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Abstract. We investigate the non-self-averaging properties of the dynamics of Ising, 4-state Potts
and 10-state Potts models in single-cluster Monte Carlo simulations on quenched ensembles of
planar, trivalent (�3) random graphs, which we use as an example of relevant quenched connectivity
disorder.

We employ a novel application of scaling techniques to the cumulative probability distribution
of the autocorrelation times for both the energy and magnetization in order to discern non-self-
averaging. Although the specific results discussed here are for quenched random graphs, the method
has quite general applicability.

1. Introduction

The effect of quenched, typically bond, disorder on the critical behaviour of spin systems has
been a subject of interest for many years [1], both because of its own intrinsic interest and
the prevalence of disordered systems in nature. The Harris criterion states [2] that the critical
behaviour of a pure system will be unchanged by the introduction of weak quenched bond
disorder if the specific-heat exponent of the pure system, αp, is less than zero. By the same
token if αp is greater than zero the disordered system will not be governed by the pure fixed
point, but rather a new disordered fixed point. The borderline, αp = 0, constitutes a marginal
case which requires more careful investigation for each specific case.

As was emphasized in [3], a pure fixed point is usually characterized by a Gaussian
distribution of renormalized couplings around the fixed point Hamiltonian which tends to a delta
function in the thermodynamic limit, whereas a disordered fixed point might be expected to be
characterized by some other distribution which tended to a finite width in the thermodynamic
limit†. For a fixed point with a finite width distribution of couplings a measurement of the
density of an extensive thermodynamic quantity such as the energy E, magnetization M ,
specific heat C or magnetic susceptibility χ , would be different on each sample because of the
different disorder realizations. Such behaviour is called non-self-averaging.

This non-self-averaging behaviour for an observable X (such as E, M , C, or χ above)
can be characterized by examining the normalized variance

R(X) = [X2]av − [X]2
av

[X]2
av

(1)

† As we note in what follows, the presence of such a finite width distribution, and hence non-self-averaging, is
not a hard and fast indicator of new, random fixed points since Poisonnian random lattices still display pure critical
behaviour even though they also display non-self-averaging properties.
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where [. . .]av denotes an average over the disorder realizations [3–5]. IfR(X) → 0 asN → ∞,
where N is the number of lattice sites, then we have self-averaging, whereas if R(X) → c,
with c a constant, we have non-self-averaging. Self-averaging systems may in turn be divided
into strongly self-averaging systems where R(X) ∼ N−1, which is the typical behaviour off
criticality and at pure fixed points and weakly self-averaging systems where R(X) ∼ Nκ

with −1 < κ < 0, which has been observed for the case of irrelevant quenched disorder at
criticality [4]. For self-averaging systems measurements on a single large system are sufficient,
whereas for non-self-averaging systems measurements on different realizations of the disorder
must be carried out in order to obtain reliable ensemble averages.

In this paper we will be concerned with quenched connectivity disorder, which has received
rather less attention than quenched bond disorder. The possible influence of quenched geomet-
rical disorder (connectivity, aperiodicity, . . . ) on the universality properties of statistical me-
chanical systems in general has been explored by Luck [6] who arrived at a criterion rather sim-
ilar in spirit to the Harris criterion for the (ir)relevance of such disorder. He noted that if B(�)
was the number of bonds in a region� and�(�) = ∑

〈ij〉ε� Ji,j was the sum of bond values in
that region then, although both these quantities scaled as the volumeN of the region�, one had

�(�) − J0B(�) ∼ Nφ (2)

where J0 was the limiting value as N → ∞ of �(�)/B(�) and 0 � φ < 1 was a fluctuation
(or wandering) exponent. The geometrical fluctuations were found to be relevant if

φ >
1 − α

2 − α
. (3)

Although explicit calculations of φ have not been carried out for models with quenched
connectivity disorder, simulations have shown that it appears to be remarkably difficult to
escape from pure fixed points with such disorder, in contrast to the case of bond disorder. A
prime example of this generic behaviour is Poisonnian (or Voronoi) random lattices, which
have been shown to display the pure critical exponents for the 3D Ising model [7] to a very
high degree of accuracy. Numerous other systems with quenched connectivity disorder show
similar, pure critical behaviour [8]. However, the quenched connectivity disorder manifested
by an ensemble of planar, trivalent random graphs, which we denote �3 graphs for brevity,
does appear to give rise to new disordered fixed points [9]. The exponents of the Ising and
q � 4 state Potts models, which already possess continuous transitions on flat 2D lattices, are
altered and the first-order transition of higher-state Potts models is softened to a continuous
transition [9, 10] on the �3 graphs.

The�3 graphs in question are precisely those generated in a simulation of pure 2D quantum
gravity, though in that case one has an annealed ensemble in which the connectivities fluctuate.
For such an annealed ensemble of �3 graphs the KPZ formula [11] shows how the conformal
weights of operators in spin models living on the graphs are transformed from their flat 2D
lattice values. The KPZ formula per se thus applies to systems in which the spins are fluctuating
on the same timescale as the connectivity. One can, however, obtain predictions for the critical
exponents of spin models living on an quenched ensemble of such graphs†, which is what we
are considering here, by taking a quenched limit in the KPZ formula [12–14]. In this limit one
finds that the flat lattice conformal weight � is transmuted to a new quenched weight

�̃quenched =
√

1 + 24� − 1

4
(4)

which may then be used to determine the critical exponentsα andβ for the quenched ensemble‡.

† In which the connectivity disorder is frozen in.
‡ It is only fair to remark that the analysis of the data in [9], on which the current paper is also based, only lends
rather weak support to these predictions.
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To date, investigations of non-self-averaging behaviour in the presence of quenched
disorder have concentrated exclusively on static quantities such as the susceptibility, rather
than the dynamical properties described by the autocorrelation times for various observables.
In this paper we study the non-self-averaging properties of autocorrelation times for the energy
and the magnetization in the presence of quenched (in our case connectivity) disorder. We
consider the Ising, q = 4 and q = 10 state Potts models on quenched ensembles of �3 random
graphs, since the simulations of [9] provided strong evidence for new, disordered fixed points
in all these cases.

In the next section we briefly recall the models studied and describe the Monte Carlo
simulations performed. The results of the autocorrelation analyses are presented in section 3,
and in section 4 we close with a summary and a few concluding remarks.

2. The model and simulations

As in [9] we use the standard definition of the q-state Potts model partition function and energy

ZPotts =
∑

{σi }
e−βE E = −

∑

〈ij〉
δσiσj σi = 1, . . . , q (5)

where β = J/kBT is the inverse temperature in natural units, δ is the Kronecker symbol, and
〈ij〉 denotes the nearest-neighbour bonds of the random �3 graphs (without tadpoles or self-
energy bubbles) with N sites. We consider the cases q = 2 and 4 with N = 500, 1000, 2000,
3000, 4000, 5000, and 10 000 which in the pure model exhibit second-order phase transitions,
and the case q = 10 with N = 250, 500, 1000, 2000, 3000, 5000, and 10 000 which in the
pure model undergoes a first-order phase transition.

The simulations were carried out using the Wolff single-cluster update algorithm [15].
For each lattice size we generated 64 independent graphs using the Tutte algorithm [16],
and performed 500 thousand equilibration sweeps followed by up to 10 million measurement
sweeps in order to obtain up to 500 thousand (almost) independent measurements for each
lattice size. The runs were carried out at several β values near the transition point and the time
series of the energy E and the magnetization† M = (qmax{ni} − N)/(q − 1) recorded for
each graph. The inverse simulation temperatures βrun are given in tables 1–3. They should be
compared with the recent estimates of βc = 1.558(3), 1.835(1), and 2.244(1) for the transition
points in the q = 2, 4, and 10 state quenched Potts models [9]. In what follows the per-site
quantities are denoted by e = E/N and m = M/N , the thermal averages on each individual
graph by 〈. . .〉 and the quenched average over the different graphs by [. . .]av. From the time
series of e and m it is straightforward to compute in the finite-size scaling (FSS) region various
quantities at nearby values of β by standard re-weighting [17] techniques.

To estimate the statistical (thermal) errors for each of the 64 realizations, the time-series
data was split into bins, which were jack-knifed [18] to decrease the bias in the analysis of
re-weighted data. The final values are averages over the 64 realizations which will be denoted
by square brackets [. . .]av, and the error bars are computed from the fluctuations among the
realizations. Note that these errors contain both the average thermal error for a given realization
and the theoretical variance for infinitely accurate thermal averages which is caused by the
variation over the random graphs.

From the time series of the energy measurements we computed by re-weighting the average
energy, the specific heat, and energetic fourth-order cumulant, as discussed in more detail
in [9]. Similarly, we derived from the magnetization measurements the average magnetization,
susceptibility, and magnetic cumulants and also evaluated mixed quantities involving both the

† Where ni � N denotes the number of spins of ‘orientation’ i = 1, . . . , q in one lattice configuration.
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Table 1. q = 2 autocorrelation times of the energy (f = nflip〈|C|〉/N ).

N βrun nflip [〈|C|〉] [τ̂ ] [f ][τ̂ ] [τ ] = [f τ̂ ] τmin τmax �τ �τ/[τ ]

500 1.50 8 172.4(2.8) 1.18(2) 3.25 3.21(3) 2.74 3.78 0.2069 0.0645
1 000 1.50 12 258.8(4.6) 1.15(2) 3.56 3.50(3) 2.79 4.04 0.2193 0.0626
2 000 1.50 20 386.0(8.0) 1.00(2) 3.87 3.79(4) 3.32 4.45 0.2463 0.0650
3 000 1.55 12 896(20) 1.09(3) 3.90 3.80(4) 3.39 4.29 0.2584 0.0679
4 000 1.55 10 1076(21) 1.39(3) 3.74 3.66(4) 2.96 4.22 0.1178 0.0644
5 000 1.55 8 1305(26) 1.83(4) 3.83 3.74(3) 3.08 4.49 0.2426 0.0649

10 000 1.55 10 2328(53) 1.75(5) 4.07 3.94(3) 3.38 4.48 0.2316 0.0587

Table 2. q = 4 autocorrelation times of the energy (f = nflip〈|C|〉/N ).

N βrun nflip [〈|C|〉] [τ̂ ] [f ][τ̂ ] [τ ] = [f τ̂ ] τmin τmax �τ �τ/[τ ]

500 1.84 8 221.9(4.7) 3.54(07) 12.58 12.32(14) 9.77 14.67 1.1122 0.0903
1 000 1.84 12 371.1(8.9) 3.22(07) 14.32 13.89(13) 11.72 16.11 1.0344 0.0745
2 000 1.84 16 639(19) 3.24(10) 16.55 15.74(16) 12.48 18.93 1.2805 0.0814
3 000 1.84 16 909(27) 3.55(11) 17.18 16.37(21) 13.30 21.06 1.6273 0.0994
4 000 1.84 18 1093(28) 3.56(11) 17.54 16.83(20) 12.55 20.66 1.5668 0.0931
5 000 1.85 20 1634(40) 2.71(08) 17.73 16.99(22) 14.12 22.90 1.6845 0.0991

10 000 1.85 20 3194(81) 2.87(11) 18.36 17.37(23) 13.58 22.76 1.8138 0.1044

Table 3. q = 10 autocorrelation times of the energy (f = nflip〈|C|〉/N ).

N βrun nflip [〈|C|〉] [τ̂ ] [f ][τ̂ ] [τ ] = [f τ̂ ] τmin τmax �τ �τ/[τ ]

250 2.20 6 67.8(2.1) 40.3(1.9) 65.7 66.0(4.0) 23.6 176.2 31.63 0.4796
500 2.20 6 83.8(3.8) 74.4(3.2) 74.9 75.5(4.9) 22.1 244.1 39.10 0.5179

1 000 2.20 6 86.2(3.6) 134.9(5.4) 69.8 70.2(4.2) 23.6 175.2 33.34 0.4750
2 000 2.22 12 189(14) 111.9(5.2) 127 127(12) 34.9 555.5 90.89 0.7163
3 000 2.23 15 362(29) 109.5(4.7) 198 185(13) 54.6 528.1 97.01 0.5252
5 000 2.24 15 833(52) 136.0(6.9) 340 308(18) 85.3 761.1 144.7 0.4699

10 000 2.242 15 1652(110) 210(11) 521 452(27) 156.0 1159.2 213.6 0.4730

energy and magnetization. However, it is the dynamical aspects of the simulations which
are our principal concern here and these are characterized by the autocorrelation functions
and the associated integrated autocorrelation times τ̂†. It is now customary when discussing
single-cluster algorithm simulations [19] to convert the τ̂ thus obtained by multiplying with
a factor f = nflip〈|C|〉/N to a standardized scale where, on average, measurements are taken
after every spin has been flipped once. Here 〈|C|〉 is the average cluster size and nflip denotes
the number of cluster flips between measurements. The thus obtained τ = f τ̂ allows a fair
comparison with, e.g., Metropolis simulations.

When one has quenched random disorder this procedure is not unique due to the average
over realizations ([. . .]av), since one can take either [τ ]av ≡ [f · τ̂ ]av or [f ]av · [τ̂ ]av. We have
presented the raw data and both variations in tables 1–3 for the energy for q = 2, 4, and 10
where it can be seen that the differences between the two averaging prescriptions are rather
small, so for all practical purposes they can be considered to be equivalent. The magnetization
data is qualitatively similar and is not reproduced here. For definiteness in the scaling analysis

† The exponential autocorrelation time τ̂exp for an observable X is defined by the exponential decay of different time
correlators A(t) ≡ (〈X(t)X(0)〉 − 〈X(t)〉〈X(0)〉)/(〈X(0)2〉 − 〈X(0)〉2) ∼ exp(−t/τ̂exp) for large time differences t
and the associated integrated autocorrelation time τ̂ by (formally)

∫ ∞
0 dt A(t) ∼ τ̂ .
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we take [τ ]av ≡ [f · τ̂ ]av. In tables 1–3 the minimum value of τ(=f · τ̂ ) for the various
realizations is denoted by τmin and the maximum by τmax. The standard deviation �τ and its
scaled form, �τ/[τ ]av, are also tabulated.

3. Results for autocorrelation times

The integrated autocorrelation times for each random-graph realization are obtained by
blocking techniques†. These are (necessarily) measurements at the simulation points which
are chosen close to a FSS sequence of β-values but not with high precision since these are
a priori estimates based on the results on smaller lattices. For higher accuracy one would
have to redo the simulations using the knowledge of the infinite-volume estimates of βc or the
locations of the maxima of C, χ , etc, obtained from the present batch of runs and presented
in [9]. As a consequence of this choice of measurement points it can be seen in what follows
that one or two data points lie rather far from the general trend.

Looking at the behaviour of the autocorrelation times for each q in turn, we can see that
the autocorrelation times for q = 2 stay roughly constant with increasing system size for both
the energy and the magnetization. For the energy we obtain values in the range 3–4, and for
the magnetization in the range 1.6–2.2. These results are obtained with the cluster update for
general q-state Potts models where the new spin direction snew for a cluster is chosen randomly
from snew ∈ [1, q]. Picking the old value, snew = sold, would not change anything. Hence
for q = 2 the autocorrelation time can be reduced by a factor of 2 by requiring that the spin
direction of the cluster flips rather than is chosen randomly‡.

For q = 4 the autocorrelation times are also still reasonably small, covering a range 12–18
for the energy and a range 7–10 for the magnetization. However, here a scaling with system
size is now clearly observable and fits to the standard FSS ansatz§

[τ ]av = aNz/D (6)

give for the energy ln a = 2.283(82) and z/D = 0.064(10) with χ2/dof = 1.28 or a
goodness-of-fit parameter Q = 0.28, if the N = 500 and N = 1000 graphs are omitted.
For the magnetization the fit through all available graph sizes yields ln a = 1.554(95) and
z/D = 0.074(13) with χ2/dof = 1.01 or Q = 0.41. The data along with the fits are
shown in figure 1(a). Note that the estimates of z/D on the random graphs are considerably
smaller than for regular lattices [20] where z/D = 0.876(11)/2 = 0.438(6) for the integrated
autocorrelation time of the energy, using the Swendsen–Wang cluster-update algorithm‖. In
fact, since the Li–Sokal bound [21] guarantees for regular lattices that τe � const × C and
the specific heat C diverges on regular lattices at criticality like L(lnL)−3/2, we see that (as
was noted in [20]) this actually must be an underestimate. It should be emphasized that for
quenched (or annealed) gravity graphs the singularity of the specific heat is predicted to be
weakened; hence we are not a priori in contradiction with the suitably generalized Li–Sokal
bound.

For q = 10, where one would expect on regular lattices for both autocorrelation times a
pronounced exponential increase with system size due to the first-order nature of the transition,
the first point to note is that here on �3 graphs the values are very large in comparison with the

† In practice a convenient method of obtaining integrated autocorrelation times is to note that the naive variance of
the mean for time-series data calculated from each individual measurement will be a factor of 2τ̂ smaller than the
variance calculated by blocking the data into bins of length �τ̂ .
‡ For N = 4000 the data in table 1 are rescaled to the ‘Potts units’.
§ Here D (≈4) is the fractal dimension of the graphs, but in the following we shall not need this number explicitly.
‖ In two dimensions the difference between the dynamical critical exponent of the Wolff single-cluster and Swendsen–
Wang cluster algorithm, if any, is empirically extremely small.
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Figure 1. The data points and fits to [τ ]av = aNz/D for both the energy and magnetization in
(a) the q = 4 and (b) the q = 10 Potts model.
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Figure 2. The cumulative distribution function of autocorrelation times for (a) the energy and
(b) the magnetization in the q = 4 Potts model. The system size is increasing as the curves move
to the right.

Ising and q = 4 Potts model measurements discussed above, falling into the range 60–500 for
the energy, and 40–350 for the magnetization. The increase of [τ ]av with system size, however,
is consistent with a power-law scaling behaviour rather than the exponential increase of a first-
order transition; see figure 1(b). If we omit the two smallest graph sizes with N = 250 and
N = 500 we obtain from fits of the energy autocorrelations the estimates ln a = −1.44(29) and
z/D = 0.829(35)withχ2/dof = 1.97 orQ = 0.12. Fits of the magnetization autocorrelations
yield ln a = −3.49(44) and z/D = 1.019(54) with χ2/dof = 1.00 or Q = 0.39.

For quenched, random systems not only is the scaling behaviour of the average [τ ]av of
interest but also the properties of the whole probability density P(τ). Since we have only few
(=64) events for sampling this density it is numerically (and mathematically) more sensible
to consider the cumulative probability distribution F(τ) = ∫ τ

0 P(τ ′) dτ ′, with the obvious
relation dF(τ)/dτ = P(τ).

In figure 2 we have plotted the cumulative distribution of the autocorrelation times τ = f ·τ̂
at the simulation point in the q = 4 model for both the energy and the magnetization. It is
clear from the graph that the distribution is broadening with increasing lattice size, rather than
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Figure 3. A plot of �τ/[τ ]av for both the energy and magnetization in the q = 4 Potts model.
Given the caveat in the text regarding the simulation points this is clearly tending to a constant for
increasing system size.

sharpening. For self-averaging measurements one would expect the curves to tend to a step
function, since the underlying probability density of τ would tend to a delta-function in such
a case. One can therefore conclude that the measurements of τ in the simulations provide
strong evidence for non-self-averaging behaviour in the q = 4 model. This statement can
be made more quantitative by considering similarly to equation (1) the ratio of the width of
the probability density, the standard deviation �τ , and the average value, [τ ]av, which sets
the scale. As this is a property of the quenched randomness here we tacitly assume that the
thermal noise of the estimates of τ for a given realization can be neglected which, in view of
our extremely high statistics, is justified.

The plot of �τ/[τ ]av in figure 3 shows that the relative widths of the densities of both the
energy and the magnetization stay roughly constant with increasing system size, thus clearly
demonstrating the lack of self-averaging. Another way to demonstrate this property graphically
is to plot the probability distribution F against the scaled variable τ/[τ ]av. If the density is
non-self-averaging with �τ/[τ ]av = const one expects to see in such a plot data collapse onto
a single master-curve. As can be seen in figure 4 this is indeed the case for both the energy
and the magnetization.

For q = 2 the corresponding plots look very similar and are not reproduced here. More
interesting is the qualitatively different case of the q = 10 Potts model, because here the
first-order transition on regular lattices is softened to a second-order transition for quenched,
random graphs. Here the plots of the cumulative distributions shown in the insets of figure 5
again clearly exhibit the broadening with increasing lattice size just as for q = 4, rather
than sharpening. Therefore it is even more impressive to observe that replotting the data
versus the scaled variable τ/[τ ]av still produces well-defined master curves for both the energy
and the magnetization as can be seen in figure 5. The scaling of �τ/[τ ]av as a function
of system size looks slightly more scattered than for the q = 4 data in figure 3 (recall that
the effective statistics per graph is smaller by about one order of magnitude compared with
the q = 4 model), but here also it is safe to claim that �τ/[τ ]av stays roughly constant
with increasing system size. One can therefore conclude that the measurements of τ in the
simulations provide strong evidence for non-self-averaging behaviour in the q = 10 model as
well.
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Figure 4. The scaled cumulative distribution function of autocorrelation times for (a) the energy
and (b) the magnetization in the q = 4 Potts model showing the good data collapse.

τ/ [τ] avτ/ [τ] av

Figure 5. The scaled cumulative distribution function of autocorrelation times for (a) the energy
and (b) the magnetization in the q = 10 Potts model. The insets show the original data. The system
size is increasing as the curves move to the right.

4. Conclusions

Our previous analysis of the static properties of simulations of the Ising and q = 4, 10 state
Potts models on �3 graphs showed that the quenched connectivity disorder they possessed
altered the exponents of models with a continuous transition on a regular lattice, and softened
the first-order transition of the q = 10 model to a continuous transition.

The analysis of the autocorrelation times discussed here shows that these models display
another property that is often associated with a disordered fixed point with a distribution of
couplings, namely, non-self-averaging. One must, however, be a little careful in using non-self-
averaging as a diagnostic for distinguishing pure and disordered fixed points: the Ising model
on a 3D Poisonnian random lattice has been shown to have the standard critical exponents to
a very high degree of accuracy, but nonetheless still displays non-self-averaging of both static
and dynamical properties [7]. On the basis of these observations in [7] non-self-averaging is
not restricted to disordered fixed points alone.

Whatever the circumstances in which non-self-averaging appears the analysis here shows
that it is also manifest in the autocorrelation times of the systems in question and amenable to
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a quantitative scaling analysis. Although we have only discussed the Ising and q = 4, 10 state
Potts models on �3 random graphs here, it is clear that the idea of looking at the probability
density P(τ) or rather the cumulative probability distribution function F(τ) and studying its
scaling properties to discern non-self-averaging is generally applicable.
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