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Abstract. Coarsening kinetics of systems with long-range interactions has, for a long time,
only been attempted by truncating the potential using a cut-off distance. In such simulations
of the long-range Ising model, one finds effectively short-range like behavior. This contradicts
a longstanding theoretical prediction for the growth of the characteristic length scale for this
model. We recently performed simulations of this system without the use of a cut-off and, for the
first time, confirmed the analytic prediction numerically. Here, we investigate the properties of
the used algorithm in more detail and present a comparison of coarsening using the Metropolis
and the Glauber criteria.

1. Introduction
Coarsening is a very general phenomenon occurring in many physical situations. At
high temperature, systems are generally in a disordered state with high symmetry (e.g.,
paramagnetic), whereas at low temperature the symmetries are broken and the system is in
an ordered state (e.g., ferromagnetic). When one now subjects such a disordered system to
external conditions that would correspond to an ordered state, one can observe the growth
of ordered regions or domains with time t. The purpose of coarsening analysis is to quantify
this nonequilibrium process. This is usually done by calculating a characteristic length scale
`(t), which quantifies the size of the ordered structures. For the short-range interacting Ising
model with non-conserved order parameter, the growth follows the Lifshitz-Cahn-Allen law
`(t) ∼ t1/2 [1, 2]. There exist several simulation studies which numerically confirm this
prediction for the short-range Ising model [3, 4]. Long-range interactions are omnipresent in
nature and other sciences, ranging from electrostatic forces over neuroscience to economical
phenomena [5, 6, 7, 8, 9]. Thus to correctly describe such physical systems, one needs to take
those long-range interactions into account. Here, we study the long-range interacting Ising model
with Hamiltonian

H = −
∑
i

∑
i<j

J(rij)sisj , (1)

http://creativecommons.org/licenses/by/3.0
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where si = ±1 are spins and the long-range interactions are chosen to decay algebraically with

J(rij) =
1

rd+σij

. (2)

Here rij = |~rij | = |~ri−~rj | is the distance between two spins and d is the dimension of the system.
How long-range the potential is can be tuned by σ, where σ =∞ corresponds to the short-range
Ising model. Note, that the summation is performed over the whole lattice, i.e., every spin
interacts with every other spin. For this model, there exists a prediction for the growth of `(t)
in dependence of σ, given by [10, 11, 12]

`(t) =


t1/2 σ > 1

[t log(t)]1/2 σ = 1

t1/(1+σ) σ < 1

, (3)

implying that the short-range scaling behavior already sets in for σ > 1. Here, the
crossover value σ× = 1 is expected to be dimension independent. This is in contrast to
the crossover values σ× in equilibrium, which are still disputed and dependent on the spatial
dimension [13, 14, 15, 16, 17, 18]. There have been previous numerical studies using Monte Carlo
simulations for the coarsening in the long-range Ising model, in which a cut-off of the potential
was used to make the simulation tractable [19, 9]. Ref. [9] reported that the coarsening dynamics
was effectively short-range, i.e., `(t) ∼ t1/2 for all σ.

The treatment of the full range of long-range interactions in simulations often leads to
problems that are no longer computationally tractable. In some cases, e.g., the long-range
interacting Ising model, there exist specialized cluster algorithms based on the Swendsen-Wang
algorithm [20] that enable efficient simulations of such systems [21, 22, 23]. However, those
algorithms are only meaningful in equilibrium simulations where one is interested in sampling
the equilibrium distribution, i.e., the moves do not need to have a physical equivalence. However,
when studying dynamics, one requires a physical evolution in time and thus is restricted to
single spin or particle dynamics. We recently performed simulations by utilizing the trick of
storing the effective field for each spin.1 With this method, when applied to the coarsening of
the two-dimensional Ising model, we obtained a significant speedup by a factor of the order
of 1000 [25]. Regarding the coarsening dynamics, we were able to confirm, for the first time,
the above mentioned long-standing analytical prediction (3) [10, 11, 12]. In this work, we will
present some further details of the method as well as the algorithm and additionally compare
Metropolis and Glauber update dynamics. We end with a detailed analysis of the growth
exponent by performing a finite-size scaling analysis.

2. Model, Method, and Algorithm
2.1. Algorithm
In usual canonical, i.e., fixed temperature, Monte Carlo simulations of the short-range Ising
model with Hamiltonian

H = −J
∑
〈ij〉

sisj , (4)

one calculates the change in energy ∆E by considering the local energy change by essentially
summing over the nearest neighbors. This is done at every spin-flip attempt. The spin flip is
then most commonly accepted by the Metropolis criterion [26] for a flip of spin si,

pM(si) = min[1, exp(−∆Ei/T )]. (5)

1 We thank Alfred Hucht for pointing out to us at this conference, that such a method has already been briefly
mentioned in Ref. [24] dealing with simulations of the Heisenberg model with dipole interactions.
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Generally, and also in our simulation, all physical constants, such as the Boltzmann constant
kB, are set to unity. Alternatively, one could also use the acceptance criterion of Glauber [27],

pG(si) = 0.5[1− tanh(0.5∆Ei/T )], (6)

which is considered to be more physical. Both pM and pG fulfill the criterion of detailed balance
in equilibrium. In an equilibrium simulation the Glauber update generally possesses a smaller
autocorrelation time. For the long-range interacting Ising model, the calculation of ∆E is
computationally much more demanding, as not only the nearest neighbors but also all other
spins have to be considered. Thus one tries to limit the number of times one has to calculate this
sum. The idea of storing the effective field for each spin arises from the very trivial observation,
that during a single Monte Carlo sweep typically never all spins flip (unless when simulating at
T = ∞). Thus it would be beneficial to have a method which is significantly faster if a spin
does not flip; reminiscent of the kinetic Monte Carlo approach [28, 29]. The kinetic Monte Carlo
approach is rejection free and one chooses which spin will flip according to its proposed energy
change. In succession one then updates the time according to how long this spin flip would
have taken in a Metropolis Monte Carlo simulation. We, however, have taken another approach
which will be explained in the context of the Ising model with the archetypical Hamiltonian of
(1). In our approach, we store the effective field hj for every spin sj , where

hj =
∑
i

J(ri,j)si. (7)

This enables us to calculate ∆Ei, the change in energy if spin si would flip, in a very efficient
way:

∆Ei = 2sihi. (8)

Using the proposed formulation, one only would need to recalculate the hj for all j 6= i if a
spin flips. However, there is a much more efficient way to do this. We can instead iterate over
the lattice and update all hj → hj + 2siJ(rij), making this operation comparable in speed to
a single calculation of ∆Ei. For the nearest-neighbor Ising model, one would thus only update
the effective field of the surrounding spins (4 in a two-dimensional, 6 in a three-dimensional
simple-cubic lattice). This leads to a speedup of only ≈ 10%− 20% when simulating below the
critical temperature Tc, because the computational effort of calculating ∆Ei = 2siJ(1)

∑
〈ij〉 sj is

roughly comparable to calculating ∆Ei = 2sihi (here 〈ij〉 refers to all j with rij ≡ 1). However,
for long-range interactions this difference is very big, thus leading to significant speedups. In
Ref. [25], we found a speedup of ≈ 103 for the Metropolis simulation of coarsening in the two-
dimensional Ising model.

2.2. Ewald summation
When dealing with long-range interactions, the finite-size effects become very strong. In this
work, we chose the power-law like decaying potential presented in (2). For long-range interacting
systems, one often uses periodic boundary conditions via the minimum-image convention.
Another way to imitate periodic boundary conditions and to minimize the effect of a finite
system size is the Ewald summation [30, 18]. The basic idea is to envision infinitely many copies
or identical image systems in all directions. One then can identify the distance of each replica
by ~v = (mx,my), where mi = 0,±L,±2L, . . . for i = x, y and L is the linear size of the system.
The interaction strength between two spins can then be more accurately calculated as

J?(si, sj) =
∑
mx

∑
my

1

|~v + ~rij |d+σ
. (9)
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Figure 1. The number of clocks needed per sweep vs. time t for (a) different values of σ with
L = 2048 using the Metropolis criterion and (b) for σ = 0.6 with L = 1024 using the Metropolis
and the Glauber criterion. The system was quenched to T = 0.1Tc from an initially random
configuration.

However, in principle this sum has to be performed over infinitely many mirror systems due to
slow convergence. Luckily, one way to significantly speedup the convergence is to split the sum
in a sum in real space and a sum in reciprocal space:

J? = J?s + J?l , (10)

where J?s is the short-range term and J?l is the long-range term. Those sums can be expressed
as

J?s =
∑
~v

1

Γ
(
d+σ
2

) 1

|~v + ~rij |d+σ
Γ

(
d+ σ

2
, (κ|~v + ~rij |)2

)
, (11)

J?l =
2π

d
2

Γ
(
d+σ
2

)
V

∑
~k

cos(2π~k~rij)
1

2
(πk)σΓ

(
−σ

2
,

(
πk

κ

)2
)
. (12)

Here Γ(x) =
∫∞
0 tx−1e−tdt is the gamma function and Γ(s, x) =

∫∞
x tx−1e−tdt is the incomplete

gamma function. Both gamma functions were evaluated numerically by the GNU scientific
library (GSL). The value of κ is important for the speed of convergence and was chosen to
κ = 2/L in accordance with Ref. [18]. The approach of using Ewald summation to determine
a more accurate representation of the interaction potential is widely used, e.g., in long-range
interacting all-atom simulations of peptides [31]. There, the positions of the particles are not
fixed and this approach is used “on-the-fly”, whereas in our simulation the positions of the spins
are fixed and J? is calculated only once at the beginning of the simulation for every pair of σ
and L.

3. Results
We now want to use the above introduced methodology for simulating the coarsening in the
two-dimensional Ising model with long-range interactions for different values of σ and for the
mentioned acceptance criteria according to Metropolis and Glauber.
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Figure 2. Snapshots at time t of the evolution for a single seed using the Metropolis (upper
panels) and Glauber (lower panels) update criterion for σ = 0.6 and L = 1024 when the system
is quenched from a random start configuration to T = 0.1Tc.

3.1. Runtime analysis
In Figs. 1(a) and (b) we show the dependence of the clocks needed per sweep versus the time t for
(a) different σ using the Metropolis criterion and for (b) σ = 0.6 using both the Metropolis and
Glauber criterion. It becomes clear from this figure, that the runtime per sweep dramatically
decreases as the systems becomes more ordered, indicating that less spin-flip attempts are
successful. In the scaling region, one can observe a power-law like decay with varying exponent,
depending on σ. If one would not store the effective field, the number of clocks per sweep would
be roughly constant for all times and always greater than the presented data. One important
factor, somehow neglected in the above graph, is the additional time needed to calculate the
initial hj . In principle, this overhead could be so big, that this approach is not advantageous
anymore. However, one can reformulate the algorithm in such a way, that the runtime is always
strictly below the runtime of the traditional algorithm (details will be presented in Ref. [32]).
The comparison presented in Fig. 1(b) shows that for σ = 0.6 and L = 1024, the Glauber
criterion generally has a bigger number of accepted spin flips in such a quench, reflected in the
higher number of clocks needed per sweep for every t. It is clear, that the approach of storing
the effective field per spin and subsequently updating those values significantly decreases the
amount of needed computational resources. In Ref. [25], we presented such a comparison for the
Metropolis criterion and found an improvement factor of ≈ 103.

3.2. Kinetics of growth
In Fig. 2 we present snapshots for the coarsening of a single run for σ = 0.6 and L = 1024 for
both the Metropolis and Glauber criterion. The system was in this work quenched to T = 0.1Tc,
where the values of Tc, which for the long-range Ising model depend on the decay exponent σ,
were extracted by a power-law fit of the form Tc(σ) = Tc(∞) + aσb to the data presented in
Ref. [18]. For nonequilibrium studies, knowing the exact value of Tc(σ) is not important and
this rather crude estimation is sufficient. Phenomenologically, the evolution appears to be driven
in a similar way as for the short-range model by reduction of phase boundaries. However, it
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Figure 3. In (a) for the Metropolis criterion and in (b) for the Glauber criterion, the scaling
of the correlation function C(r, t) is shown by plotting it against r/`(t). In (c) and (d) we
present the scaling of the structure factor S(k, t) for the Metropolis respectively Glauber update
criterion. The solid lines with slope −3 indicate Porod’s law. All presented data were obtained
for systems with σ = 0.6 and L = 1024 with a quench temperature of T = 0.1Tc.

appears that the dynamics of the Metropolis update is faster than for the Glauber update, which
is of course already reflected in the update criteria pM and pG and the analysis of the run time
in Fig. 1. The starting configuration was identical for both criteria. Importantly, the phase
boundaries are smooth rather than rugged.

We calculate the equal-time spin-spin correlation function

C(r, t) = 〈sisj〉 − 〈si〉〈sj〉 (13)

to quantify the coarsening. With increasing time after the quench, the correlation is expected
to become stronger, i.e., C(r, t) decays slower. From this fact, one can then extract a length
scale `(t) by taking the intersection of the correlation function with a constant value c ∈ (0, 1).
We chose C(r, t) = const. = 0.5 as one often does in simulations of coarsening. In Figs. 3(a)
and (b) the data collapse of C(r, t) if plotted against r/`(t) for (a) the Metropolis criterion and
(b) the Glauber criterion. This scaling is predicted by theory. For later times t and larger r,
one sees some deviation of the collapse, which we attribute to the very strong finite-size effects.
However, overall the collapse is very good. Next we analyse the scaling of the structure factor

S(~k, t) =
∫
d~rC(~r, t)ei

~k~r, the Fourier transform of the correlation function C(r, t) in Fig. 3(c)
for the Metropolis criterion and in (d) for the Glauber criterion. The data collapse is very good,
until at high k`(t) the finite-size effects come into play. The decay follows a power law with
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Figure 4. (a) Growth of length scale `(t) with time t using the Metropolis update for different
σ for L = 2048. In (b) the growth of `(t) is shown for both the Metropolis and Glauber criterion
for σ = 0.6 and L = 1024. The solid lines in (a) and (b) correspond to the prediction (3).

exponent −3, in accordance with Porod’s law [33]. This fact is used in the derivation of (3) and
thus is important. With this necessary condition of the coarsening being a scaling phenomenon
out of the way, we now aim to quantify the growth of `(t).

To quantify the differences in the growth of `(t) for different σ, we simulated the coarsening
for L = 2048 and the Metropolis criterion. In Fig. 4(a), the characteristic length `(t) for these
simulations is shown. The solid lines here correspond to the prediction (3) with an appropriate
prefactor to make the solid lines fall on top of the data. We now want to compare the Metropolis
criterion to the Glauber criterion. For this, we present the corresponding plot in Fig. 4(b) for
σ = 0.6 and L = 1024. As expected, both the Metropolis and Glauber simulations show
agreement with the prediction (3) (given by the solid line in the same figure). However, the
simulation using the Glauber criterion has a smaller amplitude and overall runs longer. This is
in agreement with the higher number of clocks/spin flips per sweep observed in Fig. 1(b).

3.3. Exponent analysis
In Fig. 4 we can observe a good agreement with the prediction (3). However, it is always
important to obtain some independent quantitative estimation of observables to mitigate the
effect of observation bias. We therefore fit a power law of the form

`(t) = At
1

1+σf (14)

to the growth of `(t) for the Metropolis simulation with σ = 0.6 and L = 2048. When doing
such fits, it is always very difficult to find proper ranges of minimal and maximal values of the
independent variable. We therefore vary t and record the reduced chi-square χ2

r value and the
values of the fit parameters A and σf . In Fig. 5(a) we present a heatmap plot, where tmin is
the lower bound of t and tmax the upper bound of t. The colormap encodes the value of σf .
All fits with χ2

r > 1.5 and χ2
r < 0.5 were discarded. One can observe that σf = 1.0, the value

expected from such a quench in the short-range Ising model, is not present at all. One finds a
rather big plateau around σf = 0.6, indicating this to be the correct value. If one moves towards
higher values of tmin, one of course observes an increase of σf due to finite-size effects. There is,
however, no longer any plateau visible, a strong indication that σf = 0.6 is indeed the correct
value, further validating the found results.
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Figure 5. (a) Heatmap of the fit parameter σf for different ranges of the independent variable

tmin ≤ t ≤ tmax for a fit of `(t) = At1/(1+σf ) to `(t) for σ = 0.6 and L = 2048. The colormap
here encodes the value of σf found. Only fits with 0.5 ≤ χ2

r ≤ 1.5 are shown. (b) Finite-size
scaling analysis for `(t) with σ = 0.6 and L = 2048, 1024, 512. The solid line corresponds to the
predicted behavior.

To further strengthen the claim that indeed the analytic prediction is correct, we finally
perform a finite-size scaling analysis [34, 35] by allowing an off-set in the asymptotic scaling law
for `(t),

`(t) = `0 +At
1

1+σ , (15)

where `0 is some initial length, which proved to be significant for the finite-time scaling behavior
of `(t). Then one writes down the finite-size scaling function as

Y (y) =
`(t)− `0
L− `0

(16)

with appropriate choice of the argument,

y =
(L− `0)1+σ

t− t0
. (17)

In the finite-size unaffected regime, i.e., in the scaling regime it can be shown that

Y ∼ y− 1
1+σ . (18)

Thus, when plotting Y (y) for different L, one expects data collapse with a slope corresponding

to y−
1

1+σ . A similar analysis has previously successfully been applied in various systems
[34, 35, 36, 37, 38]. In Fig. 5(b) we show such a data collapse exercise. For large values of
y the data for different L collapse well and are in very good agreement with the solid line
showing the power-law behavior with exponent −1.0/1.6 expected for σ = 0.6. For small values
of y, however, one can observe a flat behavior due to the influence of finite-size effects. From the

point of the deviation of the data from the asymptotic Y ∼ y−
1

1+σ behavior to the flat regime
one can estimate the onset point of finite-size effects, which in our case occurs at `/`max ≈ 0.78,
where `max is the maximal length scale `(t) can attain for a finite L. Here we obtained `max

from the asymptotic value of `(t) observed in Fig. 4(a). A larger value of L would manifest in
a longer period of smaller values of y following the slope.
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4. Conclusion
We have compared the coarsening in the two-dimensional Ising model with long-range
interactions using both the Metropolis and Glauber criterion. It was confirmed that both update
criteria produce results that are in agreement with the analytical prediction. We further have
analyzed the runtime per sweep during a quench for both criteria. Apart from the obvious
adaptation of this approach to simulate the dynamics of long-range interacting systems to other
related models and the investigation of other nonequilibrium quenching properties (such as,
e.g., aging or persistence [39, 32]), we would like to point out that one could also effectively
investigate the Kibble-Zurek mechanism in Ising models with long-range interactions during a
nonequilibrium quench [40, 41, 42, 43]. This would hopefully lead to significant new physical
insight in the process of slow quenches.
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