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Abstract

In a recent paper, Clusel and Fortin (2006 J. Phys. A: Math. Gen. 39 995)
presented an analytical study of a first-order transition induced by an
inhomogeneous boundary magnetic field in the two-dimensional Ising model.
They identified the transition that separates the regime where the interface
is localized near the boundary from that where it propagates inside the
bulk. Inspired by these results, we measured the interface tension by using
multimagnetic simulations combined with parallel tempering to determine the
phase transition and the location of the interface. Our results are in very
good agreement with the theoretical predictions. Furthermore, we studied the
spin–spin correlation function for which no analytical results are available.

PACS numbers: 05.70.Fh, 02.70.Uu, 75.10.Hk

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Wetting transitions are phase transitions in the surface layer of bulk systems which are induced
by symmetry-breaking surface fields [1, 2]. The Ising model with a boundary magnetic field is
a simple model for such a wetting problem, because Ising ferromagnets have the same critical
behaviour as the analogous case of gas–fluid transitions, as has been pointed out by Nakanishi
and Fisher [3]. The use of the Ising model with short-range interactions for wetting studies
has not only the advantage that one can use all the advanced simulation techniques which have
been developed in the past few years. Especially in two dimensions (2D), there are also a lot
of theoretical results available for comparison.

The Ising model with a uniform boundary magnetic field on one side of a square lattice
has been completely solved by McCoy and Wu [4], whereas the Ising model with a uniform
bulk field can only be solved at the critical temperature [5]. For situations with fixed boundary
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spins or equivalently infinite boundary magnetic fields [6], or finite boundary magnetic fields
[7] some exact results have also been found. In a recent paper, Clusel and Fortin [8] presented
an alternative method to that developed by McCoy and Wu for obtaining some exact results for
the 2D Ising model with a general boundary magnetic field and for finite-size systems. Their
method is based on the fermion representation of the Ising model using a Grassmann algebra.
They applied this method for studying the first-order transition induced by an inhomogeneous
boundary magnetic field in the 2D Ising model [9]. To be more precise, the boundary magnetic
field acts on the x = 1 column of spins, being positive in the lower and negative in the upper
halve. By taking the thermodynamic limit exactly for a given geometry of the lattice, they
obtained a simple equation for the transition line and also a threshold for the aspect ratio
ζ = Lx/Ly = 1/4, where this line moves into the complex plane. This vanishing of the
transition line indicates the crossover from 1D behaviour for Lx � Ly to 2D behaviour at
large ζ , which is reflected in the behaviour of the boundary spin–spin correlation function.

The aim of this work is to check some of the predictions by carrying out Monte Carlo
simulations of this model and to extend the results to parameter ranges and for observables
where analytic solutions cannot be obtained. The rest of this paper is organized as follows. In
section 2 we give the definition of the model and briefly summarize the theoretical predictions.
A description of the employed simulation techniques and the results of our Monte Carlo
simulations are presented in section 3, and concluding remarks can be found in section 4.

2. Model and theoretical predictions

We consider a 2D Ising model with a non-homogeneous magnetic field hy located on one
boundary of the system. The Hamiltonian is given by

H = −J

Lx,Ly∑
x,y=1

(σxyσx+1y + σxyσxy+1) −
Ly∑

y=1

hyσ1y, (1)

with free boundaries in the x-direction and periodic boundary conditions in the y-direction.
To compare our results with the theoretical predictions of Clusel and Fortin [9], we consider
the same profile of the boundary magnetic field acting on the x = 1 column of spins: hy = H

for y = 1, . . . , Ly/2 and hy = −H for y = Ly/2 + 1, . . . , Ly , with H � 0.
In the limit of zero temperature, by using simple energetic arguments, Clusel and Fortin

[9] showed that for small H all spins are aligned in one direction as in the bulk case for H = 0,
see also figure 1. With increasing H, however, depending on the aspect ratio ζ = Lx/Ly

two different interfaces can be formed. If ζ > ζs = 1/4 the interface is localized near the
boundary, whereas for ζ < ζs the interface propagates inside the bulk. The critical ratio
ζs marks the crossover from 1D behaviour for Lx � Ly towards 2D behaviour at large ζ .
For ζ < ζs and non-zero temperatures T > 0, with the abbreviations t = tanh(J/kBT ) and
u = tanh(H/kBT ), the equation for the first-order transition line in the (t, u)-plane turns out
to be a quadratic equation in u2 [9]:

2t (1 + v(4ζ ))u4 + (1 + t2)(1 − 2tv(4ζ ) − t2)u2 + 2(v(4ζ ) − 1)t3 = 0,

v(4ζ ) = cosh

[
4ζ ln

(
1 − t

t (1 + t)

)]
. (2)

In figure 2 we show the phase diagram for a system with aspect ratio ζ = 0.2 (and
J = kB = 1). In the low-temperature regime we can approximate the above expression
by comparing the energy of the interface with the energy induced by the magnetic field. This
leads to H ≈ 2σ(T )ζ/m0(T ), where σ(T ) and m0(T ) are the known interface tension and
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Figure 1. The phase diagram at zero temperature as a function of the aspect ratio ζ = Lx/Ly and
the boundary magnetic field H.
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Figure 2. The phase diagram for a system with ζ = 0.2. The thick line shows the first-order
transition given by Clusel and Fortin [9] and the thin vertical line indicates the second-order bulk
phase transition. The thin dashed line indicates a simple approximation of the first-order line,
H ≈ 2 σ(T )ζ

m0(T )
, where σ(T ) and m0(T ) are the interface tension and the spontaneous magnetization

of the pure 2D Ising model, respectively. The sketches of the spin configurations illustrate the
interface location in the three phases and the double-headed arrows show the parameters of the
Monte Carlo simulations.

the spontaneous magnetization of the pure 2D Ising model, respectively. This approximation
reproduces the exact low-T expansion, H = 4ζ − 4ζT e−2/T , and works very well for T < 1

3



J. Phys. A: Math. Theor. 41 (2008) 395001 E Bittner and W Janke

Table 1. Summary of simulation parameters (PT: parallel-tempering algorithm, SC: single-cluster
update).

ζ H T Lx × Ly Method Measurements

0.2 0.4 1.6–2.2 80–2000 PT 1 × 106

0.2 0.5 1.4–1.9 80–2000 PT 1 × 106

0.2 0.5 2.1–2.3 80–180 500 SC 1 × 106–5 × 106

0.2 0.7–0.9 1.0 80–640 PT 1 × 106

0.2 0.285–0.316 2.0 80–2000 PT 1 × 106

0.25 0.4 1.9–2.1 256–2500 PT 1 × 106

0.25 0.5 1.5–1.9 64–2000 PT 1 × 106

0.25 0.5 2.0–2.3 64–6400 SC 1 × 106–5 × 106

0.25 0.7–0.8 1.5 64–1600 PT 1 × 106

0.5 0.5 2.2–2.35 50–3200 PT 1 × 106

0.5 0.9–1.1 1.0 50–5000 PT 1 × 106

0.5 1.5–2.0 1.0 50–3872 PT 1 × 106

as one can see in figure 2 (thin dashed line). Since σ(T ) vanishes much faster than m0(T ) as
T → Tc, also this point is reproduced exactly, but the slope of the approximate transition line
at Tc does not diverge as for the exact solution. Due to the first-order transition induced by the
inhomogeneous boundary magnetic field, the second-order phase transitions across the vertical
line at T = Tc are transitions from a region where an interface in the bulk separates two ordered
domains of opposite magnetization from a disordered regime above the transition temperature.
Therefore, the system undergoes a transition without a change in the magnetization 〈m〉 which
is zero in both phases, cf figure 2, but the width of the magnetization distribution does change.

3. Numerical results

Since we are primarily interested in the location of the interface induced by the boundary
field, we first performed simulations at low temperatures to generate a well-defined interface.
To overcome the slow dynamics at low temperatures we developed a combination of the
multimagnetic algorithm with the parallel tempering method [10] for which we used two
different schemes: in the first scheme, we kept the magnetic field value H fixed and simulated
n = 32 replica of the system at different temperatures Ti . In the second scheme, we kept the
temperature T fixed and used n = 32 different values of the magnetic field Hi .

To construct the weight function for the multimagnetic part of the algorithm, we employed
an accumulative recursion, described in detail in [10, 11]. Statistical averages were taken over
runs of 106 Monte Carlo (MC) steps, where one MC step consists of one full multimagnetical
lattice sweep for all 32 replica and one attempted parallel tempering exchange of all adjacent
replica. With this method we were able to study systems with N = Lx × Ly = 50 to 5000
spins for aspect ratios ζ = Lx/Ly = 0.2, 0.25 = ζs and 0.5, for further details see table 1.

Let us first discuss the data obtained for the case ζ = 0.2 < ζs . For this value of the
aspect ratio, the phase diagram as predicted by Clusel and Fortin [9] is shown in figure 2. The
thick line indicates the first-order transitions from the fully magnetized state with 〈m〉 > 0
to the mixed state with an interface extending across the bulk. To check the nature of these
transitions we measured the probability density of the magnetization at four points along the
transition line. In the first two cases, we kept the boundary magnetic field constant (H = 0.4
and 0.5) and varied the temperature to locate the transition point, and in the other two cases,
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Figure 3. Left plot: the probability density for the magnetization as a function of temperature
at a constant boundary magnetic field H = 0.5 for N = 20 × 100. The vertical lines indicate
the first-order transition temperature T0 ≈ 1.5950 according to (2) and the critical temperature
Tc ≈ 2.2692 of the bulk phase transition. Right plot: histograms of the magnetization in
the vicinity of T0 for various lattice sizes ranging from Ly = 20 to Ly = 100. Here the
temperatures T0(L) are determined such that the peaks at m ≈ ±m0 and m = 0 are of equal height.

we fixed the temperature (T = 1.0 and 2.0) and varied the boundary magnetic field. These
points are indicated by the double-headed arrows in figure 2.

In the following we illustrate our procedure for obtaining the first-order transition point and
the associated interface tension for the case of fixed H = 0.5. A level plot of the magnetization
density m = (1/N)

∑Lx,Ly

x,y=1 σxy as a function of temperature is shown in figure 3 (left). For
each lattice size, a pseudo-transition point can be defined by varying the temperature until
the peaks at m ≈ ±m0 and m = 0 are of equal height, which can be achieved by histogram
reweighting. The interface tension can then be estimated from [12]

F s
L = 1

2L
ln

(
P max

L

P min
L

)
, (3)

where P max
L is the value of the peaks and P min

L denotes the minimum in between, see
figure 3 (right). The length of the interface is denoted by L, which is L = Lx in the
case of ζ < ζs .

The thus-defined pseudo-transition temperatures T0(L) approach the infinite-volume
transition temperature T0 as 1/L2, and for the final estimate of F s = limL→∞ F s

L, we performed
a fit according to

F s
L = F s +

a

L
+

b ln(L)

L
. (4)

At fixed T one proceeds analogously by varying the magnetic field H, i.e., the roles of T and
H are just interchanged. For all four cuts at constant surface field or temperature we find good
agreement with the infinite-volume transition points derived from (2) and a clearly nonzero
interface tension, see table 2.

We also checked the critical behaviour along the line of second-order transitions at
T = Tc = 2/ log(1 +

√
2) ≈ 2.2692. To this end, we run at H = 0.5 single-cluster

simulations (suitably adapted to the surface field) for systems with N = Lx × Ly = 4 × 20 to
190 × 950 spins and performed a finite-size scaling (FSS) analysis to determine the transition
point and some critical exponents. This particular value of the magnetic field has been chosen
because of the relatively large temperature gap between the boundary field induced first-order
transition and the bulk phase transition. Between each measurement we performed one sweep,
which here consists of n single-cluster updates with n chosen such that n〈|S|〉 ≈ N , where
〈|S|〉 is the average cluster size. For every run we generated 1 × 106 − 5 × 106 sweeps, and
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an unbiased fit using the power-law ansatz Cmax = a + bL
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Table 2. Results of the simulations close to the first-order transition line. For a given aspect ratio ζ

we kept either the boundary magnetic field H or the temperature T fixed. The third column shows
the measured transition points and the fourth column shows the exact infinite-volume values given
by (2). The fifth column contains our numerical estimates for the extrapolated interface tensions.

ζ H T0 T0 (exact) Fs

0.2 0.4 1.84 (1) 1.822 52. . . 0.18 (1)
0.2 0.5 1.60 (1) 1.594 97. . . 0.32 (2)
0.25 0.5 1.91 (1) 1.958 45. . . 0.09 (1)

ζ T H0 H0 (exact) Fs

0.2 1.0 0.72 (1) 0.702 352. . . 0.82 (2)
0.2 2.0 0.305 (3) 0.305 928. . . 0.12 (1)
0.25 1.5 0.73 (1) 0.762 807. . . 0.24 (1)

recorded the time series of the energy density e = E/N and the magnetization density. Using
these time series, we can compute the specific heat, C = N(〈e2〉−〈e〉2)/T 2, the (finite lattice)
susceptibility, χ = N(〈m2〉 − 〈m〉2), and the Binder cumulant U = 1 − 〈m4〉/3〈m2〉2 in the
vicinity of the simulation point by reweighting.

In this way we can use the maxima of the (finite lattice) susceptibility to detect the pseudo-
critical points and can obtain an estimate for Tc from a linear least-squares fit of their scaling
behaviour, Tmax − Tc ∝ L

−1/ν
x = L−1

x , assuming thus the exact value ν = 1 according to the
universality class of the 2D Ising model. This leads to an estimate for the critical temperature,
Tc = 2.2695(7), which is in very good agreement with the exact value. The FSS ansatz
for the (finite lattice) susceptibility maxima χmax is taken as usual as χmax ∝ L

γ/ν
x . From a

(linear) least-squares fit, we find that γ /ν = 1.75(4) is in perfect agreement with the exact
value 7/4. Concerning the specific heat we expect in the case of the Onsager exponent α = 0
a logarithmic divergence of the form Cmax = a + b log(Lx). Indeed, the data can be fitted
nicely with this ansatz, cf figure 4. We also tried an unbiased fit using the power-law ansatz
Cmax = a + bL

α/ν
x , which gives us α = 0.05(2), verifying the expected value.
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Figure 5. Spin–spin correlation function 〈σ1yσxy〉 for ζ = 0.2, Ly = 100 and H = 0.5 measured
in different regimes: (a) ordered regime at T = 1.0, (b) regime with an interface in the bulk at
T = 2.0 and (c) disordered regime at T = 2.5.

For the aspect ratio ζ = 0.2, we also sampled the spin–spin correlation functions 〈σ1yσxy〉
and 〈σx1σxy〉 in x- and y-direction, respectively. In the ordered regime where nearly all spins
are aligned in the same direction (σxy = +1, say) we find for 〈σ1yσxy〉 and 1 � y � Ly/2
(where hy = H > 0) almost constant values near unity as one expects. The fast decay of
the spin–spin correlation function to a slightly smaller value in the upper half of the system
indicates that the interface is localized near the boundary, cf figure 5(a). In the regime with an
interface in the bulk along the x-direction we find a symmetric shape of 〈σ1yσxy〉 as a function
of y which is a clear signal for the phase separation, see figure 5(b). The opening angle
between the plus and minus phases for 1 � y � Ly/2 and Ly/2 + 1 � y � Ly , respectively,
is a measure for the fluctuations of the interface, e.g. a stiff interface shows an acute angle.
For temperatures above the critical temperature, i.e. in the disordered phase, we observe a
similar vanishing of the spin–spin correlation functions as in the pure 2D Ising model, see
figure 5(c).

At zero temperature, for aspect ratios ζ larger than the critical ratio ζs = 0.25 and strong
fields H > J(1 + 4/Ly), the interface is localized on the boundary, cf figure 1. Although for
ζ > ζs no real solution of (2) exists near Tc, one can solve the equation for small temperatures1

and finds in the case ζ = 0.5 the phase diagram shown in figure 6. The zero-temperature limit
is consistent with the energetic arguments in [9], see also figure 1. The lower line starting at
T = 0,H = 1 can also be detected by means of computer simulations, but as one can see in the
right plot of figure 6, for T = 1 the dip between the two maxima in the boundary magnetization
density mb = (1/Ly)

∑Ly

y=1 σ1,y vanishes with increasing lattice sizes. Therefore, there is no
signal for a first-order transition between these two regimes. One can argue that there is no
phase transition at all, because in the infinite-volume limit only the ordered phase survives.
The dashed line in the left plot of figure 6 starting at T = 0,H = 4ζ = 2 is not visible in
simulations, because this second solution of (2) would correspond to the boundary between the
bulk magnetized state and configurations with an interface propagating inside the bulk which,
however, have a higher free energy than configurations with an interface localized near the

1 Here we are in disagreement with [9] where no solution was found, because of a mistake in the discriminant of (2).
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Figure 6. Left plot: the finite-size phase diagram for a system with ζ = 0.5. The thick line shows
the transition line between the ordered phase and the region with an interface localized on the
boundary. The dashed line indicates where a configuration with no interface and a configuration
with an interface propagating inside the bulk have the same free energy (non-physical solution of
(2), because this bulk interface configuration has a higher free energy than that with an interface
localized on the boundary and hence is suppressed.). The thin vertical line indicates the second-
order bulk phase transition. Right plot: probability density of the boundary magnetization mb for
T = 1.0 plotted for various lattice sizes ranging from Ly = 16 to Ly = 88 and boundary magnetic
field values H ≈ 1 where the peaks are of equal height.

boundary and hence are suppressed. Therefore the phase diagram for ζ > 0.25 consists only
of two phases, namely the ordered low-temperature phase and the disordered high-temperature
phase as in the pure 2D Ising model. We hence conclude that for ζ > 0.25 the inhomogeneous
boundary magnetic field only leads to finite-size effects.

Finally, let us come to the special case of ζ = ζs = 0.25. While the transition line
disappears for ζ > 1/4 as the solutions of (2) move to the complex plane, for ζs we still do
see different peaks associated with the two phases and, therefore, a finite interface tension, cf
table 2. The numerically estimated transition points for H = 0.5 and T = 1.5 also contained in
table 2 are again seen to be in good agreement with (2). Furthermore, we analysed for T = 1.0
the spin–spin correlation functions 〈σ1yσxy〉 and 〈σx1σxy〉 in x- and y-direction, respectively.
Slightly below the transition from the ordered phase with 〈m〉 = m0 to the phase with an
interface propagating inside the bulk and therefore 〈m〉 = 0, 〈σ1yσxy〉 shows an asymmetric
shape and a fast decay near the boundary, indicating that the interface is localized near the
boundary, cf figure 7(a). With increasing boundary magnetic field we cross the first-order line
at H0 ≈ 0.925, where the interface starts moving into the bulk and, therefore, the profile of
〈σ1yσxy〉 becomes symmetric in y. Right at the transition line where we have two coexisting
phases we find both the fast decay near the boundary and the opening angle between the two
almost symmetric halves, see figure 7(b). When the boundary magnetic field is increased
further, this mixed-phase effect vanishes and the interface in the bulk becomes stable. In this
case we find a symmetric shape of the spin–spin correlation function, cf figure 7(c), similar to
ζ = 0.2 in figure 5(b).

4. Summary

Our Monte Carlo data clearly confirm the theoretical considerations of Clusel and Fortin
[9] and extend their exact results by studying the cases ζ equal and larger than the critical
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Figure 7. Spin–spin correlation function 〈σ1yσxy〉 for ζ = 0.25, Ly = 80 and T = 1 measured
for different values of the boundary magnetic field: (a) H = 0.9, (b) H = 0.925 and (c) H =
0.975.

value ζs = 1/4. The observed finite-size scaling behaviour fits nicely with their predictions
for the infinite system, cf our results in table 2. We also find that for a large aspect ratio
some interesting finite-size effects can be observed, such as, for example, a regime in the
H–T plane with two states separated by an energy gap which vanishes in the infinite-volume
limit. Furthermore, we studied the spin–spin correlation function for which analytical results
are not yet available. Since this observable turned out to be quite sensitive to the interface
location, it would be a challenging enterprise to pursue further analytical considerations in this
direction.
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