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Abstract. The complex behavior of systems like spin glasses, proteins or neural networks
is typically explained in terms of a rugged energy or fitness landscape. Within the high-
dimensional conformation space of these systems one finds features like barriers, saddle points,
and metastable states whose number – at least in the case of spin glasses – grows exponentially
with the size of the system. We propose a novel Monte Carlo sampling algorithm that employs an
ensemble of short Markovian chains in order to visit all metastable states with equal probability.
We apply this algorithm in order to measure the number of metastable states for the two-
dimensional and the three-dimensional Edwards-Anderson model and compare with theoretical
predictions.

1. Introduction

Although the Edwards-Anderson [1] spin-glass model has been the subject of interest for several
decades, many question are still unanswered. When it comes to numerical investigations of
the low-temperature phase, it seems today that the prevalently used algorithms like parallel
tempering [2] are at times inadequate. Even the employment of special purpose computers has
not been as successful as hoped. While it must be said that Monte Carlo simulations might be
a priori of limited use due to the supposed NP-hardness of the problem, we believe that more
advanced algorithms can still make a difference.

The complex behavior of the Edwards-Anderson model is the result of a rough energy
landscape. A huge number of local minima (metastable states) with basins of attraction of
varying sizes separated by high energy barriers hamper the investigation of the state space by
means of random walks. Albeit being promising objects of investigation, metastable states of
spin glasses have so far attracted interest mostly in the form of analytical studies, e.g., Ref.
[3]. Numerically, they have been accessed by means of exact enumeration [4, 5, 6] or random
quenches [7] with the drawback that the former can only be used for very small systems while the
latter cannot provide an unbiased sampling. In a recent study we introduced a dynamic greedy
algorithm [8] which can very efficiently sample low-energy metastable states of larger systems
directly. However, for this technique the distribution is not uniform; each metastable state is
occupied with a probability proportional to the size of the respective basin of attraction. With
the intent to create a process with good efficiency and uniformly distributed metastable states
we propose a new algorithm [9] which uses an ensemble of short Monte Carlo trajectories to
sample the metastable states directly. We apply this algorithm in order to measure the number
of metastable states.

http://creativecommons.org/licenses/by/3.0
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2. Model and metastability

We consider the Edwards-Anderson model

H = −
∑

〈ij〉

Jijsisj , si ∈ {−1, 1}, (1)

where pairs 〈ij〉 indicate that the spins si and sj are adjacent in a quadratic or simple cubic
lattice. The strength of interaction is given by the bonds Jij which are randomly drawn from a
Gaussian distribution:

P (Jij) =
1√
2πJ2

e−J2

ij
/2J2

. (2)

Alternatively, the Hamiltonian can be written as

H =
1

2

∑

k

ek = E, (3)

where ek denotes single-site energies, i.e., the sum of all terms to which an individual spin sk
contributes,

ek = −
∑

〈ij〉

Jijsisj(δik + δjk). (4)

The division by two in (3) becomes necessary since all terms are counted twice, J1,2s1s2 for
instance is a summand in e1 and in e2. For a single spin flip

S = (s1, . . . , sk−1, sk, sk+1, . . . , sN ) → S′ = (s1, . . . , sk−1,−sk, sk+1, . . . , sN ), (5)

one finds that
ek → e′k = −ek (6)

and
H(S′)−H(S) = −2ek. (7)

Therefore, if ek < 0 for all k, every possible single spin flip causes an increase in energy. Such
spin configurations are called metastable or single-flip stable, sometimes they are also referred
to as inherent structures.

3. Algorithm

Often, metastable states are obtained by starting with a random configuration and applying some
sort of energy minimization process, e.g., rapid cooling (quench). However, this way different
minima are found with different probability based on the size of their basins of attraction. In
order to sample all metastable stats uniformly, a method of energy minimization is needed which
finds all metastable states with the same probability. As it turns out, this can be achieved by
means of a random minimization: Starting with some spin configuration S a spin with positive
energy is chosen randomly and is flipped. This is repeated until no spins with positive energy
remain and a metastable configuration ρ is reached. Formally, we introduce a function

µ(S, {ξ}) = ρ, (8)

which takes S and a set of random numbers {ξ} uniformly distributed in (0, 1] as arguments,
performs the random minimization using {ξ} to perform the selections, and returns a metastable
state. If np

i is the number of spins with positive energy of the configurations σ0, σ1, . . . , σf that
are assumed during the minimization starting with np

0 for S ≡ σ0 and ending with np
f for ρ ≡ σf
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Figure 1. A schematic depiction of the algorithm’s basic elements.

and if in the same way nn
i is the number of spins with negative energy it can be shown [9] that

if the ensemble of combined states S, {ξ} is biased according to the weight function

W (S, {ξ}) =

f−1
∏

i=0
np
i

f
∏

i=1
nn
i

(9)

the derived ensemble of metastable states ρ is uniformly distributed. This means that if
an importance sampling method in the space of spin configurations and random numbers is
performed with the Metropolis-Hastings acceptance criterion:

pacc ((S, {ξ}) → (T, {τ})) = min

(

1,
W (T, {τ})
W (S, {ξ})

)

, (10)

the algorithm at the same time performs a simple sampling walk in the space of metastable
states. In order to perform importance sampling in the space of metastable states it is now
possible to apply another weight function that takes the metastable states as arguments:

V (ρ) = V (µ(S, {ξ})). (11)

In practice just as in standard Monte Carlo simulations, these weights will only depend on a
single observable of ρ, e.g., the energy:

VBoltzmann(ρ) = e−βH(ρ). (12)

The basic concept is laid out in figure 1.

4. Number of metastable states

As a basic application of the algorithm we measure the number of metastable states. Since the
system performs a random walk in the space of metastable states, this corresponds to measuring
the volume of the accessible state space. Such a measurement is a somewhat unusual task since
for most Monte Carlo simulations the number of possible states or the volume of the state space
is known beforehand. It is for instance trivial that there are 2N states (spin configurations) in the
Ising model. Mathematically the number of states can be obtained by integrating a distribution
like the density of states as function of energy. However, for this purpose the distribution in
question has to be normalized properly. It is for that reason advisable to chose a quantity that
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Figure 2. Distribution of metastable states as function of the Hamming distance to a reference
configuration for a single 10× 10× 10 – sample.

facilitates normalization. We chose the Hamming distance to an arbitrary reference metastable
state ρref :

DH(S) =
∑

i

(1− δSi,ρref,i), (13)

since we know that for the distribution

ΩH(d) =
∑

ρ

δDH(ρ),d , (14)

where the sum goes over all metastable states and δ is the Kronecker symbol, it is ΩH(0) =
ΩH(N) = 1, i.e., there is exactly one state equal to ρref and exactly one state where all N spins
are inverted.

In our simulation we used a flat-histogram method. We set

V (ρ) ≡ Ṽ (DH(ρ)) ≈ ΩH(DH(ρ))
−1 (15)

and determined Ṽ using the Wang-Landau [10] algorithm. Subsequently, in an extended
production run we measured ΩH(d) and calculated the number of metastable states

NS =
N
∑

d=0

ΩH(d) (16)

for 1000 samples of the two-dimensional (L = 32) and the three-dimensional (L = 10) Edwards-
Anderson model. For a single 3d sample the data are shown in figure 2. The histograms of the
logarithm of the number of metastable states for these 1000 samples are displayed in figure 3.
Some properties are listed in table 1, with the minute values for skewness and with kurtosis
close to 3, we conclude that as expected the logarithmic numbers of metastable states follow a
Gaussian distribution.
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Figure 3. Histogram of the logarithm of the number of minima for 1000 disorder realizations (samples).
The curves represent Gaussian distributions possessing the mean values and the standard deviations from
table 1.

Table 1. Properties of the distribution of the normalized logarithmic number of minima 1

N
ln(NS).

2d 3d
mean 0.2153(1) 0.21060(5)

std. deviation 0.0025(1) 0.00152(3)
skewness 0.004(7) 0.05(8)
kurtosis 2.8(1) 2.9(2)

In an earlier study Waclaw and Burda [6] have used an analytic approximation in order to
calculate the (non-logarithmic) averages. We compare with our results in table 2. While we
observe a very good agreement in two dimensions, there is a slight mismatch for the three-
dimensional case. At this point we can not judge whether this is a finite-size effect or a result of
the approximation in Ref. [6]. In the third line in table 2 we estimate the mean values exploiting
the properties of lognormal distributions. If ln(NS) is Gaussian distributed it follows that

ln〈NS〉 = 〈lnNS〉+
1

2
σ2
lnNS

, (17)

where σξ is the standard deviation of the variable ξ. It follows that

ln〈NS〉
N

=

〈

1

N
lnNS

〉

+
N

2
σ2

1

N
lnNS

. (18)

5. Conclusion

We have introduced a novel method that allows to specifically sample the metastable states of
the Edwards-Anderson model. We have applied the algorithm in order to measure the number
of metastable states in two and three dimensions. The results agree well with earlier analytic
approximations by Waclaw and Burda.
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Table 2. Comparison of estimates for ln〈NS〉/N .

2d 3d
Waclaw and Burda [6] 0.21808(2) 0.21125(1)

this study 0.2182(2) 0.2118(1)
from parameters in table 1 0.2185 0.21176
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