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Thermodynamics of lattice heteropolymers
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We calculate thermodynamic quantities of hydrophobic-pH®) lattice proteins by means of a
multicanonical chain-growth algorithm that connects the new variants of the Pruned-Enriched
Rosenbluth Method and flat histogram sampling of the entire energy space. Since our method
directly simulates the density of states, we obtain results for thermodynamic quantities of the system
for all temperatures. In particular, this algorithm enables us to accurately simulate the usually
difficult accessible low-temperature region. Therefore, it becomes possible to perform detailed
analyses of the low-temperature transition between ground states and compact globuk&94 ©
American Institute of Physics[DOI: 10.1063/1.1651055

I. INTRODUCTION modeled by the simplest lattice formulation for heteropoly-
mers, the hydrophobic-polaiHP) model® In this model,
The native conformation of a protein is strongly corre-only two types of monomers enter, hydrophotit) and po-
lated with the sequence of amino acid residues building upar (P) residues. The model is based on the assumption that
the heteropolymer. The sequence makes the protein uniquie hydrophobic interaction is one of the fundamental prin-
and assigns it a specific function within a biological organ-ciples in protein folding. An attractive hydrophobic interac-
ism. The reason is that the different types of amino acidsion provides for the formation of a compact hydrophobic
vary in their response to the environment and in their mutuatore that is screened from the aqueous environment by a
interaction. It is a challenging task to reveal on what generashell of polar residues. Therefore the energy function reads
principles the folding process of a protein is based. Models
differ extremely in their level of abstraction, ranging from
simple and purely qualitative lattice models to highly sophis- E=— 2 oioj, 1)
ticated all-atom off-lattice formulations with explicit solvent (Lj<i-1)
that partially yield results comparable with experimental
data. Due to the enormous computational effort required fowhere (i,j<i—1) denotes summation over nearest lattice
simulations of realistic proteins, usually characteristic prop-neighbors that are nonadjacent along the self-avoiding chain
erties of a protein with a given sequence are studied in detaibf monomers. A hydrophobic monomer at i position in
Much simpler, but by no means trivial, lattice models enjoy athe chain hass;=1 and a polar monomer is assigned
growing interest, since they allow a more global view on, for=0.
example, the analysis of the relation between sequence and The first part of this paper, where we explain how our
structure. new method works, will be of a more technical nature, while
In this paper, we shall focus ourselves on thermody-the second part is devoted to applications of this algorithm to
namic properties of lattice proteins at all temperatures. Irheteropolymers. In Sec. Il we discuss the main differences of
particular, this includes the investigation of the transitionsMonte Carlo methods based on move sets for updating con-
between the different classes of states: lowest-energy statdsymations and chain-growth algorithms based on the
compact globules, and random coils. Since the ground-staté*runed-Enriched Rosenbluth Methd®ERM) as well as
globule transition occurs at rather low temperatures, a powtheir peculiarities. This is followed by Sec. Il about the ther-
erful algorithm is required that in particular allows a reason-modynamic quantities that will be estimated with our
able sampling of the low-lying energy states. To this end wemnethod. Then, in Sec. IV, we enter into the description of the
combined multicanonical strategte$ with chain-growth — multicanonical chain-growth algorithm. This technical part is
algorithmé~7" to a new methdwhich works temperature- preluded by recalling the essential ingredients of the
independent and directly simulates the density of states. Thigrigina®> PERM and the recently proposed improved
quantity contains all energetic information necessary fovariant§”’ nPERMY, respectively, as these are fundamental
computing the mean energy, free energy, entropy, and spéer setting up our algorithm. Then we proceed with the ex-
cific heat for all temperatures. In the following, we presentplanation of multicanonical chain growth and the determina-
results obtained from the application of this method to dif-tion of the multicanonical weight factors. Section V is de-
ferent lattice proteins with lengths up to 103 monomersyoted to the validation of our method, and in Sec. VI we
present the results obtained with our algorithm. There we

a o L focus on thermodynamic properties of heteropolymers with
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Il. MOVE SETS VERSUS CHAIN GROWTH chain was running into a “dead endattrition poind, the

complete chain has to be discarded and the growth process
Polymers fold on a lattice into conformations that are byhas to be started anew.

definition self-avoiding. This takes into account the finite  Combining the Rosenbluth chain-growth method with

volume and the uniqueness of the monomers. A lattice sitpopulation control, however, as is done in PERMeads to

can hence be occupied by a single monomer only. This hag further considerable improvement of the efficiency by in-

the consequence that the number of very dense conformareasing the number of successfully generated chains. This

tions of a polymer is by orders of magnitude lower than thatmethod is particularly useful for studying tH® point of

of random coil states. In Monte Carlo simulations, particularpolymers, since the Rosenbluth weights of the statistically

attention must therefore be devoted to efficient update prorelevant chains approximately cancel against their Boltz-

cedures which also allow the sampling of dense conformamann probability. Thea-thermal Rosenbluth weight factor

tions. In polymer simulations, so-called move sets were apwF is therefore replaced by

plied with some success to study the behavior near@he n

point, which denotes the phase transition, where polymers WPERM_TT m e~ (Ei—Ei-v/keT

subject to an attractive interaction collapse from random " E R ’

coils to compact conformations. Move sets being widely

used usually consist of transformations that change the posi- 2<n<N (E;=0, W{""=1),

tion of a single monomer and a single bond vectend

flips), a single monomer position but two bondsorner

flips), two positions and three bondsrankshaft or moves

with more changes, and pivot rotations, whereittlemono-

mer serves as pivot point and one of the two partial chain

connected with it is rotated about any axis through th

!o|vot.1° For (a-therma) s_elf-z:f\;lmdmg walks t_he Iz_itj[er method ies are created which then grow independently. The weight is

is known to be very efficient. It becomes inefficient, how- equally divided among them. WEERM<W,T, the chain is

ever, the more dense the conformation is. At low temperac 4\ wr coma probability, say 1/2, and in case of sur-

ture§, the acceptance rqte of locally chalngmgla dense conf \ﬁval, its weight is doubled. For a value of the weight lying
mation decreases drastically and the simulation threatens g)

. o ) ) n the threshol he chain is simpl ntin with-
get stuck in a specific conformation or to oscillate between etween the thresholds, the chain is simply continued wit

. . oyt enriching or pruning the sample.
two states. Since the search for ground states is an essentlaLi In the recently developed new variaHmPERl\/fsS, the

aspe(?,t of studying lattice proteins, the ap_phcatlon of MOV, umber of copies is not constant and depends on the ratio of
sets is not very useful, at least for chains of reasonabl

ength the weightWERM compared to the upper threshold value

> . . .
A more promising alternative is the completely different W, and the copies are necessarily chosen to be diff¢thet

approach based on chain growth. The polymer grows by ar_nethod of selecting the copies is based on simple sampling

. s9 in NPERMss and a kind of importance samplifg) in
taching the nth monomer at a randomly chosen neXt'nPERMizﬂ This proves quite useful in oroducing hiahl
neighbor site of the {—1)th monomer. The growth is ) P q P g nighly

stopped, if the total lengthN of the chain is reached or the compact polymers _ar_1d therefore these new methodg are very
randomly selected continuation of the chain is already occquwerfUI In determining lowest-energy states of lattice pro-
pied. In both cases, the next chain is started to grow from théems'

first monomer. This simple chain growth is also not yet very

efficient, since the number of discarded chains grows expo-

nentially with the chain length. The performance can be imdll. DENSITY OF STATES

proved with the Rosenbluth chain-growth mettédyhere ~AND THERMODYNAMIC QUANTITIES
first the free next neighbors of then{1)th monomer are

. } In order to investigate the thermodynamic properties of
determined and then the new monomer is placed to one qf . . : :
attice proteins accurate simulations are necessary. Due to the

the unoccupied sites. Since the probability of each pOSSibiIit)éiifficulties with the update of conformations at low tempera-

for the next monomer to be set varies with the number of fret?ures and a primary interest in detecting lowest-energy con-

neighbors, this implies a bias given by formations, only a few results of thermodynamic quantities
are found in the literature. Nevertheless, the understanding of
n -1 the conformational transitions and the dependence of their
an(IHZ ml) , 2 sharpness on the sequence is only possible with algorithms
that yield good results for low as well as for high tempera-
tures. Consequently, reasonable results can only be obtained,
wherem, is the number of free neighbors to place tite if the method allows the sampling of the entire energy space.
monomer. The bias is corrected by assigning a Rosenbluth All energetic statistical quantities of the protein can be
weight factorW§~ p;l to each chain that has been gener-expressed by means of the density of energetic StHte¥,
ated by this procedure. Nevertheless, this method suffersince the partition function of a lattice protein with given
from attrition too: If all next neighbors are occupied, i.e., thesequence can be written as

3

whereT is the temperature arig} is the energy of the partial

chainX;=(xy,...,X;) created with Rosenbluth chain growth.

In PERM, population control works as follows. If a chain has

reached lengtt, its weight WF"M is calculated and com-
ared with suitably chosen upper and lower threshold values,
~ andW,, , respectively. FoW,="M>w= identical cop-

Downloaded 16 Apr 2004 to 139.18.9.39. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 120, No. 14, 8 April 2004 Thermodynamics of lattice heteropolymers 6781

states, we first recall the canonical chain growth variants
Z:% e_BE({X})ZEi g(Eje F5, (4)  nPERM?, on which our algorithm builds up.
whereB=1/T is the inverse of the thermal energy in natural A- Canonical chain growth
units. The sum in the first representation runs over all pos- | the original chain-growth algorithm PERRMthe
sible realizations of self-avoiding walks on the lattice, while sample of chains with length<N is enriched by identical
in the second expression the sum is taken over all energetigpies if the weight factor3) is bigger than a threshold
states a lattice protein can adopt. Then, the expectation valygue\W: . In order to obey correct Boltzmann statistics, the

of any energetic observab@(E) is simply weight is divided among the clones. If, howevy! =~
1 <W:;, the chain is pruned with, e.g., probability 1/2, requir-
(O(BE))(T)= ZZ O(E)g(E)e P&, (5  ing the weight of a surviving chain to be taken twice. Then
I

one attaches a new monomer at a randomly chosen free next-
and the mean energy as the negative logarithmic derivativaeighbor site of the previous one. This is done for all chains

of Z with respect toB is given by that still exist and the procedure is repeated until the total
1 chain lengthN is reached or the growth of a chain was ter-
(E)(T)= ZZ E;g(E;)e F5i. (6) minated by a dead end or due to pruning. After all chains
! created within this tree have grown until their end is reached
With these expressions, the specific haay=d(E)/dT  and thus the present so-callemlr is finished, a new growth
obeys the fluctuation formula process starts from the first monomer, i.e., a new tour begins.
Having created an appropriate number of chains with length
Cy(T)= 12(<E2>—<E>2). @ N, they will be ca_nonically distributed at thelgiven Fempgra-
T ture T. In fact, this is also true for all partial chains with

intermediate lengthe<<N, but there are strong correlations
between chains with different lengtins

In the recently proposed new PERM variants nPERM
[new PERM with simple/importance samplifgg/ig] a con-
siderable improvement is achieved by creating different cop-
ies, i.e., the chains are identical im-¢1) monomers but
have different continuations, instead of completely identical
ones, since identical partial chains usually show a similar
evolution. Because of the different continuations, the weights
. ) » . of the copies can differ. Therefore it is not possible to decide

In addmon, npnenergetlc structural quantities are of iN-gpout the number of copies on the basis of a joint weight.
terest for d|scussmg_ the compactness of conformations, sucf,q suggestion is to calculate first a predicted weight which
as the end-to-end distance is then compared with the upper threshdl in order to

Ree= | Xn—Xq| (10 determine the number of clones. Another improvement of
PERM being followed up since first applications to lattice
proteins is that the threshold valu®¥, and W, are no

[1 N longer constants, but are dynamically adapted with regard to
Rgyr= NZ (X,—Xo)?, (11 the present estimate for the partition sum and to the number
=1 of successfully created chains with length The partition

wherex,=3,x /N is the center of mass of the conforma- sum is proportional to the sum over the weight factors of all
tion (with all monomers having equal mas&or the calcu- conformations of chains with length created with a Rosen-
lation of mean values of nonenergetic quantite<Eq.(5) is  bluth chain-growth method like, for instance, NnPERM
replaced by the general formula 1

Zy=— > WX ). (13

n— -
Miours T

Moreover, knowingg(E), the Helmholtz free energy is ob-
tained from

F(T)=—TIn>, g(E)e *& (8
1
and the entropy can be calculated as

1
S(M=sKEXT-F(M]. ©)

and the radius of gyration

(0)(T)=2 3 O(fx))e = 12
i Here, X, ; denotes theth generated conformation of length
In the following, we shall focus on the study of these n. The proportionality constant is the inverse of the number
thermodynamic quantities for different HP lattice proteinsof chain growth startd,,.. Note that due to this normal-
and develop an algorithm that allows a direct simulation ofization it is possible to estimate the degeneracy of the energy
the density of states. states. This is in striking contrast to importance sampling
Monte Carlo methods, where the overall constant on the
right-hand side of Eq(13) cannot be determined and hence
IV. MULTICANONICAL CHAIN-GROWTH ALGORITHM  ©nly relative degeneracies can be estimated.
Since nPERMSss and nPERMIis, respectively, are possible
Before we describe the idea behind the multicanonicafundamental ingredients for our algorithm, it is useful to re-
chain-growth algorithm and the iterative determination of thecall in some detail how these chain-growth algorithms work.
multicanonical weights which are related to the density ofThe main difference in comparison with the original PERM
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is that, if the sample of chains of length-1 shall be en-  —E_ )}k If the predicted weight is less than the lower
riched, the continuations to an unoccupied next-neighbor sitehreshold WE"*<W;; , however, the growth of this chain is
have to be different, i.e., the weights of these chains withstopped with probability 1/2. In this case, one traces the
lengthn can differ. Therefore it is impossible to calculate a chain back to the last branching point, where the growth can
uniform weight likeW; = as given in Eq(3) beforedecid-  be continued again, or, if there are no branching points, a
ing whether to enrich, to prune, or simply to continue thenew tour is started. If the chain survives, the continuation of
current chain of lengtm—1. As proposed in Ref. 6, it is the chain follows the same procedure as described above, but
therefore useful to control the population on the basis of aow with k=1, where Eq(17) simplifies topa= X, /= oXa

predicted weight"® which is introduced as sinceA={a}. In this case the weight of the chain is taken
m, twice. Forw; <WP®<W:-  the chain is continued without
S S . . . .
wprede W:iElRNFSZ XZPER'VE’ (149  enriching or pruningonce more wittk=1).

The first tour, where thath monomer is attached for the

: L first time, is started with bounds set W. =« and W,
where m,, denotes the number of free neighboring sites t - ) .
= =0, thus avoiding enrichment and pruning. For the follow-

continue with thenth monomer. The “importances;?r;PE s ing tours, we us€
differ for nPERMss and nPERMis. Due to its characteriza- 2
tion as a simple sampling algorithtnPERMs$, where all W = é Cn
continuations are equally probable, and as a method with " Zycy’
importance samplingnPERMig, the importances may be

(19

wherec; is the number of created chains withmonomers.

defined as The constan€=<1 is some positive number and controls the
YMPERMsS 1 (15)  humber of successfully generated chains per tour. For the
lower bound we us&V; =0.2W- . All these choices are in
XZPERMis:(mga)_i_%)e—,B(E(n”)—En,l)_ (16) correspondence to Ref. 6.

The expression for nPERMis involves the enek§ of the
choicea e[ 1 m,] for placing thenth monomer and the num-
ber of free neighborm{® of this choice which is identical to
My 1, provided thenth continuation was indeed selected for
placing thenth monomer. Since/"" ="M contains informa- The idea behind our multicanonical chain-growth
tions beyond thenth continuation of the chain, nPERMis method is to flatten the canonical energy distribution pro-
controls the further growth better than nPERMss. The previded by nPERNF. For a given temperature, the latter algo-
dicted weight for thenth monomer is now used to decide rithms yield accurate canonical distributions over some or-
how the growth of the chain is continued. If the predictedders of magnitude. In order to construct the entire density of
weight is bigger than the current threshoyugfed>Wn>, and states, standard reweighting procedures may be applied, re-
m,>1, the sample of chains is enriched and the number ofjuiring simulations for different temperaturésthe low-
copiesk is determined according to the empirical rte temperature distributions are, however, very sensitive against
=min[m,.int(WP®IW>)]. Thus, 2<k=m, different con- fluctuations of weights which inevitably occur because the
tinuations will be followed up. Using nPERMss, thkecon- ~ number of energetic states is low, but the weights are high.
tinuations are chosen randomly with equal probability amongrhus, it is difficult to obtain a correct distribution of ener-
the m,, possibilities, while for NnPERMis the probability of getic states, since this requires a reasonable number of hits of

selecting a certaik-tuple A={ay,...,a,} of different con- low-energy states. Therefore we assign the grzains an addi-
al

B. Multicanonical sampling
of Rosenbluth-weighted chains

tinuations is given by tional weight, the multicanonical weight fact@¥,,, chosen
such that all possible energetic states of a chain of length
Pa= ZacAXa . 17) possess almost equal probability of realization. The first ad-
2aZcAXa vantage is that states having a low Boltzmann probability

compared to others are hit more frequently. Second, the mul-
ticanonical weights introduced in that manner are propor-
tional to the inverse canonical distribution at temperailire
wWia{(E) ~ 1/PS"T(E), with respect to the inverse density of

Considering the probabilitigs, as partial intervals of certain
length, arranging them successively in the total intef0dl]
(sinceX pa=1), and drawing a random numbee[0,1),
one selects the tuple whose interval containghis tuple of

different sites is then chosen to continue the chain. The cor§tates
responding weights ate W E)~g, }(E) (20)
W“PER'VFSS: WnPERNsz mp e_B(Eﬁaj)_Enil) 19 fqr T—o0, Thus,.onlly one simulation is requweq and a multi-
na; n-1 m ' histogram reweighting is not necessary. An important con-

k kn Pa ceptual aspect is the fact that the multicanonical weight fac-
tors are unknown in the beginning and have to be determined
where je{1,..k} is the index of thea;th continuation iteratively.

within the tupleA. In the special case of simple sampling this Before we discuss the technical aspects regarding our
expression reduces M/ﬂf’a'szMsszwﬂﬁElRMS?nn exf—BEY  method, we first explain it more formally. The energy-
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dependent multicanonical weights are trivially introducedin the simple sampling case, we still hay&©O=1. If the
into the partition sum(13) as suitable “decomposition of sample is enrichedV(/ﬁ’ed>WrT) the weight(18) of a chain

unity” in the foIIowing way: with lengthn choosing thex;th continuation is now replaced
v >
NnPER fl t
Z,= Mt 20 W (X ) WhH(E (X ) Wit gl
ours SS,is_ ss,ii m, fT ] n (28)
X[Wa(E(Xn)] ™ (21) B k(mn ot (En-)
k

Since we are going to simulate at infinite temperature, we
express with Eq(20) the partition sum which then coincides where in the simple sampling caées p, and the binomial

with the total number of all possible conformations as factor again cancel each other W= <WP"*<W_ , annth
possible continuation is choséselected as descrlbed for the
Z,= 2 In(E(Xn.) ) Wn(Xp0) (22) enrichment case, but witk=1) and the weight is as in Eq.
Mtours (28). Assuming thaWP™< W= and that the chain has sur-
with the combined weight vived pruning(as usual with probability 1J2 we proceed as
. in the latter case and the chain is assigned twice that weight.
Wn(xnt):W:PERNE(Xn DWRE(Xp, ). (23)  The upper threshold value is now determined in analogy to
' ’ ' Eq. (19) via
Taking this as the probability for generating chains of length a
n, py~W,, leads to the desired flat distributitt,(E), from 4 ﬁ
which the density of states is obtained by Wy :Czl =3 (29
Hn(E)
~ where
9B~ W) (24) 1
The canonical distribution a@nytemperaturd is calculated zMat= Y- —— > \/\lfft’iS (30
by simply reweighting the density of states to this tempera- tours t
T
ture, P (E) ~ gn(E) exp(-E/T). is the estimated partition sum according to the new distribu-
tion provided by the weighté28) for chains withn mono-
C. Iterative determination of the density of states mers. Whenever a new iteration is star&ff", c,,, Wy are

reset to zero, and/;, to infinity (i.e., to the upper limit of the
data type used to store this quanlitif a chain of lengthn
with the energyE was created, the histogram is increased by
fts weight:

In the following, we describe our procedure for the it-
erative determination of the multicanonical weights, from
which we obtain an estimate for the density of states. Sinc
there are no informations about an appropriate choice for the
multicanonical weights in the beginning, we set them in the © cis
zeroth iteration for all chains2n<N and energie€ equal Hy (E)ZZ Wi Oe e - (31
to unity, Wﬂa"(o)(E)=1, and the histograms to be flattened
are initialized with Hff’)(E)zo. These assumptions render From iteration to iteration, this histogram approaches the de-

the zeroth iteration a pure nPERMun. sired flat distributionH,(E) and after the final iteratiom
Since we se3=0 from the beginning, the accumulated =1, the density of states is estimated by
histogram of all generated chains of length HO(E)
(E)= —mrm—> 2=<n=N 32
H(O)(E) 2 WnPERNfsﬁEE, (25 g, (E) Wﬂat,(l)(E)' ' (32

in analogy to Eq(24).

In our simulations, we typically performed up to 30 it-
erations. The runs 0 tb— 1 were terminated after $61¢°
chains of total lengtiN had been produced, while in the

is a first estimate of the density of states. In order to obtain a
flat histogram in the next iteration, we update the multica-
nonical weights

fat (1) f'at 9(E) measuring run i(=1) usually 1d—10 conformations are
Wy H(E) = H(T(E) Vn,E (26)  sufficient to obtain reasonable statistics. The paran@ter
Eq. (29 that controls the pruning/enrichment statistics and
and reset the hlstogramtﬁ,l)(E)zo. thus how many chains of complete lendthare generated

The first and all following iterations are multicanonical per tour was set t€=0.01, such that on average ten com-
chain growth runs and proceed along similar lines as deplete chains were successfully constructed within each tour.
scribed earlier, with some modifications. The prediction forwith this choice, the probability for pruning the current
the new weight again follows Eq14), but the importances chain or enriching the sample was about 20%. In almost all
x> (15) are in theith iteration introduced as started tourdM s at least one chain achieved its complete

1) Wit (gl length. Thus the ratio between successfully finished tours
Xijm: ( mﬁf”+ _)ﬂ:‘t(l)—“ (27) Mg, ccand started tourM,,,,sis very close to unity, assuring
2/ Wp™1"(En-1) that our algorithm performed with quite good efficiency.
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Unlike typical applications of multicanonical or flat his- TABLE I. Sequences, hydrophobicity,, and global minimum energf/,

togram algorithms in importance sampling schemes Wheré’ith degeneracyg” (without rotations, reflections, and translatip$ the
’ exactly enumerated 14mers used for validation of our algorithm. The last

all energetic states be(?ome equally probable such that t_h:%lumn contains the predictions for the ground-state degeneracy obtained
dynamics of the simulation corresponds to a random walk ifwith our method.

energy space, the distribution to be flattened in our case is

the histogram that accumulates the weights of the conformal°: Sequence M Emin o %
tions. Hence, if the histogram is flat, a small number of high-14.1 HPHPHPHPH,P,H 8 -8 1 0.98-0.03
weighted conformations with low enerdy has the same 14.2 H,P,HPHPH,PHPH 8 -8 2 2.00:0.07
probability as a large number of appropriate conformationg4-3 HPHPHRHPHPH, 8 -8 2 2.00£0.06
14.4 HPHR,HPHPH,PH 8 -8 4 3.99-0.13

with energyE’' >E carrying usually lower weights. There-
fore the number of actual low-energy hits remains lower than
the number of hits of states with high energy. In order to
accumulate enough statistics in the low-energy region, thef the fluctuations in the low-temperature region. Thus it is a
comparatively large number of generated conformations igood test of our method to calculate fluctuating quantities for
the measuring run is required. the 14mers listed in Table | and to compare with results that
We have also implemented multicanonical chain growthare still available by exactly enumerating all possible
simulations, where we were going to flatten the “naked” 943974510 conformation@xcept translations® Therefore
energy distribution, i.e., we tried to equalize the number ofwe determined with our method the densities of states for
hits for all energetic states. The problem is that this contrathese 14mers and calculated the fluctuations of the energy
dicts the philosophy of Rosenbluth chain-growth methodsaround the mean value in order to obtain the specific heat
where the bias connected with the Rosenbluth weight conaccording to Eq(7). We generated Pchains and the results
trols the population of samples. Therefore lowest-energyor the specific heat turned out to be highly accurate. This is
states were not “tuned” by this bias and not hit accordingly.demonstrated in Fig. 1, where we have plotted for the exem-
For applications without special focus to the low-temperaturelified 14mers the relative errorse(T)=|CY{(T)
region, it may be, however, an appropriate alternative to the-C\(T)|/C{{(T) of our estimate€,(T) compared with the
above-described procedure and should be pursued further.specific heat€{(T) obtained by the exact enumeration pro-
cedure. We see that, except for very low temperatures, the
V. VALIDATION AND PERFORMANCE relative error is uniformly smaller than 16.

Before we discuss the physical results obtained with the ) ) o
multicanonical chain-growth algorithm, we first remark on B- Multiple histogram reweighting
tests validating the method. We compared the specific heat The calculation of the density of states by meansaf
for very short chains with data from exact enumeration andhonical stochastic algorithms cannot be achieved by simply
found that our method reproduces the exact results with higheweightingone canonical histogram, obtained for a given
accuracy. For a chain with 42 monomers, where exact resultgmperature, to as many as necessary distributions to cover
are not available, we performed a multi-histogramthe whole temperature region, since the overlap between the
reweighting” from canonical distributions at different tem- sampled distribution and most of the reweighted histograms
peratures obtained from original NPERMis runs. Here, itis too smalf® As this simple reweighting only works in a
turned out that our method shows a considerably higher pekertain region around the temperature the simulation was
formance(higher accuracy in spite of lower statistics at com-performed, a multiple application of the reweighting proce-
parable CPU timgs We also compared with implementa- dure at different sampling temperatures is neceséarar
tions based on sophisticated importance sampling Monténe sequence of a 42mer to be studied in detail in Sec. VIA,
Carlo schemes, e.g., we have also performed multicanonicgle performed the multiple reweighting of five overlapping
samplind'* and Wang—Landau simulatiorisn combination  histograms obtained by separate nPERMis runs at tempera-
with conformational updates different from chain growth
(e.g., move sets as described in Seg¢. Hor the present
applications, however, all of these attempts proved to be les: 20T J J ' ' ' ' ' '
efficient.

-3.0
A. Comparison with results from exact enumeration
-4.0

As a first validation of our method, we apply it to a set of loges ()
0810 €

14mers with some interesting propertisse Table)lregard-

ing the relation between their ground-state degeneracy ani
the strength of the low-temperature conformational transition
between lowest-energy states and compact glodfein
finite-size systemgpseudojtransitions are usually identified
through structural peculiaritieénaxima for strong transi- 7 01 02 03 04 05 06 07 08 09 10
tions or “shoulders” for weak transitionsn the temperature- T

dependent behavior of fluctuations of thermodynamic quangg, 1. Logarithmic plot of the relative errors of our estimates for the
tities. Usually, it is hard to obtain a quite accurate estimatiorspecific heats of the 14mers given in Table |.
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70 T T T T T T sampling and update methods for 14mers, where we could
compare with exact results from enumeration, and applied it
to a 30mer with 20 energy states with rather high degenera-
cies. All these states were frequently hit such that the results
were reasonable for all temperatures. Remarkably, it turned
out, however, that the sampling of low-energy states be-
comes more problematic the lower the degeneracy of these
states is. Either the algorithm got stuck after hitting such a
10 1 state, or it took a long time to find it for the first time. These
0 ! ! I ! I I were indications for a “hidden” conformational barrier that
e % could not be circumvented with these procedures.

Applying these methods to sequences with more than 40

FIG. 2. HistogramsHT(E) obtained by single nPERMis runs for five dif- monomers did not yield reliable results. Low-energy states

ferent temperaturef=0.3, 0.5, 0.8, 1.5, and 3(@ashed lines The result- were too rarely or never hit in Iong-term simulations. Per-
ing density of stateg(E) obtained by multiple histogram reweightifigng

dashed linglies within the error bars of the density of states calculated byformmg_ a biased S'mUIat'_On *?y_ .eX'pl'ICItIy starting from a
means of our methogsolid line). state with lowest energy, i.e., initializing with a very dense

conformation, it took much too long until a new self-

avoiding conformation was found and accepted. Comparing
tures 0.3, 0.5, 0.8, 1.5, and 3.0 in order to estimate the denhjs with applications of the multicanonical chain-growth
sity of states. The histograms as well as the resulting densitshethod to these examples led us to the conclusion that, in the

of states are shown in Fig. 2, where we have also plotted thgpplication to lattice proteins, chain-growth methods are
density of states being obtained by means of our multicamuch more capable of avoiding such barriers.

nonical sampling algorithm. Each of the histograms contains

statistics of 8< 10’ chains. This number was adequately cho-y RESULTS

sen such that the density of states from histogram reweight- i ) .

ing matches within the error bars of the density of states [N the following we focus on results which we obtained
obtained with our algorithm that also inherently supplies ugVith the multicanonical chain-growth algorithm for het-
with the absolutedensity of states. Note that these absolute€™OPolymers with HP sequences of more than 40 monomers.
values cannot be obtained by means of the multiplea. Lattice model for parallel g helix

histogram reweighting procedure, where the normalization isvith 42 monomers

initially arbitrary. Our density of states was obtained by ac-

cumulating statistics of % 10’ chains. This means that eight
times more chains were necessary to approximately achie
the accuracy with the multiple histogram reweighting . . :
method. The iterative period for the determination of theSlgned o serv%;’;ls a lattice model Of _the pare)zEeHel_m of
multicanonical weights is no drawback, as it takes in Ourpectat_e Iyas_e B.Ut there are ad<_j|t|onal propertles_ that
implementation only 10% compared to the production run.make it an interesting and (_:hallenglng system to which we
Therefore we conclude that our dynamical method is mor ant to apply our method first. The ground.-§tate energy 1
efficient and also more elegant than a static reweightin nown to beEr,=—34. Moreover, the specific heat has a

scheme, where also a reliable estimation of statistical error ery pronounged low-temperature peak that indicates a
is extremely cumbersome. pseudojransition between the lowest-energy states pos-

sessing compact hydrophobic cores and the regime of the
globule conformations. This transition is in addition to the
usual one between globules and random coils.
Figure 3 shows how the estimate for the density of states
The calculation of the density of states for heteropoly-of this 42mer evolves with increasing number of iterations.
mers with less than 40 monomers does not represent a bibhe zeroth iteration is the initial pure nPERMis run @t
challenge. It is still possible to combine generalized en-=0. This does not render, however, a proper image of the
semble methods like multicanonical sampfidgor the  abilities of NPERMis, which works much better at finite tem-
Wang-Landau methdglwith move sets including pivot ro- peratures. Iterations 1-8 are used to determine the multica-
tations to yield reasonable statistics in the low-energy sectononical weights over the entire energy sp&te| —34,0].
In order to avoid the sophisticated implementation of theThen, the ninth iteration is the measuring run which gives a
move sets, an alternative method can be used, for instanceery accurate estimate for the density of states covering
where the conformational information is encoded in a stringabout 25 orders of magnitude. Our estimate for the ground-
of letters denoting the directions(dtward, B(ackward,  state degeneracy p=3.9+0.4, which is in perfect agree-
R(ight), L(eft), U(p), and Dlown) the walker may follow in  ment with the known valugg‘=4 (except translational, ro-
an embedded coordinate system. This structural conformaational, and reflection symmetrie¥
tion is then updated by simply changing a letter. All these  The average structural properties at finite temperatures
methods require a time-consuming self-avoidance check folean be best characterized by the mean end-to-end distance
lowing each update. We have tested these combinations @R.o(T) and the mean radius of gyratiofRy,)(T). As

60 |-
50 -

log109(E), 40 |-.-
IOgloHT(E)
30}

20 -

We consider a 42mer with the sequence
\2H: PHPH, PHPHR Hg PHPH, PHPH; P, HPHPH, PHPH, P
tﬁat forms a parallel helix in the ground state. It was de-

C. Flat-histogram algorithms with update mechanisms
different from chain growth
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FIG. 5. Specific heaCy, and derivatives with respect to temperature of

FIG. 3. Estimates for the density of stag(E) for the 42mer after dif- ~ Mean end-to-end distan¢B.g and radius of gyratiodiRy,,) as functions of

ferent levels of iteration. Since the curves would fall on top of each other €MPerature for the 42mer. The ground-state—globule transition occurs be-

. 2 ) . "
we have added, for better distinction, a suitable offset to the curves of théveenT§)~0.24 andlé) )~0.28, Wh'('g the globule—random coil transition
first, sixth, and ninth runs. The estimate of the zeroth run is normalized tdakes place between; ’~0.53 andT;”~0.70 (shaded areas

unity.

N . . . . the mean end-to-end distance decreases and the protein has
these quantltles carry shape mformetlons, their calculation igntered the globule “phase.” Further increasing the tempera-
not exclusively based on the density of sta&E(Xn,)  ture then leads to a disentangling of the globules and random
and hence Eq(5) cannot be applied. Therefore expectationcoj| conformations with larger end-to-end distances domi-
values of such quantitieéd are obtained from the time series pate. From Fig. 5, where we have plotted the specific heat
of the measuring run of the multicanonical chain growthang the derivatives of the mean end-to-end distance and of

simulation at infinite temperature by using the general forthe mean radius of gyration with respect to the temperature,
mula

d 1
1 —(Reo(T)= = (E —(E)}{Reo), (39
RIS P —(Red(T) = = ((ERed — (E)(Rey

d 1
X Wi (Xn,) ON(E(Xn ) PEND, - (33) a7 {Ray) () = 72 ((ERgy) = (EXRgy)). (35

Vi’ith the —estimate for the partiion SUMZy e estimate the temperature region of the ground-state—
=2 Wi(Xn ) ON(E(Xn,0) ) exp{—BE(X ) }. Our results for g4 16 transition to be withif(V~0.24 andTZ)~0.28.

f_iRee}(T)da.“d <hRg¥r>I(IT)'Of tfhe 42mer: are ;hewr; in Fig. 4. The globule—random coil transition takes place between
ere and in the following figures, the statistical errors werer(1) g 53 andT{2~0.70,

estimated by using the jackknife binning metH8d:he pro- In Fig. 6 we show variancesé=(02>—<o>2 as func-
nounced minimum in the end-to-er}q distance can be inter; | o temperature foD=E, R, andRy,. We observe
preted as an indication of the transition between the lowest, .\ «choulders” around=0.3 (to see this forr2, would
energy states and globules: The low number of ground stat ) W
have similar and highly symmetric shapesie to the reflec-

er%quire, however, an even higher resolution of the )plot
. . close to the interval, where the low-temperature transition is
tion symmetry of the sequenckut the ends of the chain are
polar and therefore they are not required to reside close t

expected. The situation is much more diffuse in the tempera-
each other. Increasing the temperature allows the protein to

re region, where the globule—random coil transition should
fold into conformations different from the ground states and

contacts between the ends become more likely. Therefore 0.40 ————————————1———————— 0010
0.35 [
0.008
0.17 T T T T T T T T T 030 -
015 op(T) 025 0.006
R Tgu:(T)
0.13 92(T) 0.004
(Ree)(T) 011 0.15 | :
N 0.10 |- o002
Ryye)(T -0
<gyN¢ 009 005
0.07 |- (Rgye)(T)/N 0.00 r 0.000
00 01 02 03 04 05 O 9 10
0.05 |- - T
0.03 1 1 1 | | | | | | .
00 01 02 03 04 05 06 07 08 08 10 FIG. 6 Tempéerature dependence ef tr;e fluctuations of eneﬁgyendjto—
T end distancerg, and radius of gyratiowrg,, for the 42mer. Note the differ-
ent scales forr2, and aéyr. In the temperature interval plotted the variance
FIG. 4. Mean end-to-end distan¢R.e and mean radius of gyratiaiiRy,,) of the radius of gyratiorfright scal@ is much smaller than the variance of
of the 42mer. the end-to-end distandéeft scald, o5, < o5,
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off that the distributions possess two peaks at temperatures
within that region where the ground-state—globule transition
takes place. This is interpreted as an indication of a “first-
order-like” transition?’ The behavior in the vicinity of the
globule—random coil transition is less spectacular as can be
seen in Fig. (), and since the energy distribution shows one
peak only, this transition could be denoted as being “second-
order-like.” The width of the distributions grows with in-
creasing temperature until it has reached its maximum value,
which is located neaf~0.7, cf. Fig. 6. For higher tempera-
tures, the distributions become narrower again.

Since finite-size scaling is impossible because of the
noncontinuable sequences of different types of monomers,
“transitions” between classes of protein shapes are, of
course, to be distinguished from phase transitions in the strict
thermodynamic sense. In conclusion, conformational transi-
tions for polymers of finite size, such as proteins, are usually
weak and therefore difficult to identify. Thus, these consid-
erations are, of course, of limited thermodynamic signifi-
cance. From a technical point of view, however, it is of some
importance since Markovian Monte Carlo algorithms can
have problems with sampling the entire energy space, as the
probability in the gap between the two peaks can be sup-
pressed by many orders of magnitugénat is obviously not
FIG. 7. Canonical distributions for the 42mer at temperatu@s T the case in our example of the 42meand tunnelings are

=0.24, 0.25,..., 0.30 close to the ground-state—globule transition region erxtremer rare. Just for such situations, flat histogram algo-

tween T(V~0.24 and T(?=~0.28, (b) T=050, 0.55,.., 1.0. The high- ithms have primarily been develop&d.
temperature peak of the specific heat in Fig. 5 is nE&t=0.53, but at
T(»~0.73 the distribution has the largest width, cf. Fig. 6. Near this tem-B. Ten designed 48mers

perature, the mean radius of gyration and the mean end-to-end digtaece

Figs. 4 and 5 have their biggest slope. We have also analyzed the ten designed sequences with

48 monomers given in Ref. 21. The ratio between the num-

bers of hydrophobic and polar residues in one half for these
take place. The variance of the ener@ﬁr has a peak ar HP proteins, i.e., the hydrophobicity ig;=24. In Table II
=0.73, near the temperatures of the corresponding peaks ofe have listed the sequences and ground-state properties.
the derivativeg34) and(35) plotted in Fig. 5. The variances The minimum energies we found coincide with the values
of the end-to-end distancege and the radius of gyration given in Refs. 6, 7, and 21. Figure 8 shows the densities of
ogyr, however, do not exhibit at all a peak near this temperastates for selected 48mers and the multicanonical histograms
ture. Obviously, there is no unique behavior of these quantief the production run. Note that for Rosenbluth chain-growth
ties that is usually used to identify conformational transitionsmethods(a-thermal or ai3=0) the histogram for chains of
in this temperature region. In Fig. 7 we have plotted thelengthN is obtained by accumulating their individual Rosen-
canonical distributionsPZ%”'T(E) for different temperatures bluth weightsW, which explains the poorer performance
in the vicinity of the two transitions. From Fig(a& we read near the minimum energy, where a small number of states

04
03
PEmT(E)

02

01k

0.12
0.10
0.08
PE™T(E)
0.06
0.04

0.02

TABLE Il. Properties of the 48mers. For each of the sequences we have listed the ground-stat& gpengy

the ground-state degeneragy estimated with our algorithm. For comparison, we have also quoted the lower
bounds on native degeneracigg,c obtained by means of the CHConstrained-based hydrophobic core
construction method(Ref. 22 as given in Ref. 21. In both cases the constant factor 48 from rotational and
reflection symmetries of conformations spreading into all three spatial directions was divided out.

No. Sequence Emn  9o(X10°)  ggncd X10°)
481  HPHP,H,PH;P,H,P,HPH,PHPH,P,H,P;HP;H, 32 5226812 1500
482 HPH,PHP,HP;H,P,HP,HP,HP;HP,H,P,H;PH —34 17+8 14
483  PHPHPH,P,HPHR,HPH,PHPHRHP,H,P,H,P,HPHR,HP —34 6.6+2.8 5.0
484  PHPHP,HPHyPH,PH,P;HsP,HPH,PHPHRHP,HPHP  —33 60+ 13 62
485  BHP,HPH,P,H,PH,PH,P,HPHPHRHP,H,PH,PH 32 1200:-332 54
486  HP,H,PHPH,PH,PH,PHRHPHP,HP,HP,HsPH -32 96+ 19 52
48.7  PHRHPH;PHPH,PH,PH,P;HPHP;H5P,H,P,H,P;H ~32 58+ 21 59
488  PHPHPH,P,H;PsHPH,PH,PHRH,PHPHPHP, 31 222016594 306
489  PHPHRHPHPHRHPHP,H;PHP,HPH,P,HPH,P,H —34 1.4+0.5 1.0
48.10  PHPsH,P;HsPHPHPH,P,HP,HP,H,P,H,P,H, -33 187-87 188
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BT ' ' ' ' ' 20 42 [bond length?) and those conformations would require
30 = B still more effort to be identified with the CHCC algorithm,
M“_,.-«""* which was designed to locate global energy minima and
- (;)5 1 x lf)gmH(E) therefore starts the search beginning from th(_e most compact
20 dos hydrophobic frames. The ground-state energies of these ex-
amples are rather highE(,,=—31 for 48.8, andE,
15 ! 'logmg(E) 10 =—32 for 48.1 and 48)6and therefore a higher degeneracy
ol A& pro gl I seems to be natural. This is, however, only true, if there does
£ :. . . . . g;? I not exist a conformational barrier that separates the compact
Y T e e s a0 s o e H-core low-energy states from the general compact globules.
E Comparing the ground-state degeneracies and the low-

- . I temperature behavior of the specific heats for the sequences
FIG. 8. Logarithmic plots of the densities of statgE) and “flat” histo- .
gramsH(E) for the sequences 48.1, 48.5, 48.6, and 48.7 from Table Il that48'l’ 48.5, 48.6, and 48(all of them havmg glObaI energy
have the same lowest ener@y,,=—32. The normalization of the histo- Minima with E;,=—32) as shown in Figs. 8 and 10, respec-
grams of these examples was chosen such that they coincide at maximutively, we observe that 48.6 and 48.7 with rather low ground-
energy, logoH(Ema=0)=1. state degeneracy actually possess a pronounced low-
temperature peak in the specific heat, while the higher-
. . . L degenerate proteins 48.1 and 485 only show a weak
enter; with b'.g Welght.s. Th|s differs from the usual ProC€-ndication of a structural transition at low temperatures. The
dure in algorithms with importance sampling, where theHP proteins 48.2, 48.3, and 48.9, which have the lowest
pounter of an energy bin being hit by an appropriate state i?hinimum energyE,min=—’34 among,the examples in Table
incremented by unity. II, also have the lowest ground-state degeneracies. These

In Fig. 9 we havg plotted the mean energy, free ENeWMhree candidates indeed seem to exhibit a rather strong
and entropy as functions of temperature for these lattice pro- ound-state—globule transition, as can be read off from the
teins. These results were obtained by means of the density ][ssociated specific heats in Fig’ 10

fséftgztﬁga;%?:d r;ve'!t:] é)lfr:tglgtr?gt?c:?;.r I dlbiffl e?e:t]evgltr:sesof We have again measured the mean end-to-end distances
9 and mean radii of gyration, which are also plotted as func-

Emin (=—34,-33,~32,~31) while the entropy exhibits the ;.\~ ¢ temperature into Fig. 10. Both quantities usually

ground-state degeneracie€s—Ingy. Our estimates for the . h f ional £ ool

degeneracieg, of the ground-state energies, and for Com_serve o interpret t e con ormationa com.pactnes.s ot paly=
0 ! mers. For HP proteins, the end-to-end distance is strongly

. < . . )
parison, the lower boundgcyicc given in Ref. 21, are listed influenced, however, by the types of monomers attached to
in Table 1l. The lower bounds were obtained with the . : . .

the ends of the chain. It is easily seen from the figures that

constrained-based hydrophobic core constructiGiCC) . ! . . i
method?? Our values lie indeed above these lower bounddh® #8Mers with sequences starting and ending with a hydro

or include it within the range of statistical errors. Notice phobic residug48.1, 48.2, and 48)thave a smaller mean

that for the sequences 48.1, 48.5, and 48.8, our estimateesnd'to'end distance at low temperatures than the other ex-
. amples from Table Il. The reason is that the ends can form
for the ground-state degeneracy are much higher than ﬂ}%a

- . hydrophobic contacts and therefore a reduction of the energy
boundsgcpcc- In these cases the smallest frame contain- . :
: : . . can be achieved. Thus, in these cases contacts between ends
ing the entire hydrophobic core is rather largeube

- o . are usually favorable and the mean end-to-end distance is
containing 4<3x3=36 monomers with surface are& close to the mean radius of gyration. Interestingly, there in-
=32[bond length?) such that enumeration of this frame is 9y . 9y

cumbersome. For 48.5 and 48.8, we further found groundEjeed exists a crossover region, Wh_éFQQ<<ng,>. _Com- .
. L X pared with the behavior of the specific heat, this interval is
state conformations lying in less compact franté8.5: A

_ 2 S AL close to the region, where the phase dominated by low-
32,40, 42,48, 52, Sbond lengtly”,  48.8: A=32, 40, energy states crosses over to the globule-favored phase. The

hydrophobic contact between the ends is strong enough to
resist the thermal fluctuations in that temperature interval.

The reason is that once such a hydrophobic contact between
the ends is established, usually other in-chain hydrophobic
monomers are attracted and form a hydrophobic core sur-
rounding the end-to-end contact. Thus, before the contact
between the ends is broken, an increase of the temperature
first leads to a melting of the surrounding contacts. The en-

tropic freedom to form new conformations is large since the

low-energy states are all relatively high-degenerate and do
not possess symmetries requiring an appropriate amount of

000 005 010 015 020 025 030 035 040 heat to be broken. For sequences possessing mixed or purely
T polar ends, the mean end-to-end distance and mean radius of
FIG. 9. Mean energyE)(T), Helmholtz free energy(T), and entropy ~ dYyration differ much more strongly, as there IS no energetic
S(T) for 48mers with the sequences given in Table II. reason why the ends should be next neighbors.
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FIG. 10. Heat capacitie€y(T), mean end-to-end distancéB.¢(T), and mean radii of gyratio{R,,)(T) of the ten designed 48mers from Table II.
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FIG. 13. Specific heat of the 103mer.

FIG. 11. Conformation of the 103mer with the lowest energy foufgd,
=—56.
VIl. SUMMARY

In order to study heteropolymers at very low tempera-
In conclusion, we see that for longer chains the strengtliures with reasonable accuracy, we developed a multicanoni-
of the low-temperature transition does not only depend orcal chain-growth algorithm based on recently improved vari-
low ground-state degeneracies as it does for short ch&ins.ants of PERM. Comparing with exact enumeration data for
Rather, the influence of the higher-excited states cannot bigP lattice proteins with 14 monomers, we validated that our
neglected. A striking example is sequence 48.4 with rathemethod is suitable to accurately determine thermodynamic
low ground-state degeneracy, but only weak signals for sjuantities for all temperatures. Then, we applied this algo-
low-temperature transition. rithm to lattice proteins with sequences of more than 40
monomers known from literature. Additionally, we deter-
mined statistical properties for all temperatures for examples
C. Beyond 100 monomers... with up to 103 monomers. Since our algorithm allows the
] ] ) estimation of the degeneracy of the energy states, we deter-
The final example we applied our algorithm to was amined for all sequences the ground-state degeneracy, as it is
103mer as proposed in Ref. 23. Until recently, the “groundy,p, jngication of the “uniqueness” of the native state.
state” was believed to have enerfiy,,=—49 (Ref. 24. The In particular, we presented a detailed investigation of a
best estimate up to now was found with nPERMis 10 beésequence of 42 monomers that has interesting characteristic
Emin=—54 (Ref. § and, with an additional bias suppressing prgperties, e.g., a quite low ground-state degeneracy. Since
contacts between H and P monomers, eligi=—55 (Ref.  some results regarding the ground states and thermodynamic
7). Our algorithm not only decreased the lowest-energy valugqnerties were availabf,it was a good candidate for test-
to Emin=—56 (see Fig. 1], but also enabled us to obtain g oyr algorithm and for checking the performance of our
results for the thermodynamic quantities as in the previou$yethod. For this sequence we analyzed in detail the
examples. Figure 12 shows the density of states which covemperature-dependent behavior of radius of gyration, end-
ers more than 50 orders of magnitude from which we detery,_enq distance, as well as their fluctuations, and compared it
mined the specific heat shown in Fig. 13. The degeneracy Qfjith the specific heat in order to elaborate relations between
the lowest-energy state,,;=—56 was determined to be of characteristic properties of these curpsaks, “shouldersy
order 18° such that it seems likely that there still exist one of 5;nq conformational transitions not being transitions in a
more even lower-lying energetic states. strict thermodynamic sense due to the impossibility to for-
mulate a thermodynamic limit for proteins. Therefore, we
identified temperature regions, where global changes of pro-
tein conformations occur. These transition regions separate
“phases,” where random coils, maximally compact globules,
or states with compact hydrophobic core dominate. The
random-coil—globule transition is well understood, since the
heteropolymers behave qualitatively similar to homopoly-
mers at the® collapse transition. For finite systems this
(pseudgtransition occurs at the Boyle temperatiig being
defined through the vanishing of the second virial coefficient
in the homopolymer state equation for small monomer
concentrationd® The description of the conformational
-60 -50 -40 -30 -20 -10 0 changes happening at the low-temperature transition is, how-
E ever, more difficult. From exact enumeration for 14m@rs,
FIG. 12. Density of states for the 103mer, ranging over more than 50 0rder§imuIationS of the 42mér120 and our results for the 42mer
of magnitude. and the 48mers in this paper, we conclude that the indica-
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