, e.g. γ = 1.2396(13) (pure191)
and γ = 1.342(10) (disordered192). As a function of the reduced temperature
τ = (Kc −K) (τ < 0 in the low-temperature(LT) phase and τ > 0 in the high-
temperature (HT) phase) and the system sizeL, the susceptibilit y is expected to
scale as

[χ(τ, L)]av ∼ |τ |−γg±(L
1/ν |τ |) , (143)

where g± is a scaling function of the variable x = L1/ν |τ | and the subscript
± stands for the HT/LT phases. Assuming [χ(τ)]av ∝ |τ |−γeff without any
corrections-to-scalingterms, we can define atemperaturedependent effectivecrit-
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Fig. 17. Top: Variation of the temperature dependent effective critical exponent γeff (|τ |) =
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ical exponent γeff(|τ |) = −d ln[χ]av/d ln |τ |, which should convergetowards the
asymptotic critical exponent γ whenL → ∞ and |τ | → 0. Our resultsfor p = 0.7

areshown in Fig. 17. For thegreatest sizes, the effective exponent γeff(|τ |) is sta-
ble around1.34 when |τ | is not too small , i.e., when the finite-size effectsare not
too strong. The plot of γeff(|τ |) vs. the rescaled variableL1/ν|τ | shows that the
critical power-law behaviour holds in different temperature ranges for the differ-
ent sizes studied. By analysingthetemperaturebehaviour of thesusceptibilit y, we
also havedirectly extracted thepower-law exponent γ usingerror weighted least-
squares fits and choosing the temperature range that gives the smallest χ2/d.o.f
for several system sizes. The results are consistent with γ ≈ 1.34 − 1.36, cf.
Table2.

From thepreviousexpression of thesusceptibilit y asafunction of thereduced
temperature andsize, it is instructiveto plot thescaling functiong±(x). For finite
size and |τ | 6= 0, the scaling functions may be Taylor expanded in powers of
the inversescaling variablex−1 = (L1/ν |τ |)−1, [χ±(τ, L)]av = |τ |−γ [g±(∞) +

x−1g′±(∞) + O(x−2)], where the amplitude g±(∞) is usually denoted by Γ±.
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Table 2. Critical exponents and critical amplitude ratio of the susceptibil -
ity as measured with different techniques.

Technique γ Γ+/Γ− ω Ref.

Neutron scattering 1.44(6) 2.2 0.5 193a

1.31(3) 2.8(2) 194,195b

1.37(4) 2.40(2) 174c

RG 2.2 196
1.318 0.39(4) 197,198d

1.330(17) 0.25(10) 199e

MC 1.342(10) 0.37 192f

1.34(1) 1.62(10) 200g

1.342(7) 201h

1.314(4) 1.67(15) 202i

HTS 1.305(5) 184j

a Fe1−xZnxF2, x = 0.4, 0.5, |τ | ∼ 10−2.
b Fe0.46Zn0.54F2, 1.5× 10−3 ≤ |τ | ≤ 10−1.
cic5 Mn0.75Zn0.25F2, 4× 10−4 ≤ |τ | ≤ 2× 10−1.
d 4 loopapproximation.
e 6 loopapproximation, fixed dimension.
f site dilution, p = 0.4 to 0.8.
g bond dilution, p = 0.7. The correction to scaling is too small to bedeter-
mined.
h site dilution, p = 0.8. The observed correction to scaling could be the
next-to-leading one.
i site dilution, p = 0.8.
j bond dilution, p = 0.6 to 0.7.

Multiplying by|τ |γ leads to

[χ±(τ, L)]av|τ |γ = g±(x) = Γ± +O(x−1) . (144)

When |τ | → 0 but with L still l arger than the correlation length ξ, one should
recover the critical behaviour given byg±(x) = O(1). The critical amplitudesΓ±

follow, as shown in the lower plot of Fig. 17. Some experimental and numerical
estimatesare compiled in Table2.

To summarize, this application is a goodexample for how large-scale Monte
Carlo simulations employing the cluster update algorithm can be used to investi-
gate the influenceof quenched bond dilution onthe critical properties of the 3D
Ising. It also ill ustrateshow scalingandfinite-sizescalinganalysescan be applied
to a non-trival problem.
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7.2. Polymer statistics: Adsorption phenomena

Polymers in dilute solutionsare foundat high temperatures typically in extended
random coil conformations.203–205 Lowering the temperature, entropy becomes
less important and due to the monomer-monomer attraction globular conforma-
tions gain weight until the polymer collapses at the so-called θ-point in a coop-
erative rearrangement of the monomers.203–205 The globular conformations are
relatively compact with littl e internal structure. Hence, entropy does still play
some role, and a further freezing transition towards low-degenerate crystalli ne
energy dominated states is expected and indeed observed.206,207 For sufficiently
short-range interactions these two transitions may fall together,208 but in general
they are clearly distinct.

The presenceof an attractive substrate adds a secondenergy scale to the sys-
tem which introduces several new features. Apart from the adsorption transi-
tion,209,210 it also induces several low-temperaturestructural phasesby the compe-
tition between monomer-monomer andmonomer-surface attractionwhosedetails
depend on the exact number of monomers. Theoretical predictions may guide
future experiments on such small scales which appear feasible due to recent ad-
vances of experimental techniques. Amongsuch sophisticated techniques at the
nanometer scale are, e.g., atomic forcemicroscopy(AFM), where it ispossible to
measure the contour length andthe end-to-end distanceof individual polymers211

or to quantitatively investigatethepeptide adhesion onsemiconductor surfaces.212

Another experimental tool with an extraordinary resolution in positioningandac-
curacy in forcemeasurementsareoptical tweezers.213,214

With thismotivationwerecently performed a careful classification of thermo-
dynamic phases and phase transitions for a range of surface attraction strengths
andtemperaturesandcompared theresultsfor end-grafted polymers215 with those
of non-grafted polymers216 that can move freely within a simulation box.217 In
these studies we employed a bead-stick model of a linear polymer with three en-
ergy contributions:

E = 4

N−2
∑

i=1

N
∑

j=i+2

(

r−12
ij − r−6

ij

)

+
1

4

N−2
∑

i=1

(1− cosϑi)

+ ǫs

N
∑

i=1

(

2

15
z−9
i − z−3

i

)

. (145)

The first two terms are a standard 12-6 Lennard-Jones (LJ) potential and a
weak bending energy describing the bulk behaviour. The distance between the
monomers i and j is rij and 0 ≤ ϑi ≤ π denotes the bending angle between the
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Fig. 18. Sketch of a single polymer subject to an attractive substrate at z = 0. The hard wall at
z = Lz prevents anon-grafted polymer from escaping.

ith, (i + 1)th, and (i + 2)th monomer. The third term is specific to an attractive
substrate. This 9-3 LJ surfacepotential follows by integration over the continu-
oushalf-spacez < 0 (cf. Fig. 18), where every space element interactswith each
monomer by the usual 12-6 LJ expression.218 The relative strength of the two LJ
interactions iscontinuously varied byconsideringǫs asa control parameter.

We employed parallel tempering simulations to a 40mer once grafted with
one end to the substrate in the potential minimum and oncefreely moving in the
spacebetween the substrate and a hard wall a distanceLz = 60 away. There
exist several attempts to optimise the choiceof the simulation points βi,89,90 but
usually one already getsareasonableperformancewhen observingthehistograms
and ensuring the acceptanceprobabilit y to be around 50%, which approximately
requires an equidistribution in β. We employed 64 − 72 different replicas with
50 000 000sweeps each, from which every 10th value was stored in a time series
– the autocorrelation time in units of sweeps turned out to be of the order of
thousands. Finally, all data are combined bythemulti -histogram technique(using
thevariant of Ref. 219).

Apart from the internal energy and specific heat, a particular useful
quantity for polymeric systems is the squared radius of gyration R2

gyr =
∑N

i=1 (~ri − ~rcm)
2, with ~rcm = (xcm, ycm, zcm) =

∑N
i=1 ~ri/N being the center-

of-mass of the polymer. In the presence of a symmetry breaking substrate, it
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is useful to also monitor the tensor componentsparallel and perpendicular to the
substrate,R2

‖ =
∑N

i=1[(xi − xcm)
2
+(yi − ycm)

2
] andR2

⊥ =
∑N

i=1 (zi − zcm)
2.

As an indicator for adsorption one may take the distanceof the center-of-massof
the polymer to the surface. Additionally, we also analyzed the mean number of
monomers docked to the surfacens where for the continuous substrate potential
we defined amonomer i to bedocked if zi < zc ≡ 1.5.

The main results are summarized in the phase diagram shown in Fig. 19. It
is constructed using the profile of several canonical fluctuationsas shown for the
specific heat in Fig. 20. For the non-grafted polymer this plot clearly reveals the
freezing and adsorption transitions. Freezing leads to a pronounced peak near
T = 0.25 (we use units in which kB = 1) almost independently of the surface
attraction strengths. That this is indeed the freezing transition is confirmed by
the very rigid crystalli ne structures found below this temperature. To differenti-
ate between the different crystalli ne structures, the radius of gyration, its tensor
components parallel and perpendicular to the substrate, and the number of sur-
face contacts were analyzed. This revealed that the crystalli ne phases arrange
in a different number of layers to minimize the energy. For high surface attrac-
tion strengths, a single layer is favored (AC1), and for decreasing ǫs the number
of layers increases until for the 40mer a maximal number of 4 layers is reached
(AC4), cf. the representative conformations depicted in the right panel of Fig.
19. The fewer layers are involved in a layering transition, the more pronounced
is that transition. Raising the temperature above the freezing temperature, poly-
mers form adsorbed and still rather compact conformations. This is the phase
of adsorbed globular (AG) conformationsthat can besubdivided into droplet-like
globules for surfaceinteractions ǫs that are not strong enoughto induce asin-
gle layer below the freezing transition and more pancake-like flat conformations
(AG1) at temperaturesabovetheAC1 phase. At higher temperatures, two scenar-
ioscan be distinguished. For small adsorptionstrength ǫs, a non-grafted polymer
first desorbsfrom thesurface[from AG to thedesorbed globular (DG) bulk phase]
and disentanglesat even higher temperatures[from DG to thedesorbed expanded
bulk phase (DE)]. For larger ǫs, the polymer expandswhile it is still adsorbed to
the surface(from AG/AG1 to AE) and desorbs at higher temperatures (from AE
to DE). The collapse transition in the adsorbed phase takes place at a lower tem-
perature compared to thedesorbed phasebecausethedeformationat thesubstrate
leads to an effectivereduction of thenumber of contacts.

Grafting the polymer to the substrate mainly influences the adsorption tran-
sition. Figure 20(b), e.g., reveals that it is strongly weakened for all ǫs. Due to
grafting, the translational entropy for desorbed chains is strongly reduced. As a
consequence adsorption of finite grafted polymers appears to be continuous, in



June 18, 2012 13:35 World Scientific Review Volume - 9in x 6in master

156 W. Janke

Fig. 19. Thepseudo-phase diagram parametrized by adsorption strength ǫs and temperatureT for a
40mer. The gray transition regions have abroadness that reflects the variation of the corresponding
peaks of the fluctuations of canonical expectation values we investigated. Phases with an ‘A/D’ are
adsorbed/desorbed. ‘E’ , ‘G’ and ‘C’ denote phases with increasing order: expanded, globular and
compact/crystalli ne. The right panel shows representative conformations of the individual phases.

Fig. 20. Specific-heat profile, cV (ǫs, T ), for (a) the non-grafted and (b) thegrafted polymer.

contrast to the non-grafted case where this behaviour becomes apparent for very
longchainsonly. Thereasonis that all conformationsof agrafted polymer are in-
fluenced by the substrate, because they cannot escape. Hence, the first-order-like
conformational rearrangement of extended non-grafted polymersuponadsorption
isnot necessary and the adsorption iscontinuous.

The case of globular chainshas to bediscussed separately. While non-grafted
globular chainsadsorb continuously, for grafted globular chainsit even isnontriv-
ial to identify an adsorption transition. A globular chain attached to a substrate
always has several surface contacts such that a “desorbed globule” stops to be
a well -defined description here. For stronger surface attraction one might, how-
ever, identify the transition from attached globules that only have afew contacts
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Fig. 21. (a) Specific heat cV (T ), (b) fluctuation of the radius of gyration component perpendicular

to the substrated
〈

R2
gyr,⊥

〉

(T )/dT , and (c) fluctuation of thenumber of monomers in contact with

the substrate d 〈ns〉 (T )/dT for weak surface attraction, ǫs = 0.7, where the adsorption occurs at a
lower temperature than the collapse.

to docked conformationswith the wetting transition. This roughly coincideswith
the position of the adsorption transition for the free chain between DG and AG
in the phase diagram and is ill ustrated for ǫs = 0.7 in Fig. 21. For a non-grafted

polymer, at the adsorption transition a peak is visible in cV (T ), d
〈

R2
gyr,⊥

〉

/dT

and d 〈ns〉 /dT . For the grafted polymer, on the other hand, the first two peaks
disappear andwith it the adsorptiontransition. Only asignal in thenumber of sur-
face contacts is left. This change of surface contacts in an otherwise unchanged
attached globulesignals thewetting transition.

To summarize, this example was chosen to ill ustrate the application of ex-
tensive parallel tempering simulations to analyze and compare the whole phase
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diagram of a generic off- latticemodel for grafted and non-grafted polymers as a
function of temperature andsurfaceinteractionstrength. Themain differencesbe-
tween the two cases were foundat and above the adsorption transition where the
restriction of translational degreesof freedom dueto grafting becomesimportant.

8. Concluding Remarks

The aim of this chapter is to give an elementary introduction into the basic prin-
ciplesunderlyingmodern Markov chain MonteCarlo simulationsandto ill ustrate
their usefulnessby two advanced applications to quenched, disordered spin sys-
temsandadsorption phenomenaof polymers.

Thesimulationalgorithmsemployinglocal updaterulesarevery generally ap-
plicable but suffer from critical slowing down at second-order phase transitions.
Non-local cluster update methods are much more efficient but more specialized.
Some generalizations from Ising to Potts and O(n) symmetric spin models have
been indicated. In principle also other models may be efficiently simulated by
cluster updates, but there does not exist a general strategy for their construction.
Reweighting techniques and generalized ensemble ideas such as simulated and
parallel tempering, the multicanonical ensemble and Wang-Landau method can
be adapted to almost any statistical physicsproblem whererare-event statesham-
per thedynamics. Well known examplesarefirst-order phase transitionsandspin
glasses, but also some macromolecular systems fall i nto this class. The perfor-
manceof the variousalgorithmscan be judged by statistical error analysis which
is completely general. Finally, also the outlined scaling and finite-size scaling
analyses can be applied to virtually any model exhibiting critical phenomena as
wasexemplified for adisordered spin system.
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Series, Vol. 10, pp. 423–445(2002).

67. A. M. Ferrenberg, D. P. Landau, andK. Binder, J. Stat. Phys. 63, 867(1991).
68. W. Janke andT. Sauer, J. Stat. Phys. 78, 759(1995).
69. B. Efron, The Jackknife, the Bootstrap andOther Resampling Plans (Society for

Industrial andApplied Mathematics [SIAM], Philadelphia, 1982).
70. R. G. Mill er, Biometrika 61, 1 (1974).
71. A. M. Ferrenberg andR. H. Swendsen, Phys. Rev. Lett. 61, 2635(1988).
72. A. M. Ferrenberg andR. H. Swendsen, Phys. Rev. Lett. 63, 1658(E) (1989).
73. B. Kaufman, Phys. Rev. 76, 1232(1949).
74. A. E. Ferdinand andM.E. Fisher, Phys. Rev. 185, 832(1969).
75. P. D. Beale, Phys. Rev. Lett. 76, 78 (1996).
76. N. Wilding, Computer simulation of continuous phase transitions, in Computer Sim-

ulations of Surfaces andInterfaces, NATO ScienceSeries, II . Mathematics, Physics
andChemistry – Vol. 114, eds. B. Dünweg, D. P. Landau, andA. I. Milchev (Kluwer,
Dordrecht, 2003), pp. 161–171.

77. A. M. Ferrenberg andR. H. Swendsen, Phys. Rev. Lett. 63, 1195(1989).
78. S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M. Rosenberg, J.

Comp. Chem. 13, 1011(1992).
79. S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, J.



June 18, 2012 13:35 World Scientific Review Volume - 9in x 6in master

162 W. Janke

Comp. Chem. 16, 1339(1995).
80. T. Bereau and R. H. Swendsen, J. Comp. Phys. 228, 6119(2009).
81. E. Galli cchio, M. Andrec, A. K. Felts, and R.M. Levy, J. Phys. Chem. B 109, 6722

(2005).
82. J. D. Chodera, W. C. Swope, J. W. Pitera, C. Seok, and K. A. Dill , J. Chem. Theory

Comput. 3, 26 (2007).
83. E. Marinari andG. Parisi, Europhys. Lett. 19, 451(1992).
84. A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov, and P. N. Vorontsov-

Velyaminov, J. Chem. Phys. 96, 1776(1992).
85. R. H. Swendsen andJ.-S. Wang, Phys. Rev. Lett. 57, 2607(1986).
86. J.-S. Wangand R. H. Swendsen, Prog. Theor. Phys. Suppl. 157, 317(2005).
87. C. J. Geyer, inComputing Scienceand Statistics, Proceedingsof the23rd Symposium

ontheInterface, ed. E. M. Keramidas(InterfaceFoundation, Fairfax, Virginia, 1991);
pp. 156–163; C. J. Geyer and E. A. Thompson, J. Am. Stat. Assoc. 90, 909(1995).

88. K. Hukushima and K. Nemoto, J. Phys. Soc. Japan 65, 1604(1996).
89. H. G. Katzgraber, S. Trebst, D. A. Huse, and M. Troyer, J. Stat. Mech. P03018

(2006).
90. E. Bittner, A. Nußbaumer, and W. Janke, Phys. Rev. Lett. 101, 130603(2008).
91. J. Gross, W. Janke, and M. Bachmann, Comp. Phys. Comm. 182, 1638 (2011);

PhysicsProcedia 15, 29 (2011).
92. B. A. Berg andT. Neuhaus, Phys. Lett. B 267, 249(1991).
93. B. A. Berg andT. Neuhaus, Phys. Rev. Lett. 68, 9 (1992).
94. B. A. Berg, Fields Inst. Comm. 26, 1 (2000).
95. B. A. Berg, Comp. Phys. Comm. 147, 52 (2002).
96. W. Janke, PhysicaA 254, 164(1998).
97. W. Janke, Histograms and all that, invited lectures, in Computer Simulations of Sur-

faces andInterfaces, NATO ScienceSeries, II . Mathematics, Physics and Chemistry
– Vol. 114, eds. B. Dünweg, D. P. Landau, and A. I. Milchev (Kluwer, Dordrecht,
2003), pp. 137–157.

98. W. Janke, Int. J. Mod. Phys. C 3, 1137(1992).
99. K. Binder, in Phase TransitionsandCritical Phenomena, Vol. 5b, eds. C. Domb and

M. S. Green (Academic Press, New York, 1976), p. 1.
100. G. M. Torrie and J. P. Valleau, Chem. Phys. Lett. 28, 578(1974); J. Comp. Phys. 23,

187(1977) 187; J. Chem. Phys. 66, 1402(1977).
101. B. A. Berg andW. Janke, Phys. Rev. Lett. 80, 4771(1998).
102. B. A. Berg, A. Bill oire, and W. Janke, Phys. Rev. B 61, 12143(2000); Phys. Rev. E

65, 045102(RC) (2002); PhysicaA 321, 49 (2003).
103. E. Bittner andW. Janke, Europhys. Lett. 74, 195(2006).
104. W. Janke (ed.), Rugged Free Energy Landscapes: Common Computational Ap-

proaches to Spin Glasses, Structural Glasses andBiological Macromolecules, Lec-
tureNotes in Physics 736(Springer, Berlin, 2008).

105. W. Janke, B. A. Berg, and M. Katoot, Nucl. Phys. B 382, 649(1992).
106. A. Nußbaumer, E. Bittner, and W. Janke, Europhys. Lett. 78, 16004(2007).
107. E. Bittner, A. Nußbaumer, and W. Janke, Nucl. Phys. B 820, 694(2009).
108. B. A. Berg, J. Stat. Phys 82, 323(1996).
109. B. A. Berg andW. Janke, unpublished notes (1996).



June 18, 2012 13:35 World Scientific Review Volume - 9in x 6in master

Monte Carlo Simulations in Statistical Physics 163

110. B. A. Berg, Comp. Phys. Comm. 153, 397(2003).
111. J. Goodman and A. D. Sokal, Phys. Rev. Lett. 56, 1015 (1986); Phys. Rev. D 40,

2035(1989).
112. W. Janke andT. Sauer, Phys. Rev. E 49, 3475(1994).
113. W. Janke andS. Kappler, Nucl. Phys. B (Proc. Suppl.) 42, 876(1995).
114. W. Janke andS. Kappler, Phys. Rev. Lett. 74, 212(1995).
115. M. S. Carroll , W. Janke, and S. Kappler, J. Stat. Phys. 90, 1277(1998).
116. B. A. Berg andW. Janke, Phys. Rev. Lett. 98, 040602(2007).
117. T. Neuhaus and J. S. Hager, J. Stat. Phys. 11347 (2003).
118. K. Binder and M. H. Kalos, J. Stat. Phys. 22, 363(1980).
119. H. Furukawa and K. Binder, Phys. Rev. A 26, 556(1982).
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216. M. Möddel, M. Bachmann, andW. Janke, J. Phys. Chem. B 113, 3314(2009).
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