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This chapter starts with an overview of Monte Carlo computer simulation
methoddogies which are ill ustrated for the simple case of the Ising model. Af-
ter reviewing importance sampling schemes based on Markov chains and stan-
dard locd upcate rules (Metropdis, Glauber, hea-bath), nonocd cluster-updete
algorithms are explained which drasticdly reduce the problem of criticd slow-
ing dovn at second-order phase transitions and thus improve the performance of
simulations. How this can be quantified is explained in the sedion on statisti-
cd error analyses of simulation dataincluding the dfea of temporal correlations
and autocorrelation times. Histogram reweighting methods are explained in the
next sedion. Eventualy, more advanced generalized ensemble methods (sim-
ulated and parall el tempering, multicanoricd ensemble, Wang-Landau method)
arediscussed which are particularly important for simulations of first-order phase
transitions and, in general, of systems with rare-event states. The setup o scd-
ing and finite-size scding analyses is the content of the following sedion. The
chapter concludes with two advanced appli caions to complex physicd systems.
The first example deds with a quenched, diluted ferromagnet, and in the sec
ond application we consider the adsorption properties of maaomoleaules such
as poymers and proteins to solid substrates. Such systems often require espe-
cialy tail ored algorithms for their efficient and succesul simulation.
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1. Introduction

Clasdcd statisticd physicsisconceptually awell understoodsubjed which pases,
however, many difficult problems when spedfic properties of interading systems
are considered. In almost al nontrivial applicaions, analyticd methods can only
provide gproximate answers. Experiments, on the other hand, are often plagued
by side dfeds which are difficult to control. Numericd computer simulations
are, therefore, an important third complementary method d modern physics. The
relationship between theory, experiment, and computer simulationis ketched in
Fig. 1. On the one hand a computer simulation all ows one to assessthe range of
validity of approximate analytica work for generic models and onthe other hand
it can bridge the gap to experimentsfor red systems with typicaly fairly compli-
caed interadions. Computer simulations are thus helpful on ou way to a deegper
understanding of complex physica systems auch as disordered magnetsand (spin)
glasses or of biologicdly motivated problems auch as protein folding and adsorp-
tion d maaomoleaulesto solid substrates, to mention orly afew. Quantum sta-
tisticd problems in condensed matter or the broad field of elementary particle
physics and quantum gravity are other mgjor applications which, after suitable
mappings, basicdly rely on the same simulation techniques.

This chapter provides an overview of computer simulations employing Monte
Carlo methods based onMarkov chain importance sampling. Most methods can
be ill ustrated with the simple Ising spin model. Not al aspeds can be discussed
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Computer Simulation

Analyticd Theory

Fig. 1. Sketch of the relationship between theory, experiment and computer simulation.

in detail and for further study the reader is referred to recent textbooks,'* where
some of the material presented here is discussed in more depth. The rest of this
chapter is organized as follows. In the next Sed. 2, first the definition o the
standard Isingmodel is briefly recdl ed. Then the basic method unarlyingall i m-
portance sampling Monte Carlo simulations is described and some properties of
locd updete dgorithms (Metropdis, Glauber, hea-bath) are discussed. The fol-
lowing subsedionis devoted to nontlocd cluster algorithmswhich in some cases
can dramaticdly spead upthe simulations. A fairly detail ed acourt of statistica
error analyses is given in Sed. 3. Here temporal correlation effeds and auto-
correlationtimes are discussed, which explain the problems with criticd slowing
down at a continuous phase transition and exporentialy large flipping times at a
first-order transition. Reweighting tedhniques are discussed in Sed. 4 which are
particularly important for finite-size scding studies. More advanced generalized
ensemble simulation methods are briefly outlined in Sed. 5, focusing onsimu-
lated and parall el tempering, the multicanonicd ensemble and the Wang-Landau
method In Sed. 6 suitable observables for scding analyses (spedfic hed, mag-
netization, susceptibility, correlation functions, ...) are briefly discused. Some
charaderistic properties of phase transitions, scding laws, the definition o criti-
cd exporents and the method d finite-size scding are summarized. In order to
ill ustrate how all these techniques can be put to good se, in Sed. 7 two concrete
applicaionsare discussed: The phase diagram of aquenched, dil uted ferromagnet
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and the adsorption properties of polymers to solid substrates. Finally, in Sed. 8
this chapter closes with afew concluding remarks.

2. TheMonte Carlo Method

The goal of Monte Carlo smulationsis to estimate expedation values

(0)= Y Olo)e ™)z, @)
states o
where O stands for any quantity of the system defined by its Hamiltonian 7 and
Z=e = 3" O =N "O(E)e P )
states o E

is the (canonicd) partition function. The first sum runs over al possble mi-
crostates of the system and the second sum runs over all energies, where the
density of states {2(E) courts the number of microstates contributing to a given
energy . The state spacemay be discrete or continuows (where sums become
integralsetc.). Asusua § = 1/kpT denotes the inverse temperature fixed by an
external hea bath and k5 is Boltzmann's constant.

In the following most simulation methods will be ill ustrated for the minimal-
istic Ising model® where

/H(O'):—JZO'Z‘O'J‘—hZO'i s gi:il . (3)
(i)

Here J is a oouping constant which is positive for a ferromagnet (J > 0) and
negative for an anti-ferromagnet (J < 0), h is an external magnetic field, and
the symbal (ij) indicaes that the lattice sum is restricted to al nearest-neighba
pairs of spins living at the lattice sites 7. In the examples discussed below, usu-
aly D-dimensional simple-cubic latticeswith V' = L spins subjed to periodic
boundry condtionsare considered. From now onwe will always assume natural
unitsinwhichkg = 1andJ = 1.

For any redistic number of degrees of freedom, complete enumeration o all
microstates contributingto (1) or (2) isimpaossble. For the Ising model with only
two states per site, enumeration still worksupto a, say, 6 x 6 square latticewhere
236 ~ 6.9 x 10'° microstates contribute. Sincethis yields the exad expedation
value of any quantity, enumeration for very small systems is a useful exercise
for comparison with the numericd methods discussed here. However, already

for a moderate 10° lattice, the number of terms would be astronamicaly large:®
21000 ~ 10300_

aFor comparison, a standard estimate for the number of protons in the Universe is 1089,
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2.1. Random sampling

Oneway out is gochastic sampling o the huge state space Simple randam sam-
pling, however, does not work for statisticd systems with many degrees of free
dom. Here the problem is that the region o state spacethat contributes ggnifi-
cantly to canoricd expedation values at agiven temperature T’ < oo isextremely
narrow and hencefar toorarely hit by randam sampling. Infad, randam sampling
correspondsto setting 3 = 1/7 = 0, i.e., exploringmainly the typica microstates
at infinite temperature. Of course, the low-energy states in the tail s of this distri-
bution contain theoreticdly (that is, for infinite statistics) all i nformation abou
the system’s properties at finite temperature, too, but thisis of very littl e pradica
relevance since the probability to hit this tail in random sampling is by far too
small. With finite statistics consisting o typicaly 10° — 10'? randomly drawn
microstates, thistail regionisvirtually not sampled at all.

2.2. Importance sampling

The solutionto this problem has been knavn sincelongasimportancesampling®’
where aMarkov chain®Cis st up to draw a microstate o; not at random but
acordingto the given equili brium distribution

P = P(g;) = e_ﬂH("%)/Z . (4)

For definiteness on the r.h.s. a canoricd ensemble governed by the Boltzmann
weight e~ #(7:) was assumed, but thisis not essential for most of the following.

A Markov chain is defined by the transition probebility W;; = W(o; —
;) for agiven microstate o; to “evolve” into ancther microstate ; (which may
be again ;) subjed to the condtion that this probability only depends on the
precalingstate o; but not onthe history of thewholetrajedory in state space i.e.,
the stochastic processis ailmost locd in time. Mnemonicdly this can be depicted
as

w w
B 2 o2 2y

LA () I LN
where (%) isthe aurrent state of the system after the kth step of the Markov chain.
To ensure that, after an initial transient or equili bration period, microstates occur
with the given probability (4), the transition probability 1;; has to satisfy three
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) > Wiy=1 Vi, (6)
J
iii) » Wi Pt =P Vi . @)

Thefirst two condtions merely formalizethat, for any initial state o;, W;; shoud
be aproperly normalized probability distribution. The equal signin (5) may oc-
cur and, in fad, does © for almost all pairs of microstates i, j in any redistic
implementation o the Markov process To ensure ergodcity one aditionally
has to require that starting from any given microstate o; any other o; can be
readed in afinite number of steps, i.e., an integer n < oo must exist such that
(W™ i = 3 ki, Wiks Wik, - Wi, 5 > 0. In other words, at least one
(finite) path conreding o; and o; must exist in state spacethat can be redized
with nonzero probability.P

The balance @mndtion (7) implies that the transition probability 17 has to be
chosen such that the desired equili brium distribution (4) isafixed pant of W, i.e.,
an eigenvedor of W with unit eigenvalue. The usually employed detail ed bdance
isastronger, sufficient condtion:

Wi Py =Wy P (8)

By summing ower 7 and wsing the normali zation condtion (6), one eaily proves
the more general balance mndtion (7).

After an initia equili bration period, expedation values can be estimated as
arithmetic mean over the Markov chain,

N
Zo YPU(0) ~ O = — Z ™) (9)

where o(F) standsfor amicrostate & “time” k.© Sincein equili brium (O(o(*))) =
(O) atany“time” k, oneimmediately seesthat (O) = (O), showingthat themean
value O is a so-cdled unbiased estimator of the expedation value (O). A more
detailed exposition o the mathematicd concepts underlying any Markov chain
Mornte Carlo algorithm can be foundin many textbooks and reviews,1=411-13

bIn pradice, one may nevertheless observe “effedive” ergodcity breaing when (Wntl),;is ©
small that this event will typicaly not happen in finite ssimulation time.

®In Monte Carlo simulations, “time” refers to the stochastic evolution in state space adis not diredly
related to physicd time & for instance in moleaular dynamics dmulations where the trjedories are
determined by Newton's deterministic equation.
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2.3. Local update algorithms

The Markov chain condtions (5)—(7) are rather general and can be satisfied with
many diff erent transition probabiliti es. A very flexible prescriptionis the original
Metropdis algorithm,'# which is appliceble in pradicaly all cases (lattice/off-
lattice, discrete/continuots, short-range/longrange interadions, ...). Here one
first proposes with seledion probalility

fij=floi — ;) , fi; 20, Zfijzla (10)
J
a potential update from the aurrent “old” microstate o, = o; to some microstate

o;. The propcsed microstate o; is then accepted asthe “new” state o, = o; with
an acceptanceprobahlity

w;; = w(o; — 0j) = min < ;” J ) , (11
w
where P4 is the desired equili brium distribution spedfied in (4). Otherwise the
system remains in the old microstate, o, = o, which may aso trivially happen
Kegping this in mind, one readily sees that the transition probability W, is
given as

fijwi J#Fi
W, = A 12

! {fii+2j¢ifij(1_wij) j=i 12
Since f;; > 0and 0 < w;; < 1, the first Markov condtion W;; > 0 follows
immediately. Also the secondcondtion (6) is easy to prove:

ZWij = Wi + ZW’J
J

i
:fii+2fij(1_wij)+2fijwij:Zfijzl - (13
JFi J#i J

Finally we show that 1W;; satisfies the detailed balance cndtion (8). We first
consider the cae f;;P;* > fi;P;". Then, from (11), one immediately finds
Wi P = fi;P5 for the L.hs. of (8). Since Wj; = fymin (1,42 qu), the
r.h.s. of (8) becomes

WP fﬂﬁz LIPS = P (14
which completes the proof. For the second case f;;P;* < f;;P;%, the procf

procedls predsely alongthe same lines.
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The update prescription (10), (11) is dill very general: (a) The seledion prob-
ability may be esymmetric (fi; # fj:), (b) it has not yet been spedfied haw to
pick the trial state o; given o, and (c) P4 could be “some” arbitrary probabil -
ity distribution. The last point (c) is obvioudly trivial, but the resulting formulas
simplify when a Boltzmannweight asin (4) is assumed. Then

J_ efﬁAE (15)

where AE = E; — E; = E, — E, isthe energy diff erencebetween the propaosed
new and the old microstate. The second pant (b), on the other hand, is of grea
pradicd relevance since an arbitrary proposa for o, would typicdly lead to a
large AE and hence ahighrejedionrateif 8 > 0. One therefore commonly tries
to update only one degreeof freedom at atime. Then o, differsonly locally from
o,. For short-range interadions this automaticdly has the alditional advantage
that only the locd neighbahood d the seleded degreeof freedom contributes to
AFE, so that there is no need to compute the total energiesin ead updite step.
These two spedadlizations are usualy employed, but the seledion probabiliti es
may still be chosen asymmetricdly. If thisis the case, one refersto this update
prescription as the Metropdi s-Hastings'® update dgorithm. For arecent example
with asymmetric f;; in the context of polymer smulations g e.g., Ref. 16.

2.3.1. Metropdisalgorithm

In generic gpplicaions, however, the f;; are symmetric. For instance, if we pick
oneof the V' Ising spinsat random and proposeto flip it, then f;; = 1/V doesnot
depend oni and j and henceis trivially symmetric. In this case the accetance
probability smplifiesto

P
w;; = min | 1, ﬁ = min (1,6_BAE)

7

_ { 1 E, <E, (16)

€xp [_B(En - Eo)] En Z Eo

Thisisthe standard Metropdisupdate dgorithm, whichisvery easy to implement.

If the proposed update lowers the energy, it is always accepted. On the other
hand, when the new microstate has a higher energy, the update has dill to be ac
cepted with probability (16) in order to ensure the proper treament of entropic
contributions — in thermal equili brium, it is the freeenergy F' = U — T'S which
has to be minimized and nd the energy. Only in the limit of zero temperature,
8 — oo, the accetance probability for new states with higher energy tends to
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zero and the Metropdis method degenerates to a minimizaion algorithm for the
energy functional. With some additional refinements, thisis the basis for the sim-
ulated anrealing technique,'” which is often applied to hard ogtimizaion and
minimization problems.

For the Isingmodel with only two states per spin, aspin flip isthe only admis-
sible locd update proposal. Hencein this smple example there is no parameter
avail able by which ore could tune the acceptanceratio, which is defined as the
fradion o trial moves that are acceted. For models with many states per spin
(e.g., ¢-state Potts or Z,, clock models) or in continuows g/stems (e.g., Heisenberg
spin model or off-lattice moleaular systems), however, it is in the most cases not
recommendable to propose the new state uniformly out of al avail able possbili -
ties. Rather, one usualy restricts the trial states to aneighbahood d the aurrent
“old” state. For example, in a continuos atomic system, atrial move may consist
of displadngarandamly chosen atom by arandom step size upto some maximum
Smax iN €ad Cartesian diredion. If Sy, is gnall, amost al attempted moves
will be acceted and the accgtanceratio is close to urity, but the configuration
spaceis explored slowly. On the other hand, if Sy,.« islarge, a succesful move
would make alarge step in configuration space but many trial moves would be
rejeced becaise configurationswith low Boltzmannweight are very likely, yield-
ing an accetance ratio close to zero. As a compromise of these two extreme
situations, one often applies the common rule of thumb that S,,,.x is adjusted to
adhieve an acceptanceratio of 0.5.181°

Empiricdly thisvalue provesto be areasonable but at best heuristicdly justi-
fied choice In principle, one shoud measurethe statisticd error barsasafunction
of Smax for otherwise identicd simulation conditions and then choose that S«
which minimises the statisticd error. In general the optimal S,,.x dependsonthe
model at hand and even onthe considered observable, so finally some “best aver-
age” would haveto beused. At anyrate, the aorrespondngacceptanceratio would
certainly not coincide with 0.5. Example computations of this type reported val-
uesintherange 0.4 — 0.6 (Refs. 18,20) but for certain models also much smaller
(or larger) values may be favourable. Incidentally, there gppeared recently a proof
in the mathematica lit erature?* claiming an optimal acceptance ratio of 0.234
which, however, relies on assumptions® not met in a typicd statistica physics
simulation.d

Whether relying onthe rule of thumb value 0.5 or trying to optimise Siax,
this shoud be dore before the at¢ual simulation run. Tryingto maintain a given
accetanceratio automaticaly duringthe run by periodicdly updating Sp.x is at

4Thanks are due to Yuko Okamoto who pdnted to this paper and to Bob Swendsen who immediately
commented onit during the CompPhys11 Workshopin November 2011in Leipzig.
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least potentially dangerous.!® The reason is that the acumulated average of the
accetanceratio and hencethe updated S,,. are dependent onthe recent history
of the Monte Carlo trgjedory — and nat only onthe aurrent configuration —what
violates the Markovian requirement. Consequently the balance mndtion is no
longer fulfilled which may lead to more or less ®vere systematic deviations (bias).
Asclaimed arealy awhile egoin Ref. 18 and reemphasized recently in Ref. 20,
by following a caefully determined schedule for the adjustments of Sy,.x, the
systematic error may be kept small er than the statisticd error in a controll ed way,
but to be onthe safe side one shoud bevery cautiouswith thistype of refinements.

Finally a few remarks on the pradicd implementation o the Metropdis
method To dedde whether a proposed updbte shoud be acceted or not, one
draws a uniformly distributed random number » € [0, 1), andif » < w;;, the new
state is accepted. Otherwise one kegos the old configuration and continues with
the next spin. In computer simulations, randam numbers are generated by means
of “pseudorandam number generators’ (RNGs), which produce — acording to
some deterministic rule — (more or lesg uniformly distributed numbers whose
values are “very hard” to predict.>® In other words, given a finite sequence of
subsequent pseudo-random numbers, it shoud be (almost) impossble to predict
the next one or to even uncover the deterministic rule underlyingtheir generation.
The “goodress’ of a RNG isthus assessd by the difficulty to derive its underly-
ing deterministic rule. Related requirements are the ébsence of correlationsand a
very long period, what can be particularly important in high-statistics Smulations.
Furthermore, aRNG shoud be portable anong dff erent computer platformsand,
very importantly, it shoud yield reproducibleresultsfor testing puposes. The de-
sign of RNGsisasciencein itself, and many things can gowrongwith them.© As
a recommendation ore shoud better not experiment too much with some fancy
RNG picked up somewhere from the WWW, say, but rely on well-documented
and well -tested subroutines.

2.3.2. Glaukber algorithm

As indicaed ealier the Markov chain condtions (5)—(7) are rather general and
the Metropdisrule (11) or (16) for the accgtance probability w;; isnot the only
possble choice For instance, when flipping a spin at site i in the Ising model,
w;; can also be taken as?®

wiy = w(oi, = ~01) = 3 [1 — o, tanh (S3,)] an

€A prominent example is the failure of the by then very prominent and apparently well-tested R250
generator when applied to the single-cluster algorithm.24




June 18, 2012 13:35 World Scientific Review Volume - 9in x 6in

.03
[ I L ]
1.0p \ <— Metropolis 7]
gos8F - ]
g1
o)
S 06 SN .
8 Glauber—7
804 =
S I
- B=02
02r _pg=044
_ B=1.0
L L L | L L L 1 L L L | Y L L
0.0g 4 0 4 8

energy difference AE

Fig. 2. Comparison d the accetance ratio for a spin flip in the two-dimensional 1sing model with
the Glauber (or equivaently hed-bath) and Metropdis update dgorithm for three different inverse
temperatures 3.

where S;; = >, ox + h is an effedive spin or field colleding al neighbaing
spins (in their “old” states) interading with the spin at site ip and h is the ex-
ternal magnetic field. Thisisthe Glauber update dgorithm. Detailed balanceis
straightforward to prove. Rewriting o, tanh (55;,) = tanh (50;,S5;,) (making
use of o;, = £1 and the point symmetry of the hyperbalic tangent) and nding
that AE = E,, — E, = 20;,S;, (Whereo;, isthe “old” spin value and (—o;, ) the
“new” one), Eq. (17) beammes
e—BAE/2

1 —tanh (BAE/2)] = eBAE/2 | o—BAE/2

(18)

w(ain — 70’1’0) - 5 [
showing explicitly that the accgtance probability of the Glauber algorithm also
only depends on the total energy change as in the Metropdis case. In this form
it is thus posdble to generalize the Glauber updete rule from the Ising model
with orly two states per spin to any general model that can be simulated with the
Metropdis procedure. The accetance probability (18) is plotted in Fig. 2 as a
function d AF for various (inverse) temperatures and compared with the corre-
spondng probability (16) of the Metropdisagorithm. Note that for al values of
AE andtemperature, the Metropdis accetance probability is higher than that of
the Glauber algorithm. Aswe shall seein the next paragraph, for the Ising model,
the Glauber and hed-bath algorithms are identicd.

The Glauber update dgorithm for the Ising model is also theoreticdly of

master
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interest since for the one-dimensional case the dynamics of the Markov chain
can be cdculated analyticdly. For the relaxation time of the magnetisation
ore finds the remarkably simple result?® m(t) = m(0)exp(—t/Trelax) With
Trelax = 1/[1 — tanh(20)]. For two and higher dimensions, however, no exad
solutions are known.

2.3.3. Heat-bath algorithm

The hea-bath algorithm is diff erent from the two previous updete dgorithmsin
that it does not follow the previous cheme “update proposal plus accet/rejed
step”. Rather, the new value of o;, at arandamly seleded site i, is determined by
testing al it spossble statesin the “hea bath” of its (fixed) neighbas(e.g., 4 ona
squere lattice and 6 ona simple-cubic latticewith neaest-neighba interadions).
For models with a finite number of states per degree of freedom the transition
probability reads

o~ BH(0n) e—B % Higi
Za'io e_BH(O'o) B Z E_B Zk Hiok ’

Tig

w(oo = o) = (29
where ", H;; colled al termsinvolvingthe spin o;,. All other contributionsto
the energy nat involving o;, cance dueto theratio in (19), so that for the update
at ead site ig only asmall number of computationsis necessry (e.g, abou 4 for
asquare and 6for asimple-cubic lattice of arbitrary size). Detailed balance(8) is
obvioudly satisfied since
e~ BH(on) e~ BH(00)
75?‘[(0}1) *57{(‘70) ’
Zaio € Zaio €

How is the probability (19) redized in pradice? Due to the summation ower
al locd states, spedal tricks are necessary when ead degree of freedom can
take many different states, and orly in spedal cases the hea-bath method can
be dficiently generalized to continuots degrees of freedom. In many applica
tions, however, the admissble locd states of ¢;, can be labeled by a small num-
ber of integers, say n = 1,..., N, which occur with probabiliti es p,, ac@rding
to (19). Since this probability distribution is normalized to unty, the sequence
(p1,p2,---Pn,---,pn) decompases the unit interval into segments of length
X pp. If one now draws a random number R € [0, 1) and compares the acer-
mulated probabilities>"'_, px with R, then the new state n is the small est upper
boundthat satisfies ", _, p > R. Clealy, for alarge number of possble loca
states, the determination o n can beame quite time-consuming (in particular,
if many small p,, are & the beginning o the sequence in which case a dever

e_ﬂH(UO) — e_ﬂH(Un)

(20)
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permutation o the p,, by relabeling the almissble locd states can improve the
performance).

In the spedal case of the Ising model with orly two states per spin, o; = +1,
(19) simplifiesto

BoigSi
S 1)

wlo0 = 0n) = B8 S

where o;, isthenew spin value and S;, = >, oy + h representsthe dfedive spin

interadingwith o;, as defined aready below (17). AndsinceAE = E, — E, =

—(0iy — (—0iy))Si, = —204,Si,, the probability for aspin flip becomes?®
e—BAE/2

eBAE/2 L o—BAE/2 °

Thisis identical to the accgtance probability (18) for a spin flip in the Glauber

update dgorithm, that is, for the Ising model, the Glauber and hea-bath update
rules give predsely the same resullts.

w(_aio — Uio) =

(22)

2.4. Temporal correlations

Data generated with a Markov chain methodaways exhibit temporal correlations
which can be estimated from the autocorrelationfunction
(0i0it 1) — (0:)(0;)

(0F) = (0:)(0y)
where O denotes any measurable quantity, for example the energy or magnetiza-
tion (technicd isaues and the way in which temporal correlations enter statistica
error estimates will be discussed in more detail in Sed. 3.1.3). For large time
separations k, A(k) decgys exporentialy (a = const),

A(k) =

(23

A(k) "23° ge /o (24)

which defines the exporential autocorrelationtime 7o cxp. At smaller distances
usually also other modes contribute and A (k) behaves nolonger purely exporen-
tialy.

Thisisillustrated in Fig. 3 for the 2D Ising model on arather small 16 x 16
square lattice with periodic boundary condtions at the infinite-volume aitica
point B, = In(1 4 v/2)/2 = 0.440686 793 . ... The spins were updated in se-
guentia order by propasing always to flip a spin and accepting o rejeding this
proposal acording to (16). The raw data of the simulation are wlleded in a
time-seriesfile, storing 1 000 000 measurements of the energy and magnetization
taken after ead sweep over the lattice, after discarding (quite generously) thefirst
200 000 sweegpsfor equili bratingthe system from a disordered start configuration.
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Fig. 3. (a) Part of thetime evolution o the energy e = E/V for the 2D Isingmodel ona 16 x 16
lattice a@ B = In(1 ++/2)/2 = 0.440686 793 . .. and (b) the resulting autocorrelation function. In
the inset the same data ae plotted onalogarithmic scde, reveding afast initial drop for very smal &
and ndsy behaviour for large k. The solid lines show afit to the ansatz A(k) = aexp(—k/Te,exp)
intherange 10 < k < 40 with 7¢ exp = 11.3 anda = 0.432.

The last 1000sweeps of the time evolution o the energy are shown in Fig. 3(a).
Usingthe completetime series the autocorrelationfunctionwas computed acwrd-
ing to (23) which is shown in Fig. 3(b). On the linea-log scde of the inset we
clealy seethe asymptotic linea behaviour of In A(k). A linea fit of the form
(24),In A(k) = Ina — k/Te exp, iNtherange 10 < k < 40 yields an estimate for
the exporential autocorrelationtime of 7. v, ~ 11.3. In the small k£ behaviour
of A(k) we observe an initial fast drop, correspondng to faster relaxing modes,
before the asymptotic behaviour sets in. This is the generic behaviour of auto-
correlationfunctionsin redistic models where the small-% deviations are, in fad,
often much more pronourced than for the 2D Ising model.

Theinfluenceof autocorrelationtimesis particular pronourced for phase tran-
sitions and critica phenomena.?’=° For instance, close to a aiticd paint, the
autocorrelationtime typicdly scdesin the infinite-volume limit as

TO,exp X 52 ) (25)

where z > 0 isthe so-cdled dynamical critical exporent. Sincethe spatial corre-
lationlength §  |T' — T.|7" — oo whenT' — T, also the autocorrelationtime
To exp divergeswhen the aiticd pointisapproached, 7o exp o T —1T.|~"*. This
leadsto the phenomenon d critical slowing down at a continuous phase transition
which can be observed experimentally for instancein critica opalescence3! The
resson is that locd spin-flip Monte Carlo dyramics (or diffusion dyramicsin a
lattice-gas picture) describes at least qualitatively the true physicd dynamics of a
system in contad with a hea bath. In afinite system, the correlation length € is

master
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limited by the linear system size L, so that the charaderistic length scde is then
L andthe scding law (25) isreplaced by

TO,exp X L= . (26)

For locd dynamics, the aiticd slowing dovn effed is quite pronourced since
the dynamicd critica exporent takes arather large value aound

zR2, (27

which is only we&ly dependent on the dimensionality and can be understood by
a simple randam-walk or diffusion argument in energy space Non-locd update
algorithms such as multi grid schemes®~36or in particular the duster methodsdis-
cusxd in the next sedion can reducethe value of the dynamicd criticd exporent
z significantly, albeit in a strondy model-dependent fashion.

At afirst-order phase transition, a completely diff erent mechanism leads to
an even more severe “sowing-down” problem.3”38 Here, the keyword is “phase
coexistence”. A finite system close to the (pseudo) transition pant can flip be-
tween the mexisting pure phases by crossng a two-phase region. Relative to the
weight of the pure phases, thisregion o state spaceis drondy suppressed by an
additional Boltzmann fador exp(—20L%~1), where o denates the interfaceten-
sion between the cexisting phases, L¢~! isthe (projeded) “area” of the interface
andthe fador 2 acounsfor periodic boundary condtions, which enforce dways
an even number of interfaces for simple topdogicd reasons. The time spent for
crossng this highly suppressed rare-event region scaes propational to the in-
verse of thisinterfada Boltzmann fador, implying that the autocorrelation time
increases exporentialy with the system size,

d—
TO,exp X g2l (29

In the literature, this behaviour is sometimes termed supercritical slowing down,
even though strictly speaking, nothing is “criticd” at a first-order phase transi-
tion. Sincethis type of slowing-down problem is diredly related to the shape of
the probability distribution, it appeas for all types of update dgorithms, i.e., in
contrast to the situation at a second-order transition, here it canna be aured by
employing multigrid or cluster techniques. It can be overcome, however, at least
in part by means of multicanonicd methodswhich are briefly discus=d at the end
of this chapter in Sed. 5.

2.5. Cluster algorithms

The aiticd slowing davn at a seand-order phase transition refleds that exci-
tations on al I ength scdes become important, leading to diverging spatial cor-
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relations. This auggests that some sort of nonlocd update rules shoud be ale
to aleviate this problem. Natural candidates are rules where whole dusters or
droplets of spins are flipped at a time. Still, it took urtil 1987 kefore Swend-
sen and Wang?®® proposed the first legitimate duster update procedure satisfying
detail ed balance. For the Ising model this foll ows from the identity

7 = Zexp (BZU 0'J> (29

{‘71} ”
=2 I [0 =p) +pio0] (30
{oi} (ij)
- Z Z He nU,O +p607,<7]5n7],1] ’ (31)
{oi} {ni;} (i)
where
p=1—e2 (32

Here the n;; are bond acupation variables which can take the values n;; = 0
or 1, interpreted as “deleted” or “active” bonds. The representation (30) foll ows
from the observation that the product o;0; of two Ising spins can only take the
two values £1, so that exp(fo;0;) = = + yds,,,; Can easly be solved for
and y. Andin the third line (31) we made use of the trivial (but clever) identity
a+b=S"_, (ad,0+ bd,1). Going orestep further and performingin (31) the

summation ower spins, one arives at the so-cdled Fortuin-Kasteleyn representa-
tion. 4043

2.5.1. Swendsen-Wangmultiple-cluster algorithm

According to (31) a duster updete swee consists of two aternating steps. One
first updates the bond \eriables n;; for given spins and then updates the spins o;
for agiven bondconfiguration:

() If 03 # o4, setny; = 0, orif o; = o;, asdgn values n;; = 1 and Owith
probability p and 1 — p, respedively, cf. Fig. 4.

(2) Identify stochastic clusters of spins that are conreded by “active” bonds
(nij = 1).

(3) Draw arandam value +1 independently for ead cluster (including ore-site
clusters), which isthen assgned to all spinsin a duster.

Technicdly the duster identification part is the most complicaed step, but there
are dficient algorithms from percolation theory avail able for this task.*4—*7
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Fig. 4. lllustration o the bond \ariable update. The bond ketween unlike spins is always “deleted”
as indicated by the dashed line. A bond letween like spins is only “active” with probability p =
1 — exp(—203). Only at zero temperature (8 — oo) stochastic and geometricd clusters coincide.

Noticethe diff erencebetween the just defined stochastic dusters and geomet-
rical clusters whose boundries are defined by drawing lines through bond be-
tween unlike spins. Infad, sincein the stochastic duster definition bondbetween
like spins are “deleted” with probability pg = 1 —p = exp(—24), stochastic dus-
tersare onthe average small er than geometricd clusters. Only at zero temperature
(8 — 00) po approacheszero andthe two cluster definitionscoincide. Itisworth
pointing ou that at least for the 2D Ising and more generally 2D Potts modelsthe
geometrical clusters also doencode aiticd properties — albeit those of different
but related (tricritica) models.*®

As described abowve, the duster algorithm is referred to as Swendsen-Wang
(SW) or multiple-cluster update.®® The distinguishing padnt is that the whole lat-
tice is decomposed into stochastic dusters whose spins are assgned a random
value+1 or —1. In one sweep orethus attempts to update dl spins of thelattice

2.5.2. Wolff single-cluster algorithm

In the single-cluster algorithm of Wolff*° one aonstructs only the one duster con-
neded with arandamly chasen site and then flips all spins of this cluster. Typicd
configuration pots before and after the duster flip are shown in Fig. 5, which
also ill ustrates the diff erence between stochastic and geometrical clusters men-
tioned in the last paragraph: The upper right plot clealy shows that, due to the
randomly distributed inadive bonds between like spins, the stochastic duster is
much smaller than the underlying badk geometricd cluster which conneds all
neighbainglike spins.

In the single-cluster variant some cae is necessary with the definition o the
unit of “time” since the number of flipped spins varies from cluster to cluster. It
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Fig. 5. [llustration o the Wolff singe-cluster updete for the 2D Ising model ona 100 x 100 square
lattice @ 0.97 x B.. Upper left: Initia configuration. Upper right: The stochastic duster is marked.
Note how it isembedded into the larger geometric duster conreding all neighbainglike (blad) spins.
Lower left: Final configuration after flipping the spinsin the duster. Lower right: The flipped cluster.

also depends crucially ontemperature sincethe average duster size aitomaticaly
adapts to the correlation length. With (|C|) dencting the average duster size, a
sweep isusualy definedto consist of V/(|C|) single duster steps, assuringthat on
the average V' spinsareflipped in ore sweep. With this definiti on, autocorrelation
timesare diredly comparablewith resultsfrom the Swendsen-Wang o Metropdis
algorithm. Apart from being somewhat easier to program, Wolff’ s sngle-cluster
variant is usually more dficient than the Swendsen-Wang multi ple-cluster algo-
rithm, espedally in 3D. The reasonis that with the single-cluster method, on the
average, larger clusters are flipped.
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2.5.3. Embedded cluster algorithm

Whil e for ¢-state Potts model s*° with Hamiltonian Hpegs = — > ij) Oiosr 03 =
1,...,q,thegeneralizaion o (29)—(32) is draightforward (becaise dso the Potts
spin-spin interadion d,,,; contributes only two possble values to the energy, as
in the Isingmodel), for O(n) spin modelswith n > 2 defined by the Hamiltonian

Homy=—JY GG, & =I(0i1,0i2,...,00n) , |G:]=1, (33
(i4)
one needs a new strategy.*%°1°3 The basic ideais to isolate Ising degrees of
freedom by projeding the spins &; onto arandomly chosen unt vedor 7,

=l

+F & =eldi -7, 6 =sign(d; - 7) (34)

- S|

0, = 0;
Insertingthisin (33) one ends up with an eff edive Hamiltonian

Howm) = — Z Jijei€j + const (35
(ig)
with pasitive randam couplings J;; = J|d; - 7]|6; - ] > 0, whose Ising degrees
of freedom ¢; can be updated with a duster algorithm as described above.

2.5.4. Performanceof cluster algorithms

Beside the generalization to O(n)-symmetric spin models, cluster updete dgo-
rithms have dso been constructed for many other models.®® Close to criticdlity,
they clealy outperform locd agorithmswith dynamicd criticd exporent z = 2,
that is, for both cluster variants much smaller values of z have been oltained
in 2D and 3D.38545% For arigorous lower boundfor the autocorrelation time of
the Swenden-Wang algorithm, seeRef. 60. In 2D, the dficiencies of Swendsen-
Wang and Wolff cluster updates are comparable, whereasin 3D, the Wolff update
isfavourable.

2.5.5. Improved estimators

The intimate relationship of cluster algorithms with the correlated percolation
representation of Fortuin and Kasteleyn*®-*3|eads to ancther quite important im-
provement which is not diredly related with the dynamica properties discussed
so far. Within the percolation picture, it is quite natural to introduce dternative
estimators (“measurement prescriptions’) for most standard quantiti eswhich turn
out to be so-cdled “improved estimators’. By this one means measurement pre-
scriptions that yield the same expedation value & the standard ores but have a
smaller statistica variancewhich helpsto reducethe statistica errors.
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Suppcse we want to estimate the expedation value (O) of an observable
O. Then any estimator O satisfying (O) = (0O) is permissble. This does
nat determine O uniquely sincethere ae infinitely many other possble choices,
O’ = O+ X, aslongasthe alded estimator X’ has zero expedation, (X') = 0. The
varianceof the estimator @', hawever, can be quite different andis not necessarily
related to any physicd quantity (contrary to the standard mean-value estimator of
the energy, for instance, whose varianceis propartional to the spedfic hed). It is
exadly thisfreadomin the choiceof © which allowsthe construction of improved
estimators.

For the single-cluster algorithm an improved “cluster estimator” for the spin-
spin correlation functionin the high-temperature phase, G(%; — ;) = (3, - 7;),
is given by>3

L - | . .
G(CEZ — l‘j) = TLET’ c0; -0y @C(Zz>@C(Z]) , (36)
where 7" isthe normal of the mirror plane used in the construction o the duster of
size |C| and ©¢ (%) isits charaderistic function (=1 if Z € C and 0 dherwise).
Inthelsing case (n = 1), this smplifiesto

j) = mec(fi)GC(fj) ; (37

i.e., to the test whether the two sites #; and &; belongto same stochastic duster
or not. Only in the former case, the average over clustersisincremented by ore,
otherwise nothingis added. Thisimpliesthat G/(7; — ;) is grictly positivewhich
is not the case for the standard estimator &; - &, where &1 cortributions have to
average to a positive value. It istherefore & least intuitively clea that the duster
(or percolation) estimator has a smaller variance and is thus indeed an improved
estimator, in particular for large separations |#; — Z;|. For the Fourier transform,
G(k) = Y. G(Z) exp(—ik - &), Eq. (36) implies the improved estimator

2 2
(ZF- J; COS Eft) + <Z 7+ 0 sin Efl)

ieC eC

n

- 38
@ B

G(R)

which, for & = 0, reduces to an improved estimator for the susceptibility x/ =
BV {m?) in the high-temperature phase,

2
G(0)=x'/B= % (Z 7 r?i) : (39)

icC
For the Ising model (n = 1) thisreducesto x’'/5 = (|C]), i.e., the improved
estimator of the susceptibility isjust the average duster size of the single-cluster
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update dgorithm. For the XY (n = 2) and Heisenberg (n = 3) models one finds
empiricdly that in two aswell asinthreedimensions (|C|) ~ 0.81x'/5 forn = 2
(Refs. 51,58) and (|C|) =~ 0.75x’// for n = 3 (Refs. 53,59), respedively.

Closeto criticdity, the average duster size becomes large, growingin afinite
system of linea length L (cf. Sed. 6) as x’ o« LY/ ~ L? sincey/v = 2 —
n with n usualy small, and the advantage of cluster estimators diminishes. In
fad, in particular for short-range quantiti es such as the energy (the next-neighba
correlation) it may even degenerate into a “deproved” or “deteriorated” estimator,
whilelongrangequantities suich as G(#; — ;) for large distances |#; — Z; | usudly
till profit from it. A significant reduction o varianceby means of the estimators
(36)—(39) can, however, always be expeded ouside the aiticd region where the
average duster sizeis gnall compared to the volume of the system.

3. Statistical Analysis of Monte Carlo Data

3.1. Statistical errorsand autocorrelation times
3.1.1. Estimators

When discussng the importance sampling ideain Sed. 2.2 we drealy saw in
Eqg. (9) that within Markov chain Monte Carlo simulations, the expedation value
(O) of some quantity O, for instance the energy, can be estimated as arithmetic
mean,

eq ~ () — 1 al
<0>:;0<0)P (o>~0fﬁk§:jlok , (40)

wherethe “measurement” O, = O(o(¥)) is obtained from the kth microstate o (*)
and N is the number of measurement sweeps. Of course, thisis only valid after
a sufficiently long thermalization period without measurements, which is needed
to equili brate the system after starting the Markov chain in an arbitrarily chasen
initial configuration.

Conceptually it isimportant to distinguish between the expedation value (O),
an ordinary number representing the exad result (which is usualy unknown, of
course), and the mean value O, which is a so-céled estimator of the former. In
contrast to (), the etimator O isarandanvariablewhich for finite N fluctuates
aroundthe theoreticdly expeded value. Certainly, from a single Monte Carlo
simulation with N measurements, we obtain orly a single number for O at the
end o the day. For estimating the statisticd uncertainty due to the fluctuations,
i.e., the statisticd error, it seams at first sight that one would have to reped the
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whole simulation many times. Fortunately, thisis not so becaise one can express

the varianceof O,
2

o5 =({0-(0)*) =(0) - (0)*, (41)
in terms of the statisticad properties of the individual measurements Oy, k =
1,..., N, of asingeMonte Carlo run.

3.1.2. Uncorrelated measurements

Inserting (40) into (41) gives

N N
= % Z ((0F) = (Or)?) + % Z ((O0rO1) = (OK)(Or) , (42
k=1 k#l
where we have wmlleded diagoral and df-diagorel terms. The second, off-
diagoral term encodes the “temporal” correlations between measurements at
“times’ k and [ and thus vanishes for completely uncorrelated data (which is, of
course, never redly the case for importance sampling Monte Carlo simulations).
Assuming equili brium, the variances 03, = (OF) — (O%)? of individual mea
surements appeaing in the first, diagorel term do nd depend on“time” &, such
that 03, = 0, and (42) smplifiesto

025 =04/N . (43

Whatever form the distribution P (O}, ) assumes (which, in fad, is often close to
Gausdan becaisethe Oy, areusually alrealy lattice averages over many degrees of
freedom), by the central li mit theorem the distribution of the mean value is Gaus-
sian, at least for wely correlated data in the asymptotic limit of large N. The
variance of the mean, 025, is the squared width of this (N dependent) distribution
which is usually taken as the “one-sigma” squared error, % = 025, and quded
together with the mean value ©. Under the assumption of a Gaussan distribu-
tionfor the mean, the interpretationis that abou 68% of al simulations under the
same oonditions would yield amean valuein the range [(O) — o4, (O) + 05).%
For a “two-sigma” interval which also is ometimes used, this percentage goes
up to abou 95.4%, and for a “threesigma” interval which is rarely quaed, the
confidencelevel is higher than 99.7%.

3.1.3. Correlated measurements and auocorrelationtimes

For correlated data the off-diagonal term in (42) does nat vanish and things be-
come more involved.®2-%% Using the symmetry k& < [ to rewrite the summation
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Sa 8230, 3L, . reordering the summation, and using time-translation
invariancein equili brium, one obtains®®

1
2 _
0N

od + 2% ((0101+k> - <01><01+k>) (1 - %)] , (49
k=1

where, due to the last fador (1 — k/N), the k = N term may be trivially kept in
the summation. Fadoring out ¢, this can be written as
)
06 = W 27—O,int ) (45)

where we have introduced the integrated autocorrelationtime

S k
TO,int = 5 + ZA(IC) (1 - N) ) (46)
k=1
with
Alk) = (O010111) *2<01><(91+k> ko290 k[0 exp (47)
90

being the normalized autocorrelation function (A(0) = 1). In any meaningful
simulation study ore chooses N >> 7o exp, SO that A(k) is already exporentialy
small before the corredion term (1 — k/N) in (46) becomes important. It is
therefore often omitted for simplicity.

Asfar asthe acaracy of Monte Carlo data is concerned, the important point
of Eqg. (45) isthat due to temporal correlations of the measurementsthe statistica

eror e = /0% on the Monte Carlo estimator O is enhanced by a fador of

\/2To int. This can be rephrased by writing the statistica error similar to the
uncorrelated case & ey = /05, /Negt, but now with a parameter

Neff - N/27_O,int < N ) (48)

describing the effedive statistics. This hows more dealy that only every 27¢ in¢

iterationsthe measurementsare gpproximately uncorrelated and gvesabetter idea
of the relevant effedive size of the statisticd sample. In view of the scding be-

haviour of the autocorrelationtimein (25), (26) or (28), it is obvious that without

extra cae this eff edive sample size may becme very small closeto a cntinuows
or first-order phase transiti on, respedively.
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3.1.4. Bias

A toosmall effedive sample sizedoesnot only affed the aror bars, but for some
guantiti es even the mean values can be severely underestimated. This happensfor
so-cdled biased estimators, as is for instance the case for the spedfic hea and
susceptibility. The spedfic hea can be omputed as C = 82V ((e?) — (e)?) =
B2V a2, with the standard estimator for the variance

N
JR— —2 S —— 1 —\ 2
=02-0 :(0—0)2=NZ(0k—0) . (49)
Subtrading and addmg (0)2, onefinds for the expeded value of 62,
~ — —2 J—
(65) = )= ({02 - @) - (@) - ©)?) =t + 0% . (50
Using (45) this gives
~ 2TO.in 1
<O'(29>O'(29<1 N‘t)oé<1N—eH)7&0é. (52

The estimator 6¢ in (49) thus systematicely underestimates the true value by
a term of the order of 7o ini/N. Such an estimator is cdled weakly biased
(“weely” becase the statistica error o< 1/+/N is asymptoticaly larger than the
systematic bias; for medium or small N, however, also prefadorsneal to be cae-
fully considered).

We thus ®ethat for large autocorrelation times, the bias may be quite large.
Sincefor locd updste dgorithms 7o int Scaesquite strongy with the system size,
some caeisnecessary when choasing the runtime V. Otherwise the system-size
dependenceof the spedfic hea or susceptibility may be systematicdly influenced
by temporal correlations.®” Any serious smulation shoud therefore provide &
least arough ader-of-magnitude estimate of autocorrelationtimes.

3.1.5. Numerical estimation of autocorrelationtimes

The a&bove considerations show that not only for the aror estimation bu also for
the computation o static quantities themselves, it is important to have control
over autocorrelations. Unfortunately, it is very difficult to give reliable a priori
estimates, and an acarrate numericd analysis is often too time consuming. As
aroughestimate it is abou ten times harder to get predse information on dy
namic quantities than on static quantities like aiticd exporents. Similar to the
estimator (49) for the variance a(weéekly biased) estimator A(k) for the autocor-
relationfunctionis obtained by repladngin (47) the expedation values (ordinary
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Fig. 6. (@) Integrated autocorrelation time gpproaciing 7. int ~ 5.93 for large upper cutoff kmax
and (b) binning analysis for the energy of the 2D Ising model ona 16 x 16 lattice & f., using the
same data asin Fig. 3. The horizontal linein (b) shows 27, ;¢ With 7¢ ;¢ rea off from (a).

numbers) by mean values (random variables), e.g., (O1011) by O101 4. With
increasing separation & the relative variance of A(k) diverges rapidly. To get at
least an ideaof the order of magnitude of 7 e andthusthe corred error estimate
(45), it isuseful to record the “running” autocorrelationtime estimator

kmax

+ ) Ak) (52)
k=1

DN | =

7A-O,in‘c (kmax) =

which approadies 7o in¢ in the limit of large knmax Where, however, the statisticd
error rapidly increases. As an example, Fig. 6(a) shows results for the 2D Ising
model from an analysis of the same raw data asin Fig. 3.

Asa compromise between systematic and statisticd errors, an often employed
procedureisto determine the upper limit &, Self-consistently by cutting df the
sUMMation orce kmax > 670 int (kmax ), Where A(k) ~ e=6 ~ 1073, Inthis case

ana priori error estimate is avail able, 343563

[2(2kmax + 1 [ 12
€70,ins — TO,int % = TO,int N—ff . (53)

For a 5% relative acarragy one thus needs at least Nog ~ 5000 or N =~
10000 70,iny Measurements. For an order of magnitude estimate consider the
2D Ising model on a square lattice with .. = 100 simulated with alocd updete
algorithm. Closeto criticdity, theintegrated autocorrelationtime for this example
is of the order of L* ~ L? ~ 1002 (ignaring an unknavn prefactor of “order
unity” which depends on the considered quantity), implying N ~ 10%. Sincein
ead sweep L? spins have to be updated and assuming that ead spin upchte takes
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about 0.1 pusec we end upwith atotal time estimate of about 10° seconds ~ 1
CPU-day to achieve thisacairacy.

An alternative is to approximate the tail end o A(k) by asingle exporential
asin (24). Summing upthe small k£ part exadly, one finds®®

T(’),int(kmax) = TO,int — Ceiknmx/‘ro’exp ) (54)

where ¢ is a constant. The latter expresson may be used for a numericd estimate
of bath the exporential and integrated autocorrel ation times.®®

3.2. Binning analysis

It shoud be dea by now that ignaring autocorrelation effeds can lead to severe
underestimates of statistica errors. Applyingthefull madinery of autocorrelation
analysesdiscussed abowve, however, is often too cumbersome. On aday by day ba-
sisthefoll owing kinninganalysisis much more cnvenient (thoughsomewhat less
acairrate). By groupingthe N original time-series datainto Nz non-overlapping
bins or blocks of length np (such that” N = Ngng), one forms a new, shorter
time series of block averages,

np

1 .
OJ('B) = Ezo(jfl)n5+i ’ j=L...,Np , (59)
i=1

which by choasingthe block length n s >> 7 are dmost uncorrelated and can thus
be analyzed by standard means. The mean value over all block averagesobviously
satisfies O(B) = O and their variance can be computed acordingto the standard
(unhiased) estimator, leading to the squared statisticd error of the mean value,

Np
1 —
2 _ 2 _ 2 _ (B) _ ' »(B))\2
€5 =05=0p/Np= o B_l)jE:1((9j 0B | (56)

By comparing with (45) we seethat 0% /Ng = 270.int05/N. Recdling the
definition of the block lengthnp = N/Np, this showsthat one may also use
270 int = NBOE/0H (57)
for the estimation of 7 ins. Thisis demonstrated in Fig. 6(b). Estimates of 7o int
obtained in thisway are often referred to as “blocking 7" or “binning 7"
A simpletoy model (bivariate time series), where the behaviour of the “block-
ing7” andalso of 7o int (kmax) fOr finiten g resp. kumax Can beworked ou exadly,

isdiscussed in Ref. 26. These analytic formulas are very useful for validating the
computer implementations.

fHere we aaume that N was chosen cleverly. Otherwise one has to discard some of the data and
redefine N.
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3.3. Jackknifeanalysis

Even if the data ae completely uncorrelated in time, one still has to handle the
problem of error estimation for quantities that are not “diredly” measured in the
simulation bu are computed as a nonlinea combination o “basic” observables
such as (0)? or (0;)/(O2). This problem can either be solved by error propa-
gation o by using the Jadkknife method,®®7° where instead of considering rather
small blocks of length np and their fluctuations as in the binning analysis, one
forms Np large Jackknife blocks OE") containingall data but the jth block of the
previous binning method,

%6) (B)
J N — np

cf. the schematic sketch in Fig. 7. Each of the Jadkknife blocks thus consists of
N —np = N(1—-1/Ng) data, i.e., it contains almost as many data &s the orig-
inal time series. When nonlinea combinations of basic variables are estimated,
the bias is hence mmparable to that of the total data set (typicdly 1/(N — np)
compared to 1/N). The Np Jadkknife blocks are, of course, trivially correlated
becaise one and the same original dataisre-used in Nz — 1 different Jadkknife
blocks. Thistrivial correlation caused by re-using the original data over and over
again has nathing to dowith temporal correlations. As a mnsequence, the Jadk-
nife block variance o will be much smaller than the variance estimated in the
binning method Because of the trivial nature of the rrelations, however, this
reduction can be correded by multiplying o with afador (N — 1)2, leadingto

j:17"'7NB7 (58)

2 _ 2_NB*1NB () _ »())2
65205_TBZ(OJ. —OW)2 (59)
j=1

To summarizethis ®dion, any redization o aMarkov chain Monte Carlo up-
date dgorithm is charaderised by autocorrelationtimes which enter diredly into
the statisticd errors of Monte Carlo estimates. Sincetemporal correlationsaways
increese the statisticd errors, it is thus a very important issue to develop Monte
Carlo update dgorithmsthat keep autocorrelationtimes as anall aspossble. This
isthe reason why cluster and aher nonlocd algorithms are so important.

4. Reweighting Techniques

The physics underlying reweighting techniques’’? is extremely simple and the
basic ideahas been known since long (seethe list of referencesin Ref. 72), but
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Fig. 7. Sketch of the organization o Jadkknife blocks. The grey part of the N data pointsis used for
cdculating the total and the Jadkknife block averages. The white blocks enter into the more anven-
tiona binning analysis using noroverlapping Hocks.

their power in pradice has been redized only relatively late in 1988 The impor-
tant observation by Ferrenberg and Swendsen’%"2 was that the best performance
is achieved near criticdity where histograms are usually broad. In this ®nse
reweightingtedhniquesare complementary to improved estimators, which usualy
perform best off criticdity.

4.1. Single-histogram technique

The single-histogram reweighting technique’® is based onthe foll owing very sim-
ple observation. Dencting the number of states (spin configurations) that have
the same energy e = E//V by Q(e), the partition function at the simulation pant
Bo = 1/kpT, can always be written as?

Z(ﬂo) - Ze_ﬂOH(U) - ZQ(E)Q_BOE X Z Pﬁo (e) ’ (60)

where we have introduced the unnamali zed energy histogram (density)
Pg, (e) < Q(e)e P (69

If we would naomalize Pg, (e) to unit area ther.h.s. would have to be divided by
> Psy(e) = Z(Bo), but the normalizationwill be unimportant in what foll ows.
L et usasumewe have performed aMonte Carlo simulation at inversetemperature

9For simpli city we consider here only models with discrete energies. If the energy varies continuotsly,
sums have to be replacel by integrals, etc. Also lattice size dependences are suppressed to keep the
notation short.
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Bo andthusknow P, (e). Itisthen easy to seethat
Ps(e) Q(e)e*BE = Q(e)eiﬁoEe*(Bfﬁo)E x Pg, (e)e*(ﬁfﬁo)E , (62

i.e., the histogram at any pant 5 can be derived, in principle, by reweighting the
simulated histogram at 3, with the exporential fador exp[— (55 — 8o)E]. Notice
that in reweighted expedation values,

(F(e)(B)=>_ fle)Ps(e)/ > Psle) (63)

the normalization o Ps(e) indeed cancds. This gives for instance the energy
(e)(B) and the spedfic hea C(B8) = B2V [{e?)(B) — (e)(B)?], in principle, as
a oontinuows function o 3 from a single Monte Carlo simulation at 3y, where
V = LP isthesystem size.

As an example of this reweighting procedure, using adual Swendsen-Wang
cluster simulation data (with 5000sweeps for equili bration and 50 000swegds
for measurements) of the 2D Ising model at 5y = 8. = In(1 + \/5)/2 =
0.440686... on a 16 x 16 lattice with periodic boundry condtions, the
reweighted data pointsfor the spedfic hea C(3) are shownin Fig. 8(a) and com-
pared with the continuous curve obtained from the exad Kaufman solution’®74
for finite L, x L, lattices. Note that the location o the peek maximum is dightly
displaced from the infinite-volume transition pdnt 5. due to the roundng and
shifting o C(3) caused by finite-size dfeds discussed in more detail in Sed. 6.
This comparison clealy demonstrates that, in pradice the g-range over which
reweighting can be trusted is limited. The reason for this limitation are un-
avoidable stetisticd errorsin the numericd determination of Pg, using a Monte
Carlo simulation. In the tails of the histograms the relative statisticd errors are
largest, and the tail s are exadly the regions that contribute most when muilti ply-
ing Pg,(e) with the exporential reweighting fadtor to oltain Ps(e) for S-values
far off the simulation pdnt 8,. Thisis illustrated in Fig. 8(b) where the simu-
lated histogram at 8y = f. is shown together with the reweighted histograms at
B =0.375~ B, — 0.065 and 8 = 0.475 ~ B, + 0.035, respedively. For the 2D
Ising model the quality of the reweighted histograms can be judged by comparing
with the aurves obtained from Bede's™ exad expressonfor ©(e).

4.1.1. Reweightingrange

As arule of thumb, the range over which reweighting shoud produce accrate
results can be estimated by requiring that the peek locaion o the reweighted his-
togram shoud na exceel the energy value & which the input histogram had de-
creased to abou one half or one third of its maximum value. In most appli cations
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Fig. 8. (@) Thespedfic hea of the 2D Isingmodel ona 16 x 16 sguare lattice mmputed by reweight-
ing from a singe Monte Carlo simulation a 89 = ., marked by the filled data symbol. The on-
tinuots line shows for comparison the exad solution of Kaufman.”37# (b) The mrrespondng energy
histogram at 3y, andreweighted to 5 = 0.375 and 8 = 0.475. The dashed lines show for comparison
the exad histograms obtained from Bede's expresson.”®

thisrangeiswide enoughto locate from asingle smulation, e.g., the spedfic-hea
maximum by employing a standard maximization subroutine to the continuows
function C(3). Thisis by far more convenient, acarrate and faster than the tradi-
tional way of performing many simulations close to the pe&k of C'(5) and trying
to determine the maximum by splines or least-squares fits.

For an analyticd estimate of the reweighting range we now require that the
pedk of thereweighted histogramiswithinthewidth (e)(Ty) £ Ae(T}) of theinpu
histogram (where aGaussan histogram would have deaeased to exp(—1/2) ~
0.61 of its maximum value),

[{e)(T") — (e)(To)| < Ae(Th) (64)

where we asumed that for a not too asymmetric histogram Pg, (¢) the maximum
location approximately coincides with (e)(Tp). Recdling that the half width
Ae of a histogram is related to the spedfic hea via (Ae)? = ((e — (e))?) =
(e?) — (e)? = C(By)/B2V and wsing the Taylor expansion (e)(T) = {(e)(Tp) +
C(To)(T — Tp) + ..., thiscan bewritten as C(Tp)|T — Ty| < To/C(Ty)/V or
T — T < L1

Ty ~ VV/CO(Ty)
Since C'(Ty) isknown from the input histogram thisis quite ageneral estimate of
the reweighting range. For the examplein Fig. 8 with V' = 16 x 16, 8y = (. =~

0.44 and C(To) ~ 1.5, thlsealmateylelds |B — 60|/60 = |T — TO|/T0 < 0.05,
i.e, |8 — Pol <0.020r0.42 < 5 < 0.46. By comparison with the exad solution

(65
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we seethat thisisindeed afairly conservative estimate of the reli able reweighting
range.

If we only want to know the scding behaviour with system sizeV = LP, we

can go ore step further by considering threegeneric cases:

i)

i)

ii )

Off-critical, where C(Tp) ~ const, such that

T — Tp|
 x

0

vz == (66)

Critical, where C(Ty) ~ a1 + as L*/¥, with a; anda, being constants, and o
and v denoating the standard criticd exporents of the spedfic hea and corre-
lation length, respedively. For o > 0, the leading scaling behaviour becomes
|T — To| /Ty < L~P/2L=2/?¥, Assuming hyperscding (a = 2 — Dv) to be
valid, this dmplifiesto

T — Ty

0

x L7V, (67)

i.e., the typicd scding behaviour of pseudo-transition temperatures in the
finite-size scding regime of a second-order phase transition.”® For o < 0,
C(Ty) approaches asymptoticdly a mnstant and the lealing scding be-
haviour of the reweightingrange is as in the off- criti cd case.

First-order transitions, where C'(Tp) oc V = L. Thisyields

|T — To

-1 _ r7-D
T xV=L (68)

which is again the typicd finite-size scding behaviour of pseudo-transition
temperatures close to afirst-order phase transition.®8

4.1.2. Reweighting o non-conjugate observables

If we dso want to reweight other quantities auch as the magnetizaionm = (i)
we have to go ore step further. The cnceptualy ssimplest way would be to
store two-dimensional histograms P, (e, ) wheree = E/V isthe energy and
p = >, 0;/V the magretization. We oould then procee in close analogy to
the preceding case, and even reweighting to nornzero magnetic field ~ would be
possble, which enters via the Boltzmann fador exp(8h )", 0;) = exp(BV hpu).
However, the storage requirements may be quite high (of the order of V2), andit
is often preferable to procedl in the following way. For any function g(u1), e.g.,

master
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Fig. 9. Microcaenoricd expedation values for (a) the ésolute magnetization and (b) the magnetiza:
tion squared ohtained from the 2D Ising model simulations shown in Fig. 8.

g(u) = p*, we can write

) = ZQ(M( e M 1Z(Bo) = e, (e ™F | Z(Bo)

el

ZQ e,we” P/ Z(Bo) . (69
173

Recdling that Y-, Q(e, p)e 7% /Z(Bo) = Qe)e"F/Z(By) = Pp,(e) and
defining the mlcrocanoncal expedation value of g(y) at fixed energy e (some-
timesdenoted asa “list”),

_ 2, e mg(p)
{g(u)(e) = S Qe (70)

we arive &

{g(u)) =Y _({g(u)) ()P, (e) - (71)

€

Identifying ({(g(u)))(e) with f(e) in Eq. (63), the acual reweighting procedure
is predsely as before. An example for computing ((||))(e) and ((12))(e) using
the data of Fig. 8 is shown in Fig. 9. Mixed quantities, e.g. (e*u'), can betreaed
similarly. One caved of this methodis that one has to dedde beforehand which
“lists” ({g(u)))(e) onewantsto store during the simulation, e.g., which powersk
in ((u*))(e) arerelevant.

An dternative and more flexible method is based on time series. Suppcse
we have performed a Monte Carlo smulation at 3, and stored the time series
of N measurements ey, es,...,ex and pg, pio, ..., uy. Then the most general
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expedation values at ancther inverse temperature 5 can simply be obtained from
N N

(Flesm)y =3 flei piJe”F7FOE )y Jem(Bmmbe, (72
=1 =1

i.e., in particular all moments (e*u!) can be computed. Notice that this can also
be written as

(f(e, ) = (f(e, p)e” B=PIEY, j(e=(B=A By, (73)

where the subscript 0 refers to expedation values taken at 3,. Ancther very im-
portant advantage of the last formulationis that it works withou any systematic
discretization error also for continuowsly distributed energies and magnetizations.

As nowadays hard-disk spaceis no red li mitation anymore, it is advisable
to store time series in any case. This guarantees the greaest flexibility in the
data analysis. As far as the memory requirement of the adual reweighting code
is concerned, however, the method d choiceis sometimes not so clea. Using
diredly histogramsandlists, onetypicdly hasto store ebout (6 — 8)V data, while
working dredly with the time seriesone neads 2N computer words. The chegper
solution (also in terms of CPU time) thus obviously depends on bah, the system
sizeV andtherunlength N. Itishencesometimesfaster to generatefromthetime
seriesfirst histograms andthe required li sts and then proceed with reweightingthe
latter quantities.

4.2. Multi-histogram technique

The basic ideaof the multi-histogram technique’” can be summarized as foll ows:

i) Performm MonteCarlosimulationsat 51, o, . .., B With N;, i = 1,...,m,
measurements,
i) reweight all runsto a commonreferencepoaint 5y,
iii) combine & 3, al i nformation by computing error weighted averages,
iv) reweight the “combined histogram” to any cther .

Since aweighted combination of several histograms enters this methodit is also
referred to as “weighted histogram analysis method’ or “WHAM”.787° In fad, in
chemistry and biochemistry the multi -histogram methodis basicaly only known
under thisaaonym.

To proceed we first note that the exad normalized energy distributionat 5 =
3; can we written as

Qe)e P

Pe) = Py e) = =p— .

(74)
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where Z; = Z(p;) sothat ) P;(e) = 1. Thiscan be estimated by the empirica
histogram H;(e) obtained from the simulation at 3,

Pile)=—F— (79

which also satisfies the normalization constraint > Pi(e) = 1. Rearanging (74)
and repladng the exad P;(e) by its estimator If’i(e) yields an estimator for the
density of states (this corresponds to choosing the common reference point as
Bo = 0):

A .z Hi(e)

Qi(e) = Z;e’ T (76)
Notice that we have introduced a subscript i to label the m estimators €;(e).
The expedation value of ead ;(e) shoud be the exact €2(e), but being randam
variablestheir statistica propertiesare diff erent as can be quantified by estimating
their variance. Thisis dmplest dore by interpreting the histogram entries H;(e)
as result of measuring O = J., . Where e, denotesthe energy after the t’s sveep
of thesmulationat j3;:

N;
H,-(e) o o 1 g
Ti - 66t,€ - _,L 66t,€ . (77)
t=1
Asin (40) and (41) the expeded value is (H;(e)/N;) = (1/N;) Yr (8e,.e) =
P;(e) and, negleding temporal correlations for the moment,

1

Ni(N'i - 1)<66t7€><65ﬂ7€> + Ni<5et7e5eu,e>] (78)

= Pi(e)’ + 3 P01~ P(e)] |

?

such that

U?—Ii(e)/Nq, = <(HZT(26) - <HLT(26)>)2> = Niipi(e)[l — Pi(e)] . (79

For sufficiently many energy bins, the normalized probabiliti es P;(e) are much
small er than unty, such that the seaondterm [1 — P;(e)] can usualy be negleded.
Taking autocorrelations into acaount, as in (45) the variance (79) would be en-
hanced by a fador 27,,,,;(¢). Recdl that the subscript i of 7, i(e) refersto the
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simulation pant and the agument e to the energy bin. Note that the autocorrela-
tiontimes of the histogram bins are usually much small er than the autocorrelation
time 7y, Of the mean energy. For thefollowingit isuseful to define the dfedive
statistics parameter Neg ;(€) = N;/27ins,:(€). Recdling (76), the variance of the
m estimators (2 (¢) can then be written as

Z_262[‘3iE ZeﬂLE
% = Zipi = ! Q . 80
UQ%(G) Neﬁ,i (6) (e) Neff,i (6) (e) ( )

Asusual the eror weighted average

S wie)Qile)

Qopi(€) = — (81
Pt( ) Zizl wl(e)
with w;(e) = 1/0?2_(8) is an optimised estimator with minimal variance
J?ﬁopt(e) =1/3"" wi(e). Thiscan besimplified to
A ni Hi e 27’111 ile
Qupe0) = 2=t )2 Tnale) e
>icy Ne,i(e)Z; e P
and
1
o2 0%(e) = =m . (83
() V) = S )] 20

So far the partitionfunction values Z; = Z(3;) have been assumed to be exad
(albeit usualy unknownvn) parameters which are now self-consistently determined
from

A _ g " Hi(€e)/2Ting,i(e 'y

Zj = ;Qopt(e)e BiE — g ZZIZ(:N;/QTiit’Ze))Zi(le)—ﬂmEe B E , (84)
up to an unmportant overall constant. A goodstarting pant for the reaursionis
to fix, say, Z; = 1 and wse single histogram reweighting to get an estimate of
Zy/ 7y = exp|—(Fy — F})], where F; = 5, F(53;). Once Z is determined, the
same procedure can be goplied to estimate Z3 and so on In the limit of infinite
statigtics, thiswould already yield the solution o (84). In redistic smulationsthe
statisticsis of courseli mited andthe remaining reaursions average this uncertainty
to get a self-consistent set of Z;. In order to work in pradice the histograms at
neighbaing 8-values must have sufficient overlap, i.e., the spadngs of the simu-
lation pants must be chosen acmrding to the estimates (66)—(68). The isaue of
optimal convergenceof the WHAM equations (84) has recently been discussed in
detail i n Ref. 80.

Multi ple-histogram reweighting has been employed in awide spedrum of ap-
plicaions. In many applicéions the influence of autocorrelations has been ne-
gleded sinceit is quite cumbersome to estimate the 7,,¢,;(¢) for ead of the m
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simulations and all energy bins. For work deding with autocorrelations in this
context seeg e.g., Refs. 81,82. Note that, even when ignaring the 7 ; (), the a-
ror weighted averagein (81) does dill give a ©rred estimator for 2(e) —itisonly
no longer properly optimised. Moreover, sincefor eat energy bin typicdly only
the histograms at neighbaing simulation pdnts contribute significantly, the two
or threer;,, ;(e) valuesrelevant for ead energy bin e are dose to ead other. And
since a overall constant drops out of the WHAM equation (84), the influence of
autocorrelationsonthe final result turns out to be very minor anyway.

Alternatively>® one may also compute from ead of the m independent sim-
ulations by reweighting all quantities of interest as a function o 3, together
with their proper statisticd errors including autocorrelation effeds as discussed
in Sed. 3.1.3. As a result one obtains, at eah §-value, m estimates, e.g.
e1(B) £ Aey,ea(B) + Aea, ..., en(B) = Ae,,, Which may be optimally com-
bined acwrdingto their error barsto givee(3) + Ae, where

_ [ eB) | eB) | em(B) )2
e(B) = <(Ae1)2 + (Bes)’ 4o (Aem>2> (Ae)” (85)

and

1 1 1 1

(Ae)  (Aey)? i (Aes)? A (Dem)?

(86)

Noticethat by this methodthe average for eat quentity can be individually opti-
mised.

5. Generalized Ensemble M ethods

All Monte Carlo methods described so far assimed a conventional canoricd en-
semble where the probability distribution of microstates is governed by a Boltz-
mann fador oc exp(—3FE). A simulation at some inverse temperature 3, then
covers a cetain range of the state spacebut not all (recdl the discusson o the
reweighting range). In principle abroader range can be adieved by patching
several simulations at diff erent temperatures using the multi-histogram method
Loosely speeking generalized ensemble methods am at repladng this “static”
patching by a single simulation in an appropriately defined “generalized ensem-
ble”. The purpose of this edionisto give & least a brief survey of the available
methodk.
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5.1. Simulated tempering

One gproac are tempering methods which may be dharaderized as“dynamicd”
multi-histogramming. Similarly to the static reweighting approad, in “ simulated”
aswell asin “paralel” tempering ore considers m simulation pants g1 < 2 <
-+ < B, which here, however, are cmnreded already during the simulationin a
spedfic, dynamicd way.

In simulated tempering sSimulations®384 one starts from a joint partition func-
tion (expanded ensemble)

m

Zsp =Y e% Y e PHEO (87)
=1 o

where g, = B;f(8;) and the inverse temperature 3 is treded as an additional
dynamicd degreeof freedom that can take the values 31, . .., 5,,,. Employinga
Metropdis updete dgorithm, a proposed move from 5 = 3; to 3; with o fixed is
accepted with probability

w = min {1, exp[~(8; — B)H(0) + g; — 9]} - (89

Similar to multi-histogram reweighting (and also to multicanoricd simulations
discussed below), the free-energy parameters g; are a priori unknovn and have
to be adjusted iteratively. To asaure areasonable accetancerate for the 5-update
moves (usually between neighbaing 3;-values), the histograms at 3; and 3,1,
i=1,...,m—1, must overlap. An estimatefor asuitablespadngAg = 5;11—0;
of thesimulation pdnts g; is henceimmediately given bythe results (66)—(68) for

the reweighting range,
L=P/2  off-criticd ,
AB o { L™1/v criticd (89)

L° first-order .

Overall the smulated tempering method shows ome simil ariti es to the “avoiding
rare events’ variant of multicanonicd simulations briefly discussed in subsedion
5.3.

5.2. Parallel tempering

In parallel tempering o replica exdhange or multiple Markov chain Monte Carlo
simulations, 8588 the starting pdnt is a product of partition functions (extended
ensemble),

Zpr = H Z(Bi) = H Z e Pitled) | (90)

=1 =1 o;
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and al m systems at different smulation pdnts 5; < 52 < -+ < f3,,, @e simu-
lated in parallel, using any legitimate update dgorithm (Metropdis, cluster,...).
This freedom in the choice of update dgorithm is a big advantage of a paral-
lel tempering simulation®® which is a spedal case of the ealier replica exchange
Monte Carlo method?® propased in the context of spin-glass $mulations (to some
extent thefocusonthis pedal applicaion hidesthe general aspeds of the method
as becomes cleaer in Ref. 86). After a catain number of sweeps, exchanges of
the aurrent configurations o; and o; are atempted (equivalently, the 5; may be
exchanged, as is done in most implementations). Adapting the Metropdis crite-
rion (16) to the present situation, the proposed exchange will be acceted with
probability

w = min{1, exp[(8; — 5;)(E; — E;)]} (99

where E; = E(0;). To asure areasonable accgtancerate, usualy only “neaest-
neighba” exchanges (j = ¢ + 1) are dtempted and, as a first rough gess the
(; could again be spaceal by AS given in (89). By caefully monitoring the dy-
namics of the dgorithm, recently much morerefined prescriptionsfor the optimal
choiceof the simulation pdnts 3; have been propased.%°0 In most applications,
the small est inversetemperature 3; ischosen in the high-temperature phase where
the autocorrelationtime is expeded to be very short and the system deoorrelates
rapidly. Conceptualy this approach foll ows again the “avoidingrare events’ strat-
egy.

Notice that in parallel tempering no freeenergy parameters have to be a-
justed. The methodisthus very robust and moreover can be dmost trivially paral-
lelized. For instanceit it straightforward to implement thisalgorithm onagraphics
card and perform “parall el tempering GPU computations’.%*

5.3. Multicanonical ensembles

To concludethisintroductionto simulationtedhniques, at least avery brief outline
of multicanorica ensembles®®®2 shall be given. For more details, in particular on
pradicd i mplementations, seethe ealier reviews®*°" and the textbook byBerg.*
Similarly to the tempering methods of the last sedion, multicanonicd simula-
tionsmay also beinterpreted as adynamicd multi -histogram reweighting method
Thisinterpretationis gressed by the notation used in the original papers by Berg
and Neuhaus?>?3 and explains the name “multicanoricd”. At the same time, this
methodmay also be viewed as aspedfic redizaion o non-Boltzmannsampling®®
which has been known sincelongto be alegitimate dternative to the more stan-
dard Monte Carlo approaches.®® The pradicad significance of non-Boltzmann
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sampling was first redized in the so-cdled “umbrella sampling’ method,*%° but
it took many yeas before the introduction of the multicanoricd ensemble turned
non-Boltzmannsamplinginto awidely appredated pradicd tool in computer sim-
ulation studies of phase transitions. Once the feasibility of such a generalized
ensemble goproach was redized, many related methods and further refinements
were developed. By now the goplications of the method range from physics and
chemistry to biophysics, biochemistry and biologyto engineaing problems.

Conceptually the method can be divided into two main strategies. The first
strategy can be best described as “avoiding rare events’ which is close in spirit to
the dternative tempering methods. In this variant one tries to conned the impor-
tant parts of phase spaceby “easy paths’ which goaroundsuppressed rare-event
regions which hence caina be studied diredly. The second approach is based
on “enhancing the probability of rare event states’, which is for example the typ-
icd strategy for deding with the highly suppressed mixed-phase region o first-
order phase transitions®®°’ and the very rugged freeenergy landscapes of spin
glasss 191194 Thisallows adired study o propertiesof the rare-event states such
as, e.g., interfacetensions or more generally free energy barriers, which would be
very difficult (or pradicdly impossble) with canoricd simulations and also with
the tempering methods described in Seds. 5.1 and 52.

In general the idea goes as follows. With o representing genericdly the
degrees of freedom (discrete spins or continuots field variables), the canonicd
Boltzmann dstribution

Pean(0) ox e P (92
isreplaceal by an auxili ary multicanornicd distribution
Pinuca(0) o< W (Q(o))e M) = emFHmenle) (93)

introducing a multicanoricd weight factor W (Q) where ) standsfor any maao-
scopic observable such as the energy or magnetization. This defines formally
Himuea = H — (1/8) In W (Q) which may be interpreted as an effedive “muilti-
canonicd” Hamiltonian. The Monte Carlo sampling can then be implemented as
usual by comparing Hmuca before and after apropaosed upckte of o, and canoricd
expedation values can be recmvered exadly by inverse reweighting,

<O>can - <OW_1(Q)>muca/<W_1(Q)>muca ) (94)

similarly to Eq. (73). Thegoal isnow to find a suitable weight fador W such that
the dynamics of the multicanonicd simulation profits most.

To be spedfic, let usasauumein the foll owingthat the relevant maaoscopic ob-
servableisthe energy E itself. Thisisfor instancethe case & atemperaturedriven
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P(E)

-E/V

Fig. 10. The canoricd energy density Pean(F) of the 2D 7-state Potts model ona 60 x 60 lattice &
inverse temperature S.qn, 1., Where the two peeks are of equal height, together with the multi canoricd
energy density Pmuca(E), which is approximately constant between the two peaks.

first-order phase transition, where the canoricd energy distribution P, (E) de-
velopsa dharaderistic doute-pe&k structure.®® Asanill ustration, simulation data
for the 2D 7-state Potts model1%® are shown in Fig. 10. With increasing sys-
tem size, the region between the two pegks becomes more and more suppressed
by the interfadal Boltzmann fador oc exp(—20,4L” 1), where 0,4 is the (re-
duced) interfacetension, LP~! the aosssedion o a D-dimensional system, and
the fador 2 acourts for the fad that with the usually employed periodic bound
ary condtion at least two interfaces are present due to topdogicd reasons. The
time needed to crossthis drondy suppressed rare-event two-phase region thus
grows exporentially with the system size L, i.e., the autocorrelation time scaes
as 7 o< exp(+20,qLP~1). In the literature, this is sometimes termed “super-
criticd slowing davn” (even though naehing is “criticd” here). Given such a
situation, one usually adjusts W = W (E) such that the multicanoricd distribu-
tion Pouca(E) isapproximately constant between the two peaksof Pe,, (E), thus
aiming at a random-walk (pseudo-) dynamics of the Monte Carlo process!©6107
cf. Fig. 10.

The aucial nontrivial paint is, of course, how this can be adieved. On a
pieceof paper, W(E) x 1/Pean(E) — bu we do nd know P, (F) (otherwise
there would be littl e need for the simulation . ..). The solution o this problemis
areaursive computation. Starting with the canonicd distribution, or some initial
guessbased onresults for already simulated small er systems together with finite-
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size scding extrapolations, one performs a relatively short simulation to get an
improved estimate of the canonicd distribution. When thisisinverted ore obtains
a new estimate of the multicanoricd weight fador, which then is used in the
next iteration and so on In this naive variant only the simulation data of the last
iteration are used in the construction o the improved weight fador.

A more sophisticaed reaursion, in which the updated weight fador, or more
conveniently theratio R(E) = W(E + AE)/W (E), is computed from all avail -
able data acumulated so far, works as foll ows; 97:108-110

1. Performasimulationwith R,,(F) to oktain the nth histogram H,, (E).
2. Compute the statisticd weight of the nth run:

3. Acaumulate statistics:

Pr+1(E) = pn(E) +p(E) , (96)
K(E) = p(E)/pn+1(E) . (97

4. Update weight ratios:
Roi1(E) = R, (E) [Ho(E)/Hn(E + AE)S5) (98)

Goto 1

Thereaursionisinitiaized with po(E) = 0. To derivethisreaursion ore asumes
that (unnamalized) histogram entries H,,(E) have an a priori statisticd error
H, (F) and(quite cudely) that all data ae uncorrelated. Due to the acamula-
tion o statistics, this procedureis rather insensitive to the length of the nth runin
the first step and has proved to be rather stable and efficient in pradice
In most applicéions locd update dgorithms have been employed, but for
cetain classes of models also nonlocad multigrid methods®43511 are goplica
ble.f8112 A combination with nonloca cluster update dgorithms, on the other
hand, is nat straightforward. Only by making dred use of the random-cluster
representation as astarting pdant, amultibondc variant*3-11°has been devel oped.
For a recent application to improved finite-size scding studies of second-order
phase transitions, seeRef. 116. If P, Was completely flat and the Monte Carlo
update moves would perform an ided randaom walk, one would exped that af-
ter V2 locd updates the system has travelled on average adistance V' in total
energy. Since one lattice sweep consists of V' locd updates, the autocorrelation
time shoud scde in this idedized picture s 7 o V. Numericd tests for vari-
ous modelswith afirst-order phase transition have shown that in pradicethe data
are & best consistent with a behaviour 7 o« V<, with o > 1. While for the
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temperature-driven transitions of 2D Potts models the multibondc variant seems
to saturate the bound*3-*5employing loca update dgorithms, typicd fit results
area ~ 1.1 — 1.3, and dwe to the limited acairagy of the data even aweek expo-
nential growth law cannat be excluded.

Infad, at least for the field-driven first-order transition of the 2D Ising model
below T, where one works with the magnetizaion instead of the energy (some-
times call ed “multimagneticd” simulations), it has been demonstrated recently**’
that evenfor aperfedly flat multicanonicd distributionthere aetwo “hidden” free
energy barriers (in diredions “orthogoral” to the magnetization) which lead to an
exporential growth of — with lattice size, which is albeit much weaer than the
leading “supercriticd slowing dowvn” of the canonicd simulation. Physicdly the
two barriers are related to the nucledion o alarge droplet of the “wrong plese”
(say “—" spinsin the badkground d “+” sping)}®-123and the transition o this
large, more or less ghericd droplet to the strip phase (coexisting strips of “—"
and“+" spins, separated by two straight interfaces) aroundm = 0.1%4

5.4. Wang-Landau method

Ancther more recantly proposed method ceds diredly with estimators Q(E) of
the density of states.*?® By flippingspinsrandamly, the transition probabilit y from
energy level F; to Fs is

. Q(E1)
w(E1 — EQ) = min |:]., Q(Eg):| (99)
Eadh time an energy level isvisited, the estimator is multi pli caively updated,
QE) = fQUE) , (100

where initidly Q(E) = 1 and f = f; = e'. Once the acemulated energy
histogram is aufficiently flat, the fador f isrefined,

fnJrl:\/f_nv n:()v]-a"' ’ (101)

andthe energy histogram reset to zero urtil somesmall valuesuchas f = 10" ~
1.00000001 is readed.

For the 2D Ising model this procedure aonvergesvery rapidly towards the ex-
adly known density of states, and also for other applicaions a fast convergence
has been reported. Since the procedure violates the Markovian requirement and
hencedoes nat satisfy the balance wndtion (7), some caeis necessary in setting
up aproper protocol for the reaursion (thisis smilar in spirit to the automatic up-
dating o the optimal step size Sy,.x iN the Metropdis update dgorithm discussed
in Sed. 2.3.1). Most authors who employ the obtained density of states diredly
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to extrad canoricd expedation values by standard reweighting argue that, once
f is close enoughto unity, systematic deviations become negligible. While this
claim can be verified empiricdly for the 2D Ising model (where exad results are
avail able for judgement), possble systematic deviations are difficult to asessin
the general case. A safe way would be to consider the reaursion (99)—(101) asan
alternative methodto determine the multicanoricd weights, and then to perform
ausua multicanonicd simulation employing these fixed weights. As emphasized
ealier, any deviations of multicanoricd weights from their optimal shape do na
show upin the final canonica expedation values; they rather only influence the
dynamics of the multicanonicd simulations.

6. Scaling Analyses

Equipped with the various technicd tools discussed abowe, the purpose of this
sedionisto outlinetypicd scdingandfinite-sizescding (FSS analyses of Monte
Carlo smulations of second-order phase transitions. The described procedure is
generally applicable but to keep the notation short, all formulas are formulated
for Ising like systems. For instance for O(n) symmetric models, m shoud be
replaced by m etc. The main results of such studies are usually estimates of the
criticd temperature and the aiticd exporents charaderisingthe universality class
of the trangition.

Basic observables are the internal energy per site, v = U/V, with U =
—dIn Z/dB = (H) = (E), and the spedfic hed,

du 2 2 2 _ 32 2 2
O == B () —(EP) [V =V ()~ (0)?) . (102

wherewe haveset H = E = eV with V' denating the number of lattice sites, i.e.,
the “lattice volume”. In simulations one usualy employs the variance definition
(since ay discretized numericd diff erentiationwould introduce some systematic
error). The magnetization per sitem = M /V andthe susceptibility x are defined
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"
m= () w=g Y (109
and Z
X =BV ((u?) = (|u)?) - (109

In the disordered phesefor T' > T, where m = (i) = 0 by symmetry, one often
works with the definition

X =BV {2 . (105

The oorrelation between spinso; ando; at siteslabeled by and j can bemea
sured by considering correlationfunctionslike the two-point spin-spin correlation

G(r) = G(i,j) = (oi0j) — (oi){0j) » (106)

where 7’ = 7; — 7; (assuming trandlational invariance). Away from criticdity
and at large distances |[7] > 1 (asuming a lattice spadng a = 1), G(7) deca/s
exporentially,

G(7) ~ || reITVE (107)

where ¢ is the spatial correlation length and the exporent « of the power-law
prefador depends in general on the dimension and onwhether one studies the
ordered or disordered phese. Strictly speaking & depends onthe diredion o 7.

6.1. Critical exponentsand scaling relations

Themost charaderistic feaure of asecnd-order phasetransitionisthe divergence
of the correlationlength at 7... As a consequencethermal fluctuations are equally
important on all length scades, and ore therefore expeds power-law singuarities

PNotice that here and in the following formulas, |1/ is used instead of 1 as would follow from the
formal definition o the zeo-field magnetization m(8) = (1/V ) limy,_,0 01n Z(B, h)/0h. The
reason is that for a symmetric model on finite lattices one obtains () (3) = 0 for al temperatures
due to symmetry. Only in the proper infinite-volume limit, that is limy ¢ limy _, o, SpOrtaneous
symmetry bre&ing can occur below Te. Inasimulation onfinite lattices, this is refleded by a sym-
metric doule-pe&k structure of the magnetization dstribution (provided the runs are long enough.
By averaging p one thus gets zero by symmetry, while the peek locéions +m (L) are dose to the
sportaneous magnetization so that the average of || is a good estimator. Things become more in-
volved for slightly asymmetric models, where this redpe would prodwce asystematic error and thus
canna be anployed. For strondy asymmetric models, on the other hand, one pe&k clealy dominates
and the average of 1 can usualy be measured without too many problems.
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in thermodynamic functions. The leading dvergenceof the correlation length is
usually parameterized in the high-temperature phase a

€:§O+|17T/Tc|7y+"' (TZTC) ) (108)

wherethe. .. indicaesub-leadinganalyticd aswell asconfluent corredions. This
defines the aitica exporent v > 0 and the aiticd amplitude &,+ on the high-
temperature side of the transition. In the low-temperature phase one expeds a
simil ar behaviour,

§=6-(1-T/Te)"+... (T<T.), (109

with the same aiticd exporent v but a different criticd amplitude £y # &g+
The singuariti es of the spedfic hed, magnetizetion (for 7' < T.), and suscep-
tibility are similarly parameterized by the aiticd exporents «, 3, and v, respec

tively,
C = Crog + Coll = T/To| = + ..., (110
m=mo(1—T/T.)" +... , (111
X=xoll =T/T| " +..., (112

where C,, isaregular backgroundterm, and the amplitudes are egain in general
different on the two sides of the transition. Right at the aitica temperature 7,
two further exporents § and ) are defined through

m oc h'/° (T=T.) , (113
G(F) oc r=P2=n (T =1T,) . (114

An important consequence of the divergenceof the correlation length is that
qualitative properties of seandorder phase transitions shoud na depend on
short-distance detail s of the Hamiltonian. This is the basis of the universality
hypathesist?® which means that all (short-ranged) systems with the same sym-
metries and same dimensionality shoud exhibit similar singuariti es governed by
one and the same set of criticd exporents. For the anplitudesthisis not true, but
certain amplituderatios auch as &y+ /&y- Or xo+/Xo- are dso universal.

In the 19605, Rushbrooke,*?’ Griffiths, 128 Josephson,*?° and Fisher!3° showed
that the six criticd exporents defined above aerelated viafour inequaliti es. Sub-
sequent experimental evidence indicaed that these scding relations were in fad
equaliti es which are now firmly established by renormalizatiion goup (RG) con
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siderations and fundamentall y important in the theory of criticd phenomena:

26+~ =2—a (Rushbrooke'slaw) , (1195
B(6 —1) =~ (Griffiths law) , (116
v(2—mn)=~ (Fisher'slaw) . (117

Thefourth equality involvesthedimension D. Itistherefore a(somewhat wegker)
so-cdled hyperscdingrelation:

Dv =2—a (Josephson'slaw) . (118

In the conventional scding scenario, Rushbrooke's and Griffiths' laws can be de-
duced from the Widom scding hypdhesis that the Helmhaltz free anergy is a
homogeneous function.*3! Widom scaing and the remaining two laws can in turn
be derived from the Kadanoff block-spin construction'3? and utimately from RG
considerations.**3 Josephson'slaw can also be derived from the hyperscaing hy-
pothesis, namely that the free-energy density behavesnea criticdity astheinverse
correlation vdume: f ~ ¢~P. Twicedifferentiatingthis relationandinsertingthe
scdinglaw (110 for the spedfic hea givesimmediately (118).

The paradigm model for systems exhibiting a continuous (or, rougHy speek-
ing, seand-order) phase transition is the Ising model. When the temperature is
varied the system passs at 7. from an ordered low-temperature to a disordered
high-temperature phase. In two dimensions (2D), the thermodyramic limit of this
model in zero external field has been solved exadly by Onsager,*3* and even for
finite L, x L, lattices the exad partition functionis known.”™* Also the exad
density of states can be cdculated by means of computer algebra up to reason
ably large lattice sizes.”® This provides a very useful testing groundfor any new
algorithmic ideain computer smulations. For infinite lattices, the correlation
length has been cadculated in arbitrary lattice diredions.*333¢ The exad magne-
tization for h = 0, apparently already knavn to Onsager,'’ was first derived by
Yang'®® and later generalized by Chang.*3® The only quantity which upto date
isnot truly exadly known is the susceptibility. However, its properties have been
charaderized to very high predsiont*%142(for bath, low- and high-temperature
series expansions, 2000terms are known exacdly*#). In threedimensions (3D)
no exad solutions are available, but analyticd and numericd results from vari-
ous methods give a @nsistent and very predse picture. In four dimensions (4D)
the so-cdled upper criticd dimension D,, isreaded and for D > D, = 4 the
criticd exporents take their mean-field values (in 4D up to multiplicative loga-
rithmic corredions*®). The aitica exporents of the Isingmode! are wlleded in
Table 1_144—146
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Table 1. Criticd exporents of the Ising model. All 2D exporents are exadly known 144145
For the 3D Ising model the “world-average” for v and ~ cdculated in Ref. 146is quaed. The
other exporents follow from hyperscding (o = 2 — Dv) andscding (8 = (2 — o — 7)/2,
§=~/B+1,n=2—~/v)reaions. Fordl D > D, = 4 the mean-field exporents are
valid (in 4D up to multiplicetive logarithmic corredions).

v a B ¥ J n
D=2 1 0(log) 1/8 714 15 14
D=3 06300518 010985 032648 12371728) 4.7894 003639
D >4 1/2 0(disc) 12 1 3 0

6.2. Finite-size scaling (FSS)

In computer simulation studies, the (linea) system size L is always necessarily
finite. The correlation length may hence bemme large (of the order of L) but
never diverges in a mathematicd sense. For the divergences in other quantities
this implies that they are dso rounced and shifted.!%147149 How this happens
is described by finite-size scding (FSS theory, which in a nut-shell may be ex-
plained as follows: Nea 7. the role of ¢ istaken over by the linea size L of the
system. By rewriting (108) or (109) andrepladng¢ by L, it is easy to seethat

1 —T/T,| <&V — L7Vv | (119

It follows that the scding laws (110—(112) have to be replaced by the finite-size
scaling (FS9 ansatz,

C = Crog +al®" +... | (120
moc LAY 4 | (122)
x o< LYY L, (122

where C,, isaregular, smooth badkgroundterm and a a anstant. Asamnemonic
rule, a aiticd exporent - in atemperature scaing law isreplaced by —z /v in the
correspondng FSSlaw. This describes the roundng o the singuariti es quantita-
tively.

In general these scdinglaws arevalid in avicinity of 7. aslongasthe scding
variable

x=(1-T/T.)L'" (123

is kept fixed.1>147-149 |n this more general formulation the scding law for, e.g.,
the susceptibility reads

X(Ta L) = L’Y/Uf(x) ’ (129

master
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where f(z) is a scding function. By plotting x(7', L)/L"/" versus the scaing
variable x, one thus expeds that the data for different 7" and L fall onto a mas-
ter curve described by f(z). Thisis anicevisua methodfor demonstrating the
scaing properties.

For given L the maximum of x (7', L) asafunction of temperature happens at
SOMe 2.y FOr the location Ty, of the maximum this implies a FSSbehaviour
of theform

Tmax = Te(1 = T LYY 4.0 ) =T+ cL7™V ... (125

This quantifies the shift of so-cdled pseudo-criticd points which depends on the
observables considered. Only in the thermodyramic limit . — oo all quantities
diverge & the same temperature 7.

Further useful quantitiesin FSSanalyses are the energetic fourth-order param-

eter
I G
V(B)=1 e (126)
the magnetic cumulants (Binder parameters)
PR 7))
U2(8) =1 - g% - (127)
_ (u®)
UaB) = 1= 30 - (129
andtheir slopes
dUQ(ﬂ) - 14 2\ (o) — <M2> <|M|e> 2,
il A A >]
O N N i)
=vit-va | -2+ S (429
AWiB) _ iy i [y o) (o)
ag — V- [<> o <u4>] ' (120
The Binder parameters <de acordingto
UQpiUzp(x)[1+"'] s (131)

i.e., for constant scding variable z, Us,, takes approximately the same value for all
|latticesizes, in particular U3, = fu,, (0) at Te.. Applyingthedifferentiationto this
scding representation, one picks up afador of L'/¥ from the scding function,
dUs,
dp

— (de/dB) fhy [1+...] = L7 fuy @1 +...] . (132
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As afunction o temperature the Binder parameters for different L hence aoss
around(7, Us,) with slopes L'V, apart from corredions-to-scding coll eded
in[l+...] explainingsmall systematic deviations. From a determination o this
crossng pant, one thus obtains a basicdly unhiased estimate of 7., the aiticd
exporent v, andU3,,. Notethat in contrast to thetruly universal critica exporents,
Us, isonly weakly universal. By this one means that the infinite-volume limit of
such quantities does dependin particular onthe boundary condti onsand geomet-
rica shape of the considered lattice e.g., onthe asped ratio r = L,,/L,.150-157
Further quantities with a useful FSSbehaviour are the derivatives of the mag-

netization,
S — v Qe (e (133
dlr(li%ub _y (<<||/L||i> _ <e>) 7 (134
dIn{u?) (1”e)
=V (G- ) o

These latter five quantities are goodexamples for expedation values depending
on bah e and ;.. By applyingthe diff erentiationto the scding form of (|ul), one

reads off that
d — 136)
<|.U|> _ [(1 ﬂ)/”fﬂ,(m)[l —l—] s (
dIn(|p? 137)
M — ll/ufd#p(:c)[lJr...] . (

For first-order phase transitions smilar considerations show?37:38158-160 that
there the delta function like singuarities in the thermodyrnamic limit, originating
from phase mexistence, are smeaed ou for finite systems as well 1617165 They
are replacal by rarrow pess whose height grows propartional to the volume
V = LP, andogowly to (120) or (122), with a pe&k width deaeasingas 1/V/
and a shift of the peék location from the infinite-volume transition temperature
propationa to 1/V, analogously to (125).37:38166-170

6.3. Organisation of the analysis

To fadlitate most flexibility in the analysis, it is advisable to store during ceta
prodiction the time series of measurements. Standard quantities are the energy
and magnetization, but depending onthe model at hand it may be useful to record
also other observables. Inthisway thefull dynamicd informationcan be extraded
till after the adual simulation runsand error estimation can be eaily performed.
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For exampleit isno problem to experiment with the size and number of Jadknife
bins. Since areasonable choicedependsonthe a priori unknavn autocorrelation
time, it is quite cumbersome to doareliable aror analysis “onthe flight” during
the simulation. Furthermore, basing data reweighting ontime-series datais more
efficient since histograms, if needed or more mnwvenient, can still be produced
from this data but workingin the reverse diredionis obviously imposshble.

For some modelsit is afficient to perform for ead lattice size asingle long
run at some ouging gy close to the aiticd point 5.. Thisis, however, not al-
ways the cae and also depends on the observables of interest. In this more gen-
eral case, one may use several smulation pants 3; and combine the results by the
multi -histogram reweighting method a may apply arecently developed finite-size
adapted generali zed ensemble method 16171 |n bath situations, one can compute
the relevant quantiti es from the time series of the energiese = E/V (if E hap-
pensto be integer valued, this shoud be stored of course) and . = . 0 /V by
reweighting.

By using ore of these techniques one first determines the temperature depen-
denceof C(8), x(B), ...,in the neighbahood d the simulation pdnt 3y ~ .
(a reasonably “good’ initial guessfor 3, is usualy straightforward to oktain).
Once the temperature dependence is known, one can determine the maxima,
e.0., Chax(Bmax.) = maxg C(5), by applying standard extremizaion routines:
When reweightingis implemented as a subroutine, for instance C'(5) can be han-
died as a normal functionwith a continuowsly varying argument 3, i.e., no inter-
polation o discretization error is involved when iterating towards the maximum.
Thelocaionsof themaximaof C, x, dUs/dB, dUs/dS, d(Jul)/ds8, dIn(|u])/ds,
and dIn(u?)/dB3 provide us with seven sequences of pseudo-transition pdnts
Bmax, (L) which al shodd scde acordingto Bmax, (L) = Be + a; LY + ...,
In other words, the scaling variable © = (Bmax, (L) — B.)L'/* = a; + ... shoud
be constant, if we negled the small higher-order corredionsindicaed by. . ..

Noticethat whil e the predse estimates of a; do depend onthe value of v, the
qualitative conclusion that = ~ const for ead of the Syax, (L) sequences does
not require any a priori knowledge of v or 8.. Usingthisinformation orethus has
severa posshiliti esto extrad unbiased estimates of the ariticd exporentsv, /v,
B/v, and v /v from least-squares fits asaiming the FSShehaviours (120), (121),
(122), (132), (136), and (137).

Considering orly the asymptotic behaviour, e.g., d In{|u|)/dB = aL'/¥, and
taking the logarithm, In(dIn(|u|)/d5) = ¢ + (1/v)In(L), one ends up with a
linea two-parameter fit yielding estimates for the constant ¢ = In(a) and the
exporent 1/v. For small | attice sizes the asymptotic ansatz is, of course, not
justified. Taking into acourt the (effedive) corredionterm [1 + bL~*] would
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result in anontlinear four-parameter fit for a, b, 1 /v and w. Even if we would fix
w to some “theoreticdly expeded” value (asis sometimes dore), we would still
be left with a nontlinear fit which is usually much harder to control than alinea
fit (where only a set of linea equations with a unique solution has to be solved,
whereas a nontlinea fit involves a numericd minimizaion o the y2-function,
possessng passhly several locd minima). The dternative methodis to use the
linea fit ansatz andto discard successvely more and more small | attice sizes until
the x? per degreeof-freadom or the goodressof-fit parameter®! Q has readed
an acceptable value and daes not show any further trend. Of course, al thisrelies
heavily on corred estimates of the statisticd error bars on the original data for
dln(|ul)/dp.

Oncev isestimated ore can usethe scaingform Buax, (L) = Be4a; LY +
... toextrad 5. anda;. Asauseful chedk, one shoud reped thesefits at the eror
margins of v, but usually this dependenceturns out to be very wes. As a use-
ful crosschedk one can determine . also from the Binder parameter crossngs,
which is the most convenient and fastest method for a first roughestimate. As
arule of thumb, an acairacy of about 3 — 4 digits for 5. can be obtained with
this method withou any elaborate infinite-volume extrapolations — the aossng
points lie usually much closer to 3. than the various maxima locaions. For high
predsion, however, it i s quite cumbersometo control the necessary extrapolations
and dten more acarrate estimates can be obtained by considering the scding o
the maximalocations. Also, error estimates of crossng pdntsinvolvethe datafor
two diff erent lattice sizes which tends to be quite unhandy.

Next, smilarly to v, theratios of criticd exporentsa/v, /v, andy /v can be
obtained from fits to (120), (121), (122), and (136). Again the maxima of these
quantities or any of the FSSsegquences fmax, Can be used. What concerns the
fitting procedure the same remarks apply as for v. The spedfic hea C usualy
plays a spedal role in that the exporent « is difficult to determine. The reason
is that « is usualy relatively small (3D Ising model: o =~ 0.1), may be ze&o
(logarithmic divergence ain the 2D Isingmodel) or even negative (asfor instance
inthe 3D XY andHeisenberg models). In all these cases, the constant badkground
contribution C', in (120) becomesimportant, which enforcesanontlinea three
parameter fit with the just described problems. Also for the susceptibility y, a
regular backgroundterm canna be excluded, but it i s usually much lessimportant
since~y > «. Therefore, in (121), (122), and (136), similar to the fits for v/, one
may take the logarithm and ded with much more stable linea fits.

As afinal step ore may re-chedk the FSShehaviour of C, v, dUs/dg, ...
at the numericaly determined estimate of 8.. These fits shoud be repeaed also
at B. + AB. in order to estimate by howv much the uncertainty in 5. propagates
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into the thus determined exporent estimates. In (the pretty rare) cases where .
is known exadly (e.g., throughself-duality), this latter optionis by far the most
acarate one. This is the reason, why for such models numericdly estimated
criticd exporentsare usually quite predse.

When combining the various fit results for, eg. 5. or v, to afina average
value, some cae is necessary with the optimal weighted average and the final
statisticd error estimate, sincethe variousfitsfor determining 5. or v are of course
correlated (since they all use the data from one and the same simulation). In
principle this can be dedt with by applyinga aosscorrelation analysis.*”2

7. Applications

7.1. Disordered ferromagnets

Experimentson phese transitions in magnetic materials are usually subjed to ran-
domly distributed impurities. At continuous phase transitions, depending onthe
temperature resolution and the concentration o the impurities, the disorder may
significantly influence measurements of critica exporents.!’ To emphasize this
effed, in some experiments'’ norn-magnetic impurities are introduced in a con-
trolled way; seeFig. 11for an example. Sincethe mobhility of impuritiesis usually
much small er than the typicd time scde of spin fluctuations, one may model the
disorder effeds in a completely “frozen”, so-cdled “quenched” approximation.
This limit is oppaite to “anneded” disorder which refers to the cae where the
two relevant time scaes are of the same order.

With the additional assumptionthat the quenched, randomly distributed impu-
rities are completely uncorrelated, Harris' > showed alongtime ago under which
condtionsacontinuotstransition o an idedised pure material ismodified by ds-
order cougingto the energy of the system. Accordingto this ©-cdled Harris cri-
terion, the aiticd behaviour of the pure system aroundthe transition temperature
T, is dable against quenched disorder when the aiti ca exporent ap.,, Of the spe-
cifichea, C o |T —T.|~*rure, isnegative. In renormali zation-grouplanguage the
perturbationisthen “irrelevant” andthe values of al criticd exporentsa, 3,7, . . .
remain urchanged. On the other hand, when apye > 0, then quenched disor-
der shoud be “relevant” and the renormali zation-group flow approaches a new
disorder fixed pant governed by altered criticd exporents. An example is the
threedimensional (3D) Ising model universality classwith apure &~ 0.110 > 0.
The intermediate situation apure = 0 isaspedal, “marginal” case where no eesy
predictions can be made. A typicd example for the latter situation is the two-
dimensional (2D) Ising model where quenched disorder isknown to generatelog-
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Fig. 11. Neutron scatering measurements of the susceptibility in Mng.75Zng.25F2 close to criti-
cdity, governed by the disorder fixed pant of the Ising model, over the reduced temperature inter-
vl 4 x 1074 < |T/T. — 1| < 2 x 1071, The solid lines show power-law fits with exporent
~v = 1.364(76) above and below T [after Mitchell et al. (Ref. 174)].

arithmic modificaions.1’®

Figure 11 shows an experimental verification o the qualitative influence of
disorder for athree-dimensional Ising-like system where the measured critica ex-
porent v = 1.364(76) of the susceptibility x o |T' — T.|~" is clealy different
from that of the pure 3D Ising model, vpue = 1.2396(13). Theoreticd results,
on the other hand, remained relatively scarcein 3D until recently. Most analyt-
icd renormalization goupand computer simulation studies focused onthe Ising
model,*""178 ysually assiming site dil ution when working numericaly. This mo-
tivated us to consider the case of bonddil ution*”*-*8which enables onre to test
the expeded universality with resped to the type of disorder distribution and, in
additi on, fadlit ates a quantitative comparisonwith recent high-temperature series
expansions, 182184

The Hamiltonian (in a Potts model normali sation) is given as

—BH = Z Kijbo, 0, (139

(i,5)
where the spins take the values o; = +1 and the sum goes over al neaest-
neighba pairs (i, j). The couping strengths K;; are drawn from the bimodal
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distribution
ol = [[ P(Ey) = [ pS(Ki; — K) + (1 = p)§(Ki; — RK)] . (139
(

(i,7) i,5)

Besides bond dlution (R = 0), which we will consider here, this aso includes
randam-bondferromagnets (0 < R < 1) and the physicdly very different class
of spin glasses (R = —1) as Yeda cases. For the case of bond dlution, the cou-
plings are thus allowed to take two different values K;; = K = J§ = J/kgT
and 0 with probabiliti esp and 1 — p, respedively, with ¢ = 1 —p beingthe mncen-
tration o missng bond, which play the role of the non-magnetic impurities. The
pure case thus correspondsto p = 1. Below the bond-percolation threshold*®®
pe = 0.2488126(5) one does not exped any finite-temperature phase transition
sincewithou a percolating (infinite) cluster of spinslongrange order cannat de-
velop.

The model (138), (139 with R = 0 was dudied by means of large-scde
Monte Carlo simulations using the Swendsen-Wang (SW) cluster algorithm3®
(which in the strondy diluted case is better suited than the single-cluster Wolff
variant). To arrive & final results in the quenched case, for ead dilution, tem-
perature andlatticesize, the Monte Carlo estimates for (Q ;) of thermodynamic
quantities Q¢ 7, for agiven randam distribution {.J} of diluted bonds (redized as
usual by averages over the time series of measurements) have to be averaged over
many diff erent disorder redisations,

1
= av — 1 1 ) 14
Q=[Qn)] 20T §<Q{J}> (140
where #{.J} is the number of redisations considered. Dencting the empiricaly
determined distribution o (Qy;3) by P((Q.})), this o-cdled quenched average
can also be obtained from

Q= / DJijp(Jij)(Qeny) = / UQMPUQNNQy) (141)

where adiscretized evaluation o the integrals for finite #{J} is implicitly im-
plied. While conceptually straightforward, the quenched averagein (140) is com-
putationally very demanding since the number of redisations #{.J } usually must
belarge, often of the order of afew thousands. Infad, if thisnumber ischosentoo
small one may observetypical rather than average valuest®® which may differ sig-
nificantly when the distribution P ((Q¢ 3)) exhibits alongtail (which in general
is hard to predict beforehand).

To get arough owerview of the phase diagram we first studied the depen-
dence of the susceptibility peaks on the dilution, where the susceptibility xy =
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KV ({(u%) — (|ul)?) with o = (1/V) ", 0 is defined as usual. To this end we
performed for p = 0.95,0.90,...,0.36 and moderate system sizes SW cluster
MC simulations with Nyics = 2500 MC sweeps (MCS) ead). By performing
quite daborate analyses of autocorrelationtimes, this datistics was judged to be
reasonable (Nyics > 250 7). By applying single-histogram reweighting to the
datafor ead of the 2500 — 5000 disorder redisation and then averaging the re-
sulting x (K) curves, wefinaly arrived at the data shownin Fig. 12.

From the locations of the maxima one obtains the phase diagram of the model
inthep — T plane shown in Fig. 13which turned ou to be in excdlent agreement
with a “single-bondeffedive-medium” (EM) approximation,*8’

K(E)M(p) —In (1 B pc)eKc(l) - (1 B p) , (142)
P — DPe
where K.(1) = J/kpT.(1) = 0.4433088(6) is the predsely known transition
paint of the pure 3D Ising model.*® As an independent confirmation of (142),
the phase diagram also coincides extremely well with recent results from high-
temperature series expansions.'84

The quality of the disorder averages can bejudged asin Fig. 14 bycomputing

running averages over the disorder redisations taken into acourt and looking at

100 ‘ ‘
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Fig.12. The average magnetic susceptibility [x 1]av Of the 3D bonddil uted Isingmodel versus K =
J/kpT for several concentrations p and L = 8,10, 12,14, 16, 18, and 20. For ead value of p and
ead lattice size L, the aurves are obtained by standard singe-histogram reweighting o the simulation
data & onevalue of K.
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Fig. 13. Phase diagram of the bonddiluted Ising model on a threedimensional simple abic lattice
in the dil ution-temperature plane. The percolation pant p. =~ 0.2488 is marked by the diamond and
p = 1 isthe pure cae withou impurities. The results from the Monte Carlo (MC) simulations are
compared with analyses of high-temperature series (HTS) expansions and with (properly normali zed)
mean-field and eff edive-medium approximations.

thedistributionsP(x;). Theplots show that thefluctuationsin therunningaverage
disappea arealy after afew hundedsof redi sationsandthat the dispersion o the
x: valuesis moderate. The histogram also shows, however, that the distributions
of physicd observables typicdly do nd beame sharper with increasing system
size d afinite-randamnessdisorder fixed pant. Rather their relative widths gay
constant, aphenomenoncal ed nonself-averaging. More quantitatively, non-self-
averaging can be chedked by evaluating the normali zed squared width R, (L) =
Vi (L)/[x(L))2,, where V(L) = [x(L)%]av — [x(L)]2, is the variance of the
susceptibility distribution. Figure 15 shows this ratio for three @ncentrations of
the bond-dil uted Isng model asafunction o inverselatticesize. Thefad that 2,
approaches a mnstant when L increases, as predicted by Aharony and Harris,*8°
isthe signature of a non-self-averaging system, in qualitative agreement with the
results of Wiseman and Domany*®° for the site-dil uted 3D Ising model.!

In order to study the aitica behaviour in more detail, we concentrated onthe
threeparticular dilutionsp = 0.4, 0.55, and 0.7. In afirst set of simulations we
focused onthe FSSbehaviour for lattice sizesupto L = 96. It iswell known
that ratios of criticd exporents are dmost equal for pure and dsordered mod-

TOur estimate of R, is about an order of magnitude smaller since we worked with x = KV ((42) —
{|u])?) whereas in Ref. 190the “high-temperature” expresson x’ = KV (u?) was used.
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Fig. 14. Left: Susceptibility for the different disorder redisations of the threedimensional bond
diluted Ising model for L = 96 and a concentration of magnetic bondsp = 0.7 at K = 0.6535 ~
K.(L). Therunning average over the samples is shown by the solid (red) line. Right: The resulting
probability distribution of the susceptibility scaed by its quenched average [x]av, such that the results
for the different lattice sizes L = 40, 64, and 96 collapse. The verticd dashed line indicates the
average susceptibility x;/[x]av = 1.
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Fig. 15. Normalized squared width of the susceptibility distribution versus theinverse lattice sizefor
the three oncentrations p = 0.4, 0.55, and 0.7 at the dfedive aiticd couping K.(L). The straight
lines are linea fits used as guides to the gye.

es, eg., v/v = 1.966(6) (puret®®) and /v = 1.963(5) (disordered!®?). The
only distingushing guentity is the correlationlength exporent » which can be ex-
traded, e.g., from the derivative of the magnetisation versus inverse temperature,
dIn[m].,/dK o L'/*, a K. or the locations of the susceptibility maxima. Us-
ingthe latter unbiased optionand performingleast-square fitsincluding data from
Lin to L. = 96 we obtained the dfedive aiticd exporents shownin Fig. 16.
For the dilution closest to the pure model (p = 0.7), the system is influenced by
the pure fixed pant with 1/ = 1.5863(33). On the other hand, when the bond
concentrationis anall (p = 0.4), the vicinity of the percolation fixed pant where
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Fig. 16. Effedive exporents (1/v).g as obtained from fits to the behaviour of d In[m]av/dK o
L'/v as afunction of 1/Lyin for p = 0.4, 0.55, and 0.7. The upper limit of the fit range is
Lmax = 96.

1/v = 1.12 induwces a deaease of 1/v below its expeded disorder value. The
dilution for which the aossover effeds are the least is aroundp = 0.55 which
sugeests that the scding corredions shoud be rather small for this pedfic dilu-
tion.

Themain problem of the FSSstudy is the competition between diff erent fixed
points (pure, disorder, percolation) in combination with corredions-to-scding
terms oc L, which we found tard to control for bond dlution. In contrast to
recant claims for the site-diluted model that w ~ 0.4, we were not able to extrad
areliable estimate of w from our datafor bond dlution.

In a second set of simulations we examined the temperature scding o the
magnetisation and susceptibility for lattice sizesup to L = 40. This data d-
lows dired estimates of the exporents 8 and v whose relative deviation from
the pure model is comparable to that of v, eg. v = 1.2396(13) (pure'®?
and v = 1.342(10) (disordered'®d). As a function o the reduced temperature
7= (K. — K) (r < 0inthelow-temperature (LT) phase and 7 > 0 in the high-
temperature (HT) phase) and the system size L, the susceptibility is expeded to
scde &

X(T, D)ay ~ 7| g (LY |7]) (143

)
where g. is a scding function o the variable z = L'/¥|7| and the subscript
+ stands for the HT/LT phases. Asaiming [x(7)]ay o |7|77% withou any
corredions-to-scdingterms, we can define atemperature dependent effedivecrit-



June 18, 2012 13:35 World Scientific Review Volume - 9in x 6in master

Monte Carlo Smulations in Satistical Physics 151
F T I I I ]
15 Dis. ]
Pure B
o \ \ \ 1
0.0:
0 5 10 15 20
v
L 1|
\
|
AN ]
O-OL=10
s 00 L = 14 ggalorn
e > L=18i
A-AL=22 |
<< L=30
vV L=35
> >L=40 7

Fig. 17. Top: Variation o the temperature dependent effedive aiticd exporent ~og (|7]) =
—d In[x]av/d In |7| (in the low-temperature phase) asafunction d the rescded temperature L1/* |7|
for the bonddiluted Ising model with p = 0.7 and several lattice sizes L. The horizontal solid and
dashed lines indicae the site-diluted and pure values of ~, respedively. Bottom: The figure below
shows the aiticd amplitudes I+ above and below the aiticd temperature.

icd exporent veg (|7]) = —d In[x]ay/d In |7], which shoud converge towards the
asymptotic criticd exporenty when L — oo and || — 0. Our resultsforp = 0.7
areshownin Fig. 17. For the gredest sizes, the dfedive exporent g (|7|) is d&
ble aound1.34 when |7| is not too small, i.e., when the finite-size dfeds are not
too strong. The plot of v.x(|7|) vs. the rescaed variable L'/ |7| shows that the
criticd power-law behaviour holds in diff erent temperature ranges for the differ-
ent sizes gudied. By analysingthe temperature behaviour of the susceptibility, we
also have diredly extraded the power-law exporent v using error weighted least-
squares fits and chocsing the temperature range that gives the smallest x2/d.o.f
for severa system sizes. The results are consistent with v ~ 1.34 — 1.36, cf.
Table 2.

From the previous expresson o the susceptibility asafunction of the reduced
temperature andsize, it isinstructiveto plot the scaing function g (x). For finite
size and |7| # 0, the scding functions may be Taylor expanded in powers of
theinverse scding variable z ! = (LY |7]) 71, [xa (7, L)]ay = |7 77 [g+(00) +
2 1g" (00) + O(z~2)], where the amplitude g (oo) is usualy denoted by I'-..
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Table2. Criticd exporents and criticd amplitude ratio of the susceptibil -
ity as measured with diff erent techniques.

Technique 5 ry/r- w Ref.

Neutron scatering  1.44(6) 2.2 0.5 193
1.31(3) 2.8(2) 194195
1.37(4) 2.40(2) 174

RG 2.2 196
1.318 0.39(4) 197,198
1.330(17) 0.25(10) 199

MC 1.342(10) 0.37 1927
1.34(1) 1.62(10) 2000
1.342(7) 201"
1.314(4) 1.67(15) 202

HTS 1.305(5) 184

@ Fe|_gZngFo, z = 0.4,05, |7| ~ 1072,

b Fep.46ZNo.54F2, 1.5 x 1073 < |7] < 1071,

¢ich Mng.752ZNg.25F2, 4 x 1074 < |7 <2 x 1071,

4 4 loop approximation.

¢ 6 loop approximation, fixed dimension.

f sitedilution, p = 0.4 t0 0.8.

9 bond dlution, p = 0.7. The crredion to scdingistoo small to be deter-
mined.

h ste dilution, p = 0.8. The observed corredion to scaing could be the
next-to-leading ore.

* gtedilution, p = 0.8.

J bond dlution, p = 0.6 t0 0.7.

Multiplying by|7|” leadsto

(7, D]av|7|” = g2 (2) =T+ + O(@™") .

(144

When |r| — 0 but with L till | arger than the correlation length £, one shoud
remver the aiticd behaviour given by g, () = O(1). The aiticd amplitudesT ;.
follow, as shown in the lower plot of Fig. 17. Some experimental and numerica
estimates are compiled in Table 2.

To summarize, this applicaionis a goodexample for how large-scde Monte
Carlo simulations employing the duster update dgorithm can be used to investi-
gate the influence of quenched bond dlution onthe aiticd properties of the 3D
Ising. It asoill ustrates how scdingandfinite-size scding analyses can be gpplied
to anontrival problem.

master
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7.2. Polymer statistics: Adsorption phenomena

Polymersin dil ute solutions are foundat high temperatures typicdly in extended
random coil conformations.?93-2%> | owering the temperature, entropy becomes
lessimportant and die to the monamer-monomer attradion gobuar conforma-
tions gain weight urtil the polymer coll apses at the so-cdled #-point in a wop-
erative rearangement of the monamers.2%3-29° The globuar conformations are
relatively compad with littl e internal structure. Hence, entropy dces dill play
some role, and a further freezng transition towards low-degenerate aystalline
energy daminated states is expeded and indeed observed.?%62%7 For sufficiently
short-range interadions these two transitions may fall together,?°® but in general
they are dealy distinct.

The presence of an attradive substrate adds a second energy scae to the sys-
tem which introduces sveral new fedures. Apart from the adsorption transi-
tion,2°%21%it also induces several | ow-temperature structural phases by the compe-
tition between monamer-monaomer and monamer-surface dtradionwhose detail s
depend onthe exad number of monamers. Theoreticd predictions may guide
future experiments on such small scaes which appea feasible due to recent ad-
vances of experimental techniques. Among such sophisticated techniques at the
nanometer scde ae, e.g., atomic forcemicroscopy (AFM), whereit is passbleto
measure the contour length and the end-to-end dstanceof individual polymers*!t
or to quantitatively investigate the peptide adhesion onsemiconductor surfaces.?*?
Another experimental toal with an extraordinary resolutionin paositioningand ac
curagy in forcemeasurements are opticd tweezes, 213214

With this motivationwe recently performed a caeful clasdfication o thermo-
dynamic phases and phese transitions for a range of surface dradion strengths
andtemperatures and compared the results for end-grafted pdymers?1® with those
of nongrafted pdymers*'6 that can move fredy within a simulation box?'’ In
these studies we employed a bead-stick model of alinea polymer with three -
ergy contributions:

N 1N 2
E=43" %" (r;" =% )+ 7 D (1= cosd)

i=1 j=i+2 i=1

N
+ € Z 32_9 — 23 (145
s . 15 i i .

The first two terms are a standard 12-6 Lennard-Jones (LJ) potential and a
wedk bending energy describing the bulk behaviour. The distance between the
monaomersi and j isr;; and 0 < ¢; < 7 denotes the bending angle between the
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Fig. 18. Sketch of a single paymer subjed to an attradive substrate & z = 0. The hard wall at
z = L, prevents anon-grafted pdymer from escgping.

ith, (¢ + 1)th, and (¢ + 2)th monaomer. The third term is edfic to an attradive
substrate. This 9-3 LJ surfacepotential foll ows by integration ower the continu-
ous half-spacez < 0 (cf. Fig. 18), where every space ¢ement interads with ead
monamer by the usual 12-6 LJ expresson.?*® The relative strength of the two LJ
interadionsis continuously varied by considering e as a control parameter.

We employed parallel tempering simulations to a 40mer once grafted with
one end to the substrate in the potential minimum and orce fredy movingin the
spacebetween the substrate and a hard wall a distance L, = 60 away. There
exist several attempts to otimise the choice of the simulation pdnts /3;,8%% but
usually one dready gets a reasonable performancewhen observingthe histograms
and ensuring the accgtance probability to be aound 5®b, which approximately
requires an equidistributionin 5. We employed 64 — 72 different replicas with
50 000 00Gsweeps eady, from which every 10th value was dored in atime series
— the autocorrelation time in units of swees turned out to be of the order of
thousands. Finaly, all data ae combined by the multi-histogram technique (using
the variant of Ref. 219).

Apat from the internal energy and spedfic hed, a particular useful
quantity for polymeric systems is the squared radius of gyration Réyr =
SN (7 = Tom)s With Fem = (Zems Yoms Zem) = Yo, 7/N being the center-
of-mass of the polymer. In the presence of a symmetry bre&ing substrate, it
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is useful to also monitor the tensor comporents parallel and perpendicular to the
substrate, B2 = 31 [(2i — @em)” + (i — Yem) ] A RT = Y, (25 — 2em)”.
Asan indicator for adsorption ore may take the distance of the center-of-massof
the palymer to the surface Additionaly, we dso analyzed the mean number of
monamers docked to the surfacen where for the continuows substrate potential
we defined amonamer ¢ to bedocked if z; < z. = 1.5.

The main results are summarized in the phase diagram shown in Fig. 19. It
is constructed using the profile of several canoricd fluctuations as shown for the
spedfic hed in Fig. 20. For the non-grafted pdymer this plot clealy reveds the
freeing and adsorption transitions. FreeZng leads to a pronourced pe&k nea
T = 0.25 (we use unitsin which kg = 1) amost independently of the surface
attradion strengths. That this is indead the freeing transition is confirmed by
the very rigid crystalli ne structures found kelow this temperature. To diff erenti-
ate between the diff erent crystalli ne structures, the radius of gyration, its tensor
comporents parallel and perpendicular to the substrate, and the number of sur-
face ontads were analyzed. This reveded that the aystalline phases arrange
in a different number of layers to minimize the energy. For high surface dtrac
tion strengths, a single layer is favored (ACL1), and for deaeasing e, the number
of layers increases until for the 40mer a maximal number of 4 layers is readed
(AC4), cf. the representative conformations depicted in the right panel of Fig.
19. The fewer layers are involved in a layering transition, the more pronourced
is that transition. Raising the temperature éowe the freezng temperature, poly-
mers form adsorbed and still rather compad conformations. This is the phase
of adsorbed globuar (AG) conformationsthat can be subdvided into droplet-like
globues for surfaceinteradions ¢, that are not strong enoughto induce asin-
gle layer below the freeZng transition and more pancake-like flat conformations
(AG1) at temperatures above the AC1 phase. At higher temperatures, two scenar-
ios can be distingushed. For small adsorption strength ¢, anon-grafted pdymer
first desorbsfrom the surface[from AG to the desorbed globuar (DG) bulk phase]
and dsentangles at even higher temperatures[from DG to the desorbed expanded
bulk phase (DE)]. For larger ¢, the poymer expands whileit is gill adsorbed to
the surface(from AG/AG1 to AE) and desorbs at higher temperatures (from AE
to DE). The mllapse transition in the adsorbed phese takes place & a lower tem-
perature compared to the desorbed phase becaise the deformation at the substrate
leadsto an effedive reduction o the number of contads.

Grafting the polymer to the substrate mainly influences the alsorption tran-
sition. Figure 20(b), e.g., revedsthat it is grondy weakened for al ¢,. Dueto
grafting, the trandational entropy for desorbed chains is grondy reduced. As a
consequence asorption o finite grafted pdymers appeas to be cntinuots, in



June 18,2012 13:35 World Scientific Review Volume - 9in x 6in master

156 W. Jarke

5 DE

grafted: free: AE
4 %gg@ I
3 DG AG AG1
! ;g
- 4
1 DC  AC4 AC3 AC2 AC1
& & @

2

Fig. 19. The pseudo-phase diagram parametrized by adsorption strength e and temperature 7" for a
40mer. The gray transition regions have abroadnessthat refleds the variation o the correspondng
peks of the fluctuations of canoricd expedation values we investigated. Phases with an ‘A/D’ are
adsorbed/desorbed. ‘E’, ‘G’ and ‘C’ dencte phases with increasing ader: expanded, globuar and
compad/crystalline. Theright panel shows representative conformations of the individual phases.

3

Fig. 20. Spedfic-hea profile, cy (es, T'), for (8) the nongrafted and (b) the grafted pdymer.

contrast to the non-grafted case where this behaviour becomes apparent for very
longchainsonly. Thereasonisthat all conformationsof agrafted pdymer arein-
fluenced by the substrate, because they canna escgpe. Hence, the first-order-like
conformational rearangement of extended nongrafted pdymersuponadsorption
isnot necessary and the adsorptionis continuots.

The case of globuar chains hasto be discussed separately. While non-grafted
globuar chains adsorb continuouwsly, for grafted globuar chainsit evenis nortriv-
ia to identify an adsorption transition. A globuar chain attached to a substrate
always has svera surface ontads such that a “desorbed globue” stops to be
a well-defined description here. For stronger surface d@tradion ore might, how-
ever, identify the transition from attached globues that only have afew contads
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Fig. 21. (a) Spedfic hed cy ('), (b) fluctuation o the radius of gyration comporent perpendicular
to the substrate d <R§yr,1_ (T)/dT, and (c) fluctuation of the number of monamersin contad with
the substrate d (ns) (7) /dT for week surface dtradion, e; = 0.7, where the adsorption cccurs at a
lower temperature than the oll apse.

to docked conformations with the wetting transition. ThisrougHy coincides with
the position o the alsorption transition for the free diain between DG and AG
in the phase diagram and is ill ustrated for e, = 0.7 in Fig. 21. For a non-grafted
polymer, at the alsorptiontransition apeék isvisiblein ¢y (7', d <R§yr,i> /dT
and d (ns) /dT. For the grafted pdymer, on the other hand, the first two peeks
disappea andwith it the adsorptiontransition. Only asignal i n the number of sur-
face ontadsis left. Thischange of surface ontadsin an otherwise unchanged
attached globue signals the wetting transition.

To summarize, this example was chosen to ill ustrate the goplicaion o ex-
tensive parallel tempering simulations to analyze axd compare the whole phase
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diagram of a generic off- lattice model for grafted and nongrafted pdymersas a
function o temperature and surfaceinteradion strength. The main diff erences be-
tween the two cases were foundat and above the adsorption transition where the
restriction of trandlational degrees of freedom dueto grafting becomesimportant.

8. Concluding Remarks

The am of this chapter isto give an elementary introduction into the basic prin-
ciples underlyingmodern Markov chain Monte Carlo smulations and to ill ustrate
their usefulnessby two advanced applications to quenched, disordered spin sys-
tems and adsorption plenomenaof polymers.

The simulationalgorithmsemployingloca updaterules are very generally ap-
plicable but suffer from criticd slowing davn at second-order phase transitions.
Non-locd cluster update methods are much more dficient but more spedalized.
Some generalizations from Ising to Potts and O(n) symmetric spin models have
been indicaed. In principle dso other models may be dficiently simulated by
cluster updetes, but there does not exist a general strategy for their construction.
Reweighting tedhniques and generalized ensemble ideas auch as dmulated and
parallel tempering, the multicanonicd ensemble and Wang-Landau method can
be adapted to almost any statisticd physics problem where rare-event states ham-
per the dynamics. Well known examples are first-order phase transitions and spin
glasses, but also some maaomoleaular systems fall i nto this class The perfor-
mance of the various algorithms can be judged by statisticd error analysis which
is completely general. Finally, also the outlined scding and finite-size scding
analyses can be goplied to virtually any model exhibiting criticd phenomena &
was exemplified for a disordered spin system.
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