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We investigate the aggregation transition of theta polymers in spherical confinement with multi-
canonical simulations. This allows for a systematic study of the effect of density on the aggregation
transition temperature for up to 24 monodisperse polymers. Our results for solutions in the dilute
regime show that polymers can be considered isolated for all temperatures larger than the aggrega-
tion temperature, which is shown to be a function of the density. The resulting competition between
single-polymer collapse and aggregation yields the lower temperature bound of the isolated chain
approximation. We provide entropic and energetic arguments to describe the density dependence
and finite-size effects of the aggregation transition for monodisperse solutions in finite systems. This
allows us to estimate the aggregation transition temperature of dilute systems in a spherical cavity,
using a few simulations of small, sufficiently dilute polymer systems. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4893307]

I. INTRODUCTION

Polymers are often studied as isolated chains. In nature,
however, a system of polymers or proteins is usually subject
to geometrical confinement, e.g., porous media1 or molecu-
lar crowding.2, 3 This has an effect on structural as well as
dynamic properties.4, 5 It may also be the reason for entropic
forces in segregation processes.6, 7 The process of aggregation
itself plays a role in biological systems as well as in techno-
logical applications and material design, e.g., in the context
of photovoltaic cells.8

The effect of spherical confinement on the linear exten-
sion of polymers in good solvent (modeled by a self-avoiding
chain) has been studied by scaling arguments,9 Monte Carlo
simulations,10 and Molecular Dynamics simulations.11 A re-
lation between the free energy of a single polymer and
semi-dilute solutions was established. Adding short-range at-
traction to the excluded volume leads to a theta polymer
that exhibits a collapse transition from an extended coil at
large temperatures to a compact globule at lower tempera-
tures. The effect of spherical confinement on a single flex-
ible theta polymer12 was shown to be different to (rather
stiff) protein13–17 models. For both cases, it was shown that
the confinement shifts the location of the collapse transition
temperature.

Moreover, spherical confinement provides a safe basis for
the study of density effects in finite systems. For a steric con-
finement, there is at most an effective repulsive interaction.
In contrast to periodic boundary conditions it allows to de-
crease or increase the density systematically without the pos-
sibility that the aggregate, or even single polymers, may in-
teract with themselves across the boundaries. The influence
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of density on the aggregation transition of two lattice proteins
has been noticed recently18 to be similar to that on an ideal
gas. In this study, we will extend this observation by investi-
gating an off-lattice polymer model that has been successfully
applied to peptide19 and polymer aggregation20, 21 before. Fo-
cusing on the case of flexible homopolymers, we will provide
entropic arguments for the density dependence and energetic
arguments for finite-size effects which leads to a reasonable
description of the density dependence in a spherical confine-
ment. Among others, we demonstrate the competition be-
tween single-chain collapse and multi-chain aggregation in
the dilute regime, showing the dominance of aggregation and
the consequences on structural properties of a single polymer.

The paper is organized as follows: In Sec. II, we briefly
describe the employed aggregation model together with the
multicanonical method. We mention the applied optimiza-
tions and relevant parameters. Section III contains all main re-
sults including a discussion of the canonical picture, entropic
arguments in the microcanonical picture, and a description of
finite-size effects. We finish with our conclusions on the ef-
fect of density on the aggregation transition temperature in
spherically confined finite polymer systems in Sec. IV.

II. MODEL AND METHOD

We consider a set of M bead-spring polymers con-
fined in a spherical cavity of radius RS. Each homopoly-
mer consists of N equal monomers aligned linearly with a
finitely extensible nonlinear elastic (FENE) potential between
bonded monomers and Lennard-Jones interaction between
non-bonded monomers. The interactions are parameterized as
in Refs. 21–23, namely, the FENE potential,

VFENE(r) = −K

2
R2 ln(1 − [(r − r0)/R]2), (1)

0021-9606/2014/141(11)/114908/9/$30.00 © 2014 AIP Publishing LLC141, 114908-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

139.18.9.168 On: Thu, 18 Sep 2014 18:14:17

http://dx.doi.org/10.1063/1.4893307
http://dx.doi.org/10.1063/1.4893307
mailto: zierenberg@itp.uni-leipzig.de
mailto: mueller@itp.uni-leipzig.de
mailto: schierz@itp.uni-leipzig.de
mailto: marenz@itp.uni-leipzig.de
mailto: janke@itp.uni-leipzig.de
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4893307&domain=pdf&date_stamp=2014-09-18


114908-2 Zierenberg et al. J. Chem. Phys. 141, 114908 (2014)

FIG. 1. Snapshot of a polymer system with M = 20 polymers of length
N = 20 in a sphere with radius RS = 30. The snapshot was taken in the
final production run of the multicanonical simulation and the conformation
corresponds to an intermediate state inside the aggregation transition.

with r0 = 0.7, R = 0.3, and K = 40, as well as the 12-6
Lennard-Jones potential

VLJ(r) = 4ε[(σ/r)12 − (σ/r)6], (2)

with ε = 1 and σ = r0/21/6. For numerical reasons and in
order to be consistent with the aforementioned literature, the
Lennard-Jones potential is cutoff at rc = 2.5σ such that

V ∗
LJ(r) =

{
VLJ(r) − VLJ(rc) r < rc

0 else
(3)

has the same qualitative behavior and is still continuous at rc.
The Lennard-Jones potential accounts for excluded volume
and short-range attraction such that each polymer can undergo
a collapse transition. There is no distinction between the in-
teraction of monomers within the same polymer or between
different polymers. In general, we focus in this study on flex-
ible polymers with one exception, when we discuss the direct
influence of the density on a specific example of stiff poly-
mers. Stiffness is introduced as a penalty from the discretized
polymer curvature. This results in a bending potential

Vbend(θ ) = κ(1 − cos θ ), (4)

where θ is the angle between consecutive bond vectors. The
polymer system is constraint in a steric sphere such that con-
formations exceeding the spherical confinement are forbid-
den, for a snapshot see Fig. 1. In general, the radius of the
sphere is much larger than the linear extension of a single
polymer, which can be estimated within a self-avoiding walk
picture to have a radius of gyration Rgyr ∝ Nν (ν ≈ 0.588).24

We employ Markov chain Monte Carlo simulations in
the multicanonical ensemble25, 26 because aggregation shows
characteristics of a first-order phase transition for which this
method was proven to be particularly efficient. The method
allows to sample a broad temperature range by replacing the

Boltzmann weight by an a priori unknown weight function
that is iteratively adjusted in order to yield a flat histogram.27

To this end, we first set an energy range obtained from ex-
emplary parallel tempering simulations of small systems. The
weight function W (E) is defined on a discretized energy space
with 1000 bins in the selected range. Between consecutive it-
erations the weight function is updated by dividing each entry
by the amount of sampled data within the energy bin stored
in a corresponding histogram. In order to achieve sufficient
statistics for large systems with either a large number of to-
tal monomers or a large sphere, we employ parallel multi-
canonical simulations with up to 256 cores.28 This paralleliza-
tion efficiently distributes the required amount of statistics for
the weight iteration and speeds up the final data production
linearly.

Updates of the system are randomly drawn from a set
of moves including single-bead displacement, bond rotation,
polymer translation, as well as inter- and intra-polymer rear-
rangement (double-bridging) moves. In order to increase effi-
ciency of the multicanonical method covering a broad energy
range, we employ energy-dependent update ranges. These are
implemented such that detailed balance is fulfilled.29 Increas-
ing the radius of the confining sphere leads to a fast increase
of conformational entropy. Thus, the maximal translation step
is coupled to the radius of the spherical confinement in order
to move polymers across larger distances when the system be-
comes more dilute. In order to cope with the immense entropy
gain properly, we also coupled the number of sweeps per iter-
ation and measurement linearly to the radius of the sphere.

The data from the final equilibrium production run are af-
terwards reweighted to yield canonical statistics in the desired
temperature range T ∈ [0.6, 3.0] where we apply time-series
reweighting (�T = 0.1 steps) including error analysis and
histogram reweighting (�T = 0.005 steps) for the connect-
ing lines in the canonical plots.30 The aggregation transition
temperature is calculated by computing the second deriva-
tive of the total energy and locating the zero crossing with
an iterative time-series reweighting. Errors are obtained from
repeating this procedure in the framework of jackknife error
analysis.31 To this end, we combine all but one of the (up to
256) independent time series, calculating a set of highly cor-
related estimators of the transition temperature. The jackknife
error analysis now takes this trivial correlation into account
and provides an unbiased error estimate. This is of advantage
because the heat capacity is known to yield biased estimators,
which we may encounter for small data subsets.

III. RESULTS

A. Canonical picture

Homogeneous aggregation describes the crossover from
a separated phase of individual polymers to an aggregated
phase in which a fraction of polymers will be condensed into
a single macroscopic object. In a strict sense, the notion of
phases only applies to infinite systems, whereas polymer sys-
tems are argued to be finite because the length of a polymer
is finite by nature. However, we adapt the notion of phases
to the limit of infinitely many polymers, M → ∞, at fixed
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FIG. 2. Normalized energy (top) and specific heat (bottom) for M = 8 flex-
ible polymers of length N = 13 in spherical confinement. With increasing
radius RS, the density decreases and the aggregation transition shifts to lower
temperatures. Notice, that the principle behavior at large temperature resem-
bles the single polymer (dilute limit) behavior and that the dependence of the
amorphous aggregate, at low temperature, follows the characteristics at larger
density.

polymer density ρ = M/V and fixed polymer length N,
where V = 4π

3 R3
S is the volume of the confining sphere. Then

the notion of phases can be regained in the usual way. In this
case, we consider the polymer length to be a system property
just like the interaction parameters. It may be expected that
above the aggregation transition the polymers will behave as
in the dilute limit, exploring the conformational space inde-
pendently. Fixing the number of polymers and increasing the
radius of the confining sphere reduces the density and even-
tually leads to the dilute limit of isolated polymer chains for
RS → ∞. In order to compare to the dilute limit, we con-
sider the system energy normalized to a single polymer E/M
together with its thermal derivative, the specific heat per poly-
mer CV /M = β2

(〈E2〉 − 〈E〉2
)
/M , where β = 1/T (in units

where kB = 1). In addition, we measure the average end-to-
end distance per polymer as the sum over distances between
the first and the last monomers each: REE = 1

M

∑M
i=1 REE,i ,

where REE, i is the end-to-end distance of a single polymer.
For all observables, 〈. . . 〉 denotes the thermal average.

Figures 2 and 3 show the average energy and average
end-to-end distance together with their thermal derivatives

FIG. 3. Average end-to-end distance per polymer (top) and its temperature
derivative (bottom) for M = 8 flexible polymers of length N = 13 in spherical
confinement of size RS.

for 8 flexible polymers of length N = 13 for various sizes of
spherical confinement. The lines are results from reweighting
the raw data of the final multicanonical production run. We
present data points with error bars from an extensive jackknife
error analysis at equidistant temperatures only. The curve la-
beled “dilute limit” is obtained from a separate multicanonical
simulation of a single polymer. Note that above the aggrega-
tion transition down to the point of structural rearrangement
into a single macroscopic object, the polymers follow on aver-
age the behavior of the isolated chain of length N = 13 (dilute
limit). This is only hindered for small spheres, in this example
RS = 5, where the separated phase cannot be achieved be-
cause the cavity is of the order of the aggregate. This can
be understood in terms of the overlap threshold �∗ of poly-
mer solutions:32 If the volume fraction � = NM

( r0
2

)3
/R3

S of
a multi-polymer system is much smaller than the intrinsic vol-
ume fraction of a single random coil,

�∗ 
 N
( r0

2

)3

R3
EE


 N1−3ν ≈ N−0.76, (5)

where REE 
 r0Nν is the end-to-end distance of a self-
avoiding walk with ν ≈ 0.588, each polymer may be consid-
ered independent and the system is dilute. A volume fraction
of the order of this single Gaussian-coil threshold, however,
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describes the onset of the semi-dilute region. Thus, we look
for the point where � = �∗. Solving this for the radius RS
of the spherical confinement, one sees that multi-polymer so-
lutions may be considered dilute for radii sufficiently larger
than

Rc
S 
 r0M

1/3Nν. (6)

The crossover to the semi-dilute regime occurs around
RS ≈ Rc

S . For N = 13, Rc
S ≈ 6.3 which is consistent with

the deviations we observe for RS = 5 and to a lesser extent
also for RS = 10. Below the aggregation transition in the di-
lute regime, the canonical observables coincide again because
then the spherical confinement has almost no effect on the
structural properties of the aggregate.

This implies that the individual flexible polymers each
follow the collapse transition of the dilute limit down to the
temperature where aggregation suddenly sets in and becomes
the major physical process determining the system’s equi-
librium properties. For systems with equal inter- and intra-
polymer interactions, it has been noticed that collapse and
aggregation are not separate processes but that aggregation
dominates.20 This is best seen in Fig. 3 where the derivative
of the average end-to-end distance shows a broad peak around
T ≈ 0.9 corresponding to the collapse of a single polymer
(dilute limit). Sufficiently dilute systems follow this behavior
down to the point of aggregation. At first sight surprising is
the increase of the average end-to-end distance REE at the ag-
gregation transition (Fig. 3 top). It can be argued that within
the aggregate the average end-to-end distance is larger than
for the single collapsed polymer because the amorphous ag-
gregates are highly entangled, forming a macroscopic spher-
ical object rather than patching collapsed polymers together.
The dominance of the aggregation transition can be under-
stood by its discontinuous nature opposed to the continuous
collapse transition. This discontinuous nature follows from a
strong structural variation and can be seen as a sharp jump
of, e.g., the end-to-end distance. Those effects become more
prominent with decreasing density, see Figs. 2 and 3. More-
over, at sufficiently small densities the polymers are expected
to aggregate at those temperatures where single polymers as-
sume globule conformations. However, the energetic argu-
ments in Ref. 20 and the presented data suggest that even then
the globular conformations should unfold in order to form en-
tangled aggregates as equilibrium conformation.

The same observation of coinciding dilute and aggre-
gated phases may be made for rather stiff polymers. For eight
polymers of length N = 13 it was shown21 that a bending stiff-
ness with κ = 9 leads to polymer bundles in the aggregated
phase. In this regime, the dilute limit of a single polymer does
not show a collapse transition, on the contrary the individual
polymers are driven to elongate in order to minimize curva-
ture, see Fig. 4. As in the case of flexible polymers, the ag-
gregation transition occurs only in a very narrow temperature
range and changes the average behavior from that of individ-
ual polymers to dense polymers which in this case form poly-
mer bundles. Interesting is that the formation of polymer bun-
dles in the sampled density range leads to an initial increase in
the average elongation right below the transition. However, a
further reduction of the temperature causes the system to form

FIG. 4. Normalized energy (top) and average end-to-end distance per poly-
mer (bottom) for M = 8 rather stiff polymers (κ = 9) of length N = 13 in a
sphere of radius RS.

twisted bundles in which the average end-to-end distance gets
reduced again.21 It may be expected that at even lower den-
sities and consequently lower aggregation temperatures the
bundle formation may directly lead to twisted bundles.

As mentioned before, the equilibrium aggregation transi-
tion of homopolymers leads to a single macroscopic aggregate
instead of multiple smaller aggregates. This can be observed
in the total radius of gyration (see Fig. 7 with a detailed dis-
cussion in Sec. III C) which drops to the scale of a single
polymer of length NM. Despite the non-vanishing probabil-
ity to form metastable states with several aggregates, these
conformations seem to not affect the equilibrium properties
significantly away from the transition point.

B. Microcanonical picture

The spherical confinement provides a safe and control-
lable base to study the effect of density on the aggregation
transition. In principle, a periodic box would also allow to
study this effect. However, the possibility that the aggregate
may interact with itself across the boundaries introduces sys-
tematic errors, which are hard to tackle as the probability of
self-interactions rises with decreasing box size. This effect
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FIG. 5. The microcanonical entropy S (up to an additive constant) as the
logarithmic density of states ln �̂ for M = 8 polymers (N = 13), obtained
from a microcanonical analysis of the multicanonical data.

gets excluded with the spherical confinement, while introduc-
ing at most an effective repulsion from the steric wall.

Here, we consider the number of monomers per polymer
N to be a system property that describes the extension of a
polymeric object. This is a valid assumption in the dilute limit
and in the limit of many polymers, where we focus on the for-
mer. In order to show the generality of our results, we consider
parameters N = {13, 20, 27} which will show the same qual-
itative behavior. A more detailed discussion of the influence
of N will be given in Sec. III C.

In order to quantify the effect of density on the aggrega-
tion transition, we consider the microcanonical ensemble and
start out with the Gibbs construction. The microcanonical en-
tropy is given by the logarithm of the total number � of con-
figurations with a given energy: S(E) = ln �(E). Moreover,
the microcanonical inverse temperature is defined as the local
slope of this microcanonical entropy, or in different words its
derivative with respect to E. Expecting a phase coexistence,
there should exist an inverse temperature as local slope to two
energy states, equivalent to considering an energy distribution
with two peaks in the canonical ensemble. This allows us to
estimate the inverse aggregation temperature as the slope of
the hull connecting the microcanonical entropy of the aggre-
gated and the separated phase.19, 20, 33 Hence,

βagg = S(Esep) − S(Eagg)

�E
. (7)

Now, consider a spherical confinement of radius RS.
Figure 5 shows the microcanonical entropy for 8 polymers
of length N = 13 obtained as the logarithm of the estimated
density of states �̂(E). An estimate of the density of states
comes directly from the multicanonical method within the se-
lected energy range when dividing the final histogram by the
weight function �̂(E) = H (E)/W (E) (up to a multiplicative
constant). The number of states in the aggregated phase will
barely be influenced by the confinement, compared to the en-
semble of polymers in the separated phase that behaves more
like a gas. Therefore, we assume for the separated phase that
the number of states will be proportional to V M as in the case

of an ideal gas,

S(Esep) ∼ ln

[(
4π

3
R3

S

)M
]

∝ M ln RS, (8)

thus dominating over S(Eagg). Assuming that the latent heat
will be almost constant with respect to RS for fixed (M, N), we
may write �E = M�e. This leads to an aggregation tempera-
ture depending on the logarithm of the radius of the confining
sphere

βagg(RS) ∼ S(Esep)

�E
∼ ln RS + const. (9)

This may be rewritten in terms of the density ρ as well
βagg = a1 ln ρ + a2, which has been observed recently, e.g.,
for two lattice proteins18 and polymer adsorption.34

Tables I–III present aggregation transition temperatures,
obtained from the peak location of the specific heat CV /M ,
for a wide range of polymer sizes N = {13, 20, 27} and poly-
mer numbers M = {2, 4, 8, 12, 16, 20, 24} as far as possible.
Figure 6 shows the inverse aggregation temperature as a func-
tion of ln RS for the example N = 13. It can be seen that the
expected scaling (9) is clearly confirmed by the data and that
with increasing M the slopes of the fit become more similar.

C. Finite-size effects at polymer aggregation

The effect of stiffness on aggregation of a few polymers
in bulk has been investigated recently.21 It was shown that the
polymers form amorphous aggregates in the case of flexible
polymers and correlated polymer bundles in the stiff polymer
limit. Here, we focus on the flexible limit, where the amor-
phous aggregate may be argued to behave similar to a single
polymer of length NM. Moreover, in this limit it should result
in a spherical aggregate with radius R ∼ (NM)1/3 as predicted
for the collapsed isolated polymer. This should be observable
in the total squared radius of gyration

R2
gyr = 1

NM

∑
(r i − rcm)2, (10)

where rcm is the center of mass vector of the total sys-
tem. For small spheres (RS = 30), the polymers form stable
aggregates at sufficiently high temperatures. Furthermore, the
canonical results demonstrate that the amorphous aggregates
behave consistently, despite different radii. Figure 7 shows the
squared radius of gyration R2

gyr of the total system versus the
expected scaling function of the total number of monomers
f(NM) = (NM)2/3. Because our focus is to sample the aggre-
gation transition temperature, we consider a reduced energy
range going to sufficiently small energies. However, this does
not allow to extrapolate to temperatures far below the aggre-
gation transition temperature. In order to compare the scaling
of the squared radius of gyration, we need a fixed tempera-
ture that is below the aggregation transition temperature but
which is still within the sampled range of our simulations.
Both boundaries vary with the length and number of poly-
mers. This leads to a relatively small sample size in Fig. 7
because T = 0.7 is so large that the smaller systems are not
yet in the aggregated state but too small for the larger systems
to be sampled with the chosen energy range. Nonetheless, it
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TABLE I. Aggregation temperatures obtained from the peak location of the
specific heat for N = 13 and RS ≥ 20. In addition, we present the fit results
from β = aln RS + b for RS ≥ 30.

M RS Tagg Fit parameters

2 20 0.8390(6)
2 30 0.7884(6)
2 40 0.7569(5)
2 60 0.7161(14) 0.1831(12) ln RS + 0.646(5)
2 80 0.6903(6)
2 120 0.6572(11)
2 160 0.6367(18)
4 20 0.9967(12)
4 30 0.9337(4)
4 40 0.8944(4)
4 60 0.8462(9) 0.1588(9) ln RS + 0.531(4)
4 80 0.8151(7)
4 120 0.7769(20)
4 160 0.752(4)
8 20 1.1399(4)
8 30 1.06385(26)
8 40 1.0179(4)
8 60 0.9601(6) 0.14063(23) ln RS + 0.4628(10)
8 80 0.92494(22)
8 120 0.8807(9)
8 160 0.85221(27)
12 20 1.2184(4)
12 30 1.1338(5)
12 40 1.0832(7)
12 60 1.0216(7) 0.1367(6) ln RS + 0.4177(20)
12 80 0.9834(5)
12 120 0.926(4)
12 160 0.9044(13)
16 20 1.2717(5)
16 30 1.1813(5)
16 40 1.1278(6)
16 60 1.0626(7) 0.1363(8) ln RS + 0.3830(27)
16 80 1.0244(13)
16 120 0.9611(18)
20 20 1.3126(11)
20 30 1.21752(26)
20 40 1.1611(4)
20 60 1.0929(8) 0.1315(5) ln RS + 0.3748(15)
20 80 1.0504(9)
20 120 0.9998(7)
24 20 1.3451(8)
24 30 1.2459(8)
24 40 1.1873(8) 0.1306(8) ln RS + 0.3592(29)
24 60 1.1177(6)
24 80 1.0752(9)

shows the qualitative data collapse that we expected for finite
polymer systems.

In general, the idea of finite-size scaling is to use small
systems in order to make predictions about a system of infi-
nite size and to describe how certain physical properties are
approached with increasing system size. In spin systems, for
example, one may consider the deviation of the transition tem-
perature between the ordered and disordered phases from the
value of the infinite system L → ∞. For polymer aggrega-
tion, however, this limit becomes nontrivial. Single polymer

TABLE II. Same as Table I for N = 20.

M RS Tagg Fit parameters

2 20 1.0373(10)
2 30 0.9793(7)
2 40 0.9430(15)
2 60 0.8944(10) 0.1371(11) ln RS + 0.555(4)
2 80 0.8649(11)
2 120 0.8266(12)
2 160 0.801(4)
4 20 1.2034(10)
4 30 1.1331(10)
4 40 1.0884(10)
4 60 1.0342(6) 0.1200(10) ln RS + 0.475(4)
4 80 0.9995(9)
4 120 0.9549(23)
8 20 1.3513(7)
8 30 1.2685(5)
8 40 1.2179(12)
8 60 1.1547(18) 0.1083(4) ln RS + 0.4202(15)
8 80 1.1156(11)
8 120 1.0659(6)
12 20 1.4331(6)
12 30 1.3408(10)
12 40 1.2861(7)
12 60 1.2185(27) 0.1037(6) ln RS + 0.3943(22)
12 80 1.1772(16)
12 120 1.1163(19)
12 160 1.0894(12)
16 20 1.4876(4)
16 30 1.3903(7)
16 40 1.3319(5) 0.1058(6) ln RS + 0.3602(21)
16 60 1.2601(5)
16 80 1.2182(11)
20 20 1.5296(7)
20 30 1.4267(5)
20 40 1.3661(7) 0.1034(5) ln RS + 0.3495(17)
20 60 1.2928(10)
20 80 1.2466(6)

studies, for example, consider finite-size scaling for N → ∞.
In systems with more than one polymer, we have to introduce
some sort of boundary conditions and define a density. For the
limit of infinitely long polymers, we were not able to think of
a density with a well-defined scaling behavior, not changing
local system properties.

Thus, we fix N (considering three realizations) and in-
vestigate deviations for different M, RS at polymer density
ρ = M/V constant. This choice does not change the average
local system in the infinite system limit M → ∞. Although
our system sizes are rather small for a quantitatively accurate
finite-size scaling, we attempt to draw conclusions about the
finite-size effects in small systems.

For systems with a small number of polymers, it is a rea-
sonable assumption that the aggregation transition separates
a gas-like phase (see arguments in Sec. III B) from a homo-
geneous aggregate and approximate void space. For a larger
number of polymers in the dilute regime, there are good ar-
guments for a mixed phase of a macroscopic aggregate and
a polymer gas phase in analogy to particle condensation.35, 36
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TABLE III. Same as Table I for N = 27.

M RS Tagg Fit parameters

2 20 1.1786(15)
2 30 1.1172(21)
2 40 1.0785(13)
2 60 1.0276(12) 0.1114(10) ln RS + 0.517(5)
2 80 0.9942(14)
2 120 0.9524(9)
2 160 0.9249(13)
4 20 1.3489(7)
4 30 1.2745(14)
4 40 1.2279(18)
4 60 1.1701(16) 0.0985(10) ln RS + 0.450(4)
4 80 1.1343(12)
4 120 1.084(4)
4 160 1.0547(28)
8 20 1.4981(10)
8 30 1.4115(8)
8 40 1.3574(9) 0.0925(7) ln RS + 0.3945(24)
8 60 1.2935(10)
8 80 1.2515(10)
12 20 1.5783(16)
12 30 1.4847(9)
12 40 1.4268(10) 0.0897(6) ln RS + 0.3691(20)
12 60 1.3564(19)
12 80 1.3128(7)
16 20 1.6338(7)
16 30 1.5332(6)
16 40 1.47264(28) 0.0907(8) ln RS + 0.3444(27)
16 80 1.3533(16)

From our experience with particle systems, we expect to ob-
serve even for moderately large system sizes a large fraction
of polymers going into the equilibrium aggregate. In any case,
the finite aggregate forms a surface such that the system may
be compared to “single-domain” non-periodic boundary con-
ditions. The finite-size corrections then are of the order 1/L,
where L is the characteristic system length (for details see also
Refs. 37 and 38). This may be interpreted as competing con-
tributions from the system volume (∼Ld) and system surface

FIG. 6. Scaling of the inverse aggregation temperature with the logarithm of
the sphere radius for N = 13. For more detail see Table I.

FIG. 7. Data collapse of the squared radius of gyration as a function of
(NM)2/3. The polymer systems are in spheres of size RS = 30 with N = {13,
20, 24} at T = 0.7.

(∼Ld−1). We make use of this observation and consider the
linear extension of the aggregate Rgyr as characteristic length
scale of the system. As we showed in Fig. 7, for flexible poly-
mers the aggregates are spherical and for small systems they
include a large fraction of the polymers such that Rgyr ∼ M1/3,
where we omitted N which is considered as a fixed system
parameter. Thus, our ansatz for monodisperse polymers is

Tagg(M,ρ) ∝ (1 + s(ρ)M−1/3 + O(M−2/3)), (11)

where s(ρ) determines the size of the leading correction and
may depend on the density.

An example of the ansatz is shown in Fig. 8 for the se-
lected N at fixed density ρ = 10−3. We fitted the data in
Tables I-III to the dependence (9) and used those fits to in-
terpolate the inverse transition temperature to various dilute
polymer densities. Fitting the ansatz for the finite-size effects
we obtained the same qualitative results for different densi-
ties. As expected, the extrapolated limit would again be de-
pending on ln ρ (not shown here) and moreover would most
probably not be in the infinite system limit. The fit parameter s

FIG. 8. Fit of the finite-size effects for all N at fixed density ρ = 10−3. Er-
ror bars are obtained by error propagation and neglect possible systematic
deviations due to higher-order corrections.
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FIG. 9. Rescaled inverse aggregation temperature versus density ρ for all
three polymer lengths N = {13, 20, 27}. The finite-size correction s in
Eq. (11) was assumed to be constant. For N = 13 one may compare to
Fig. 6.

only slightly depends on the density. Thus, we assume s for
the remaining part of the study to be constant. As we men-
tioned before, we consider N as a system parameter and thus
it is not surprising that s is N-dependent.

We can combine the finite-size effects in order to rescale
the inverse aggregation temperature by multiplying it with the
ansatz (11). Considering the polymer density ρ as the relevant
parameter, we would then expect that the data fall on a coin-
ciding linear relation. Figure 9 shows a reasonable data col-

lapse for all simulated polymer lengths, where we assumed
s constant with its value denoted on the y-axes of the plots.
The data collapse on a single line is consistent with the devel-
oped density dependence and finite-size effects. Despite the
N-dependent scaling form, this shows that the entropic argu-
ments for the density dependence together with the energetic
arguments for the finite-size effects are consistent and allow a
reasonably well description of the aggregation transition of a
few dilute monodisperse polymers in a spherical cavity.

IV. CONCLUSIONS

Throughout our systematic investigation, we have
demonstrated that the separated phase of flexible and stiff
polymers corresponds to the dilute limit already for suffi-
ciently small densities. The aggregated phase itself is barely
influenced by the confinement. In the case of flexible poly-
mers, the aggregate may be described as a spherical object,
whose size scales like the collapsed state of a single flexible
polymer with the same total number of monomers. The spher-
ical confinement affects the location of the aggregation tran-
sition of dilute polymers. For denser systems, the separated
phase may be suppressed completely; increasing the density
even further the aggregate itself will be compressed by the
confinement, probably driving the system into its frozen state.

For the case of dilute polymers, we have presented
entropic (Sec. III B), geometric and energetic arguments
(Sec. III C) that allow a description of the rescaled aggrega-
tion temperature as a function of density for monodisperse
flexible theta polymers. The entropic considerations suggest
a linear dependence of the inverse aggregation temperature
on the logarithm of the density. We deduced a description of
finite-size effects (11) that characterizes the deviations among
small systems reasonably well. The system sizes we investi-
gated are most likely too small to capture the behavior of in-
finite systems. However, for experiments investigating small
polymeric systems in confined geometries on the nanoscale,
these finite-size effects should be apparent.

The results presented are potentially relevant for experi-
ments with dilute polymer solutions, which investigate single
polymer behavior. We showed that even in the case of dilute
solutions there exists an aggregation transition that may be
estimated by considering a few polymers in sufficiently di-
lute systems and extrapolating to the dilute limit. In exper-
iments, depending on the actual free-energy barrier and the
corresponding relaxation times, it would probably be difficult
to observe homogenous aggregation. In principle, estimates
of this barrier should be accessible to computer simulations
using a proper finite-size scaling ansatz together with suffi-
ciently large system sizes. Our results suggest that this may
be done for rather dense systems, which would allow to reach
appropriate system sizes – but that remains still to be done in
a forthcoming study.
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