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Abstract – We present a new method for exact enumeration of self-avoiding walks on critical
percolation clusters. It can handle very long walks by exploiting the clusters’ low connectivity and
self-similarity. We have implemented the method in 2D and used it to enumerate walks of more
than 1000 steps with over 10170 conformations. The exponents ν and γ, governing the scaling
behavior of the end-to-end distance and the number of configurations, as well as the connectivity
constant µ could thus be determined with unprecedented accuracy. The method will help answering
long-standing questions regarding this particular problem and can be used to check and gauge
other methods, analytical and numerical. It can be adapted to higher dimensions and might also
be extended to similar systems.

Copyright c© EPLA, 2012

Self-avoiding walks (SAWs) on critical percolation clus-
ters (CPCs) have been the subject of numerous studies
since the 1980s (see [1,2]). They reflect the qualitative
behavior of linear polymers in highly packed disordered
environments such as porous rocks or biological cells. The
model is also of relevance from a theoretical point of view,
not least because of the fundamental importance of the
two constituents (see [3,4]).
Despite its simplicity, the lattice SAW features inter-

esting scaling behavior with universal exponents that are
representative for a range of more complicated systems,
including long polymers in good solvents [5,6]. The main
focus is usually on the scaling of the end-to-end distance R
and the number of chain conformations Z with the number
of steps N , described by the exponents ν and γ:

√

〈R2〉 ∼Nν , Z ∼ µNNγ−1. (1)

Only the so-called connectivity constant µ depends on
the details of the lattice. In the presence of disorder, one
usually considers quenched averages of 〈R2〉 and Z over
all possible realizations of the background. Whether and
how the scaling behavior changes in that case has been a
widely discussed issue [7–9].

(a)E-mail: niklas.fricke@itp.uni-leipzig.de
(b)E-mail: wolfhard.janke@itp.uni-leipzig.de

A convenient implementation of disorder is random
site dilution. Most intriguing is the case at the critical
occupation probability pc where the (fractal) dimension of
the substrate shifts to a slightly smaller, non-integer value.
How the fractal structure of the substrate influences the
SAWs’ scaling behavior is still only partly understood.
Different analytical and numerical techniques have been

used to investigate the problem. They include mean-
field (Flory) approximations [10,11], renormalization in
real space [8,12–14], field theory [15–18], various chain-
growth Monte Carlo (MC) methods [9,19–22], and exact
enumeration (EE) [7,23–28]. While much insight has been
gained, questions and controversies have remained. There
is general agreement that the scaling exponents at the
percolation threshold differ from those on the full lattice,
but the accuracy with which they could be determined so
far is quite limited. Also, the results from different studies
deviate significantly, and some authors [18] even doubt
the existence of an asymptotic scaling limit. The main
problem of the numerical methods is that they can only
handle small systems, leading to finite-size errors which
are hard to control. EE studies are most affected: Due to
the exponential increase in computation time, only very
few steps (up to 45 in 2D [28]) could be afforded so far.
With MC longer walks (up to 200 steps [22]) could be
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Fig. 1: (Color online) Decomposition of a critical percolation
cluster into nested blobs and corresponding tree hierarchy. The
SAW’s starting position is marked in black (in blob A).

simulated, but the results are not as reliable. Indeed, some
methods are known to yield biased results if sample sizes
are too small (see [9]).
We devised a method for exact enumeration of SAWs on

CPCs that appears to have overcome the seemingly inher-
ent problem of exponential complexity. This is possible
by exploiting the fragility and self-similarity of the CPCs.
These two properties allow factorization of the problem
on all length scales and the use of a recursive, “renor-
malizing” treatment. Since our method relies explicitly on
the structural properties of CPCs, it is only applicable at
or close to the percolation threshold. There, however, it
outperforms even the most efficient MC methods.
The aim of this letter is to convey the key ideas of

this new method and to demonstrate that it allows for
a much more profound treatment of the problem at hand
and related ones. Estimates for the values of ν, γ, and µ in
two dimensions are also presented and discussed. We omit
some of the technical details. In particular, we shall only
explain how to obtain the number of chains Z, which is the
central part of the method. The additional measurement
of 〈R2〉 is straightforward.
Normally, the computational effort for EE scales expo-

nentially with the system size, e.g., the number of steps
N . That problem may be avoided by dividing the system
into parts that can be treated separately. The self-similar,
weakly connected structure of a critical percolation cluster
allows for just that.
At the percolation threshold, the average number of

bonds between sites that one would need to cut in order
to divide the cluster into separate pieces is on the order
of one, independent of the system size. This scale-free
property makes it possible to decompose the cluster into
nested pieces (blobs) of all sizes in such a way that each
one has only a small number of connections (links) to the
larger blob containing it (parent) and a small number of
children contained by it (see fig. 1).
To see how the low connectivity can be used, consider

a blob A from which a child B of about half its size can
be dissevered by cutting a single bond l. Imagine we want
to determine the number Za→B [n] of SAWs of n steps
starting from some point a outside of the child B and

Fig. 2: Schematic depiction of all states for a blob with three
links. A c-state represents paths that traverse a blob, for a
t-state they terminate within.

terminating within. Instead of counting directly, we can
calculate that number from the number of segments from
a to l and from l to anywhere in B:

Za→B [n] =
n
∑

i=0

Za→l[i] ·Zl→B [n− i]

:= (Za→l⊛Zl→B) [n]. (2)

The number of counted paths is thus only the sum
(and not the product) of the numbers of segments.
Such a factorization is more difficult when there are
more links and children, as paths may then leave and
re-enter the pieces. To accommodate for this we need
to distinguish “topologically different” ways to traverse
a blob (meaning that different links are connected). An
ensemble of topologically equivalent ways through a blob
we call a state. We furthermore distinguish terminal (t-)
states, where the chains end within the blob, from
conductive (c-) states and represent them graphically as
shown in fig. 2. Knowing the maximal number of states S
as a function of the number of links L is important for
understanding the limitations of the method and helps
to decide how to decompose a cluster. To derive S(L),
we start by considering the c-states with 2i connected
links. Their number is equal to the number of c-states
when the unconnected links are disregarded (as if
L= 2i), C[2i], times the number of ways to intersperse
the L− 2i unconnected links: C[2i]

(

L
2i

)

. In 2D, where the
lines in the diagrams may not cross, the c-states without
unconnected links can be mapped bijectively to the set
of binary trees with i nodes, for which the number of
configurations is given by the Catalan numbers (see [29]):
C[2i]D=2 = (

2i
i )/(i+1). When states with crossed lines are

included, the situation is easier, and C[2i]D>2 =
(2i)!
i!2i can

be obtained using elementary combinatorics. For each
c-state, there are L− 2i t-states, one for each unconnected
link. Summing over all i for which 2i�L leads to the
total number of states:

S(L) = Sc(L)+St(L) =

⌊L/2⌋
∑

i=0

C [2i]

(

L

2i

)

(1+L− 2i).

(3)
The more states a blob can assume, the more memory

and time will be needed for its treatment. While
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Fig. 3: (Color online) Snapshot of the enumeration procedure:
a path of length 11 (red arrows) belonging to the blob’s t1-state
is found; the corresponding entry Zcombt1;c1,t2 [11] is incremented.

ten links are still manageable (SD=2(10) = 10538 and
SD>2(10) = 35696), twenty are clearly too many (approx-
imately 4× 108 and 1× 1011 states, respectively). This
has to be kept in mind when we partition the percolation
cluster. We shall discuss the partitioning procedure
later on; for now let us assume that we have a suitable
decomposition of a cluster.
We begin the enumeration by counting the number of

paths for each state of the blobs at the bottom of the
hierarchy. Once this is done, they can be “renormalized”
to single points when we count the paths through the next
larger blobs. This goes on until we arrive at the root, whose
only link is at the starting location.
The central challenge is to efficiently determine the
paths for each state of a blob containing children whose
paths (for each state) are already known. This is done
using a depth-first recursion similar to the standard
backtracking method (see [7]). The procedure takes place
on a graph whose nodes are the blob’s parent, children,
and “bare sites”, i.e., sites that are not contained within
the children (see fig. 3). The paths always start at the
parent node. Regardless of their true size, children and
parent behave as pointlike sites. However, they differ from
normal sites in that they change their state when visited.
If, for example, a child with three links in state c0 (see
fig. 2) is accessed via link l1, it will transit to t1. When
the child is then left via link l2, it changes to c1. Likewise,
each path belongs to a state of the blob itself, which
changes whenever the parent is visited. Note that accessing
or leaving a child or the parent is only one move (we
use this term here instead of “step” to avoid confusion),
as for any normal site. For each move, we increment a
counter Zcomb[i] determined by the “length” i of the path
(in moves) and the combination of states (of blob and
children). Once the routine has terminated, the paths for
each state combination Zcomb are connected (as in eq. (2))

with the paths for the involved states of the children. The
result is added to the overall number of paths for the
respective state of the blob, e.g.:

Zblobt1 = . . .+Zcombt1;c1,t2 ⊛Z
child1
c1 ⊛Zchild2t2 + . . . .

Here Zcombt1;c1,t2 stands for the number of t1-paths through
the blob for each number of moves i with the children
in states c1 and t2. After this has been done for all
combinations of states that have occurred, we can discard
all information concerning the children, and the blob will
effectively shrink to a point when we treat its parent.
The computation time needed for counting the paths

through a blob depends on the number of its nodes
and how densely they are connected. The effort needed
to connect the paths and the required memory, on the
other hand, will depend on the number of different state
combinations. Finding a decomposition where each blob
is satisfactory in both regards is not trivial. We pursued a
bottom-up amalgamation strategy.
First, individual sites are defined as the smallest blobs.

Then all possibilities to merge any blob with a fraction of
its neighbors are considered, and the one deemed best is
performed. The choice is primarily based on the number of
links of the resultant blob minus the maximum number of
links of any of its components. A secondary criterion is the
height of the new blob, recursively defined as the height
of its highest component plus one (initial blobs have zero
height). Smaller values are preferred, and the height only
decides in case of a tie for the first criterion. If two options
are judged as equally good, one is chosen at random.
The newly formed blob is linked to its constituents in
the emerging tree. This procedure is repeated until only
one blob remains. The root of the tree is then defined
as the blob which is the SAW’s starting position. Finally
we dissolve some of the blobs and give their bare sites
and children to the parent. This is done in order to
get rid of blobs with many links and children, which
would lead to many different state combinations. However,
dissolving a blob will increase the number of nodes of its
parent, and it is crucial to find the right balance. To this
end, we make use of the following empirical observations:
1) The peak memory on average depends on the maximal
product of the number of states of a blob and its chil-
dren: Mpeak ≈ f (max [Sblob ·

∏

Schildi ]), where f increases
monotonously. 2) The typical computation time per blob
increases exponentially with the number of faces, Fblob, of
the corresponding graph and also depends on the number
of states: Tblob ≈ a · b

Fblob + g (Sblob ·
∏

Schildi). a, b are
positive constants and g is again monotonously increas-
ing. The first term estimates the time for counting the
paths and the second for connecting them (as in eq. (2)).
f, g, a, and b have to be determined empirically. One can
then decide which blobs need to be dissolved to minimize
the estimated computation time for the whole hierarchy,
while a fixed limit for the predicted peak memory is kept.
Further justifications for these heuristics, along with our
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empirical estimates, shall be supplied in a forthcoming
publication. Note that the decomposition will only affect
the efficiency (or feasibility) of the enumeration and not
the results.
Apart from eq. (3), the method does not explicitly

depend on the dimension of the system, but our current
implementation is only for the 2D case. Decomposition of
a 2D CPC and enumeration of N = 103 steps took about
ten minutes on average (on a 2.6 GHz PC). Theoretically,
there are cases where a satisfactory decomposition cannot
be achieved, and the enumeration will take extremely
long. One example is the full lattice, which is a valid —if
unlikely— disorder configuration. In practice, however,
these cases are extremely rare, and none occurred during
our simulations. We cannot yet specify the theoretical
and practical limitations of the method. At present it
appears that we might go up to much longer chains,
although the computation will eventually become quite
time consuming. The method also works slightly above
pc (≈ 0.592746 [30]), but only up to some finite length.
For example, we found that for p= 0.62 one can still go
to about N = 300. This becomes relevant if we want to
study the crossover to the non-critical regime. For p < pc
the connectivity is even lower than at pc, so the method
will work fine (but finding large enough clusters can be
difficult).
To generate the percolation clusters, we used the Leath

method [31]. The lattice size was chosen large enough to
exclude the possibility of a walker reaching the edges. A
cluster was defined as percolating when it wrapped around
the lattice in at least one dimension (see [30]).
We enumerated SAWs of up to 103 steps on 2× 105

disorder configurations, more than in any other work. On
each we measured the number of SAWs Z(N) and their
average squared end-to-end distance 〈R2(N)〉. Finally, we
took the quenched averages where each disorder configu-
ration contributes equally.
We determined ν via a least-square fit to the scaling

law (1). The first 500 steps were excluded to reduce
finite-size effects. The error was estimated using bootstrap
resampling [32]. We thus found ν = 0.7754(15), which is
slightly smaller than the values obtained in the latest
studies: 0.778(15) (ref. [26]) and 0.782(3) (ref. [22]).
This may be due to the fact that in these studies the
backbone was used instead of the full cluster, relying on
the argument that the “dangling ends” should not affect
the asymptotic behavior [33]. However, the correctness of
this assumption is questionable, see [20]. As our method
works equally well for both cases, we hope that we can
clarify this issue soon.
Estimating γ and µ is difficult due to large deviations of
Z. In fact, the distribution of Z has log-normal character
since Z is effectively a product of random variables. Most
measured values are therefore much smaller than the aver-
age [Z], which, as a result, is likely underestimated: For
N = 103, we obtained Z̃ ≈ 10164 as median and Z̄ ≈ 10180

as mean value while a lognormal fit suggests [Z]≈ 10193.

N

ln Z

N

ln Z

N

Fig. 4: (Color online) lnZ
N
(upper curve) and lnZ

N
(lower curve)

vs. N .

Table 1: Results for γ0, µ0, γ, and µ for different fit ranges.
The first line shows the results for the backbone from ref. [26].

Range γ0 µ0 γ µ

4–30 1.26(5) 1.456(5) 1.34(5) 1.565(5)

4–30 1.307(4) 1.4652(5) 1.34(1) 1.568(2)
10–50 1.352(7) 1.4614(5) 1.35(3) 1.567(3)
50–100 1.50(3) 1.457(7)
100–500 1.79(2) 1.454(2)
200–700 2.01(4) 1.453(2)
500–1000 2.9(1) 1.451(5)

This underestimation is a problem if we want to determine
γ and µ via a least-square fit of

lnZ

N
=
lnA

N
+ lnµ+(γ− 1)

lnN

N
, (4)

where A is a constant amplitude. As can be seen in fig. 4,

the estimator lnZN starts to decline much faster around
N = 70. It also becomes noisy for large N because the
value is dominated by a small number of configurations.
By analyzing the dependence of Z on the number of clus-
ters, we concluded that only the results for N � 50 can
be trusted. For a fit range of 10�N � 50 we obtained
γ = 1.35(3) and µ= 1.567(3). We also determined the so-
called zeroth moments γ0 and µ0. These are defined via
exp ([lnZ])∼ µN0 N

γ0−1 and can be obtained by exchang-
ing lnZ with the mean entropy, lnZ, in eq. (4), see [26].
Here the whole measured range could be used since there
are no large deviations in the distribution of lnZ. For the
same interval as before we got γ0 = 1.352(7) and µ0 =
1.4614(5). However, when we shifted the range to larger
N , the value for µ0 slowly declined while γ0 increased dras-
tically; see table 1. It seems plausible that the normal γ
would behave similarly. Hence we conclude that the scal-
ing behavior of Z is much less understood than previously
thought and that further research is needed here.
Nonetheless, we think that the usefulness of our method

has been demonstrated. The advantage over previous
methods is drastic: Using the standard enumeration
method, counting of 10170 chains would take more than
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10150 years, and even the most capable MC method would
need weeks to produce reliable results.
Certainly, the accuracy attained in older studies would

be higher were they performed today. However, the gain
would probably not be very significant, especially when
using exact enumeration where the computation time
increases exponentially with N . In contrast, preliminary
investigations suggest that for our method it increases
only polynomially with an exponent smaller than three.
This implies that our accuracy can still be significantly
improved in the future.
So far, our method has only been implemented for two-

dimensional lattices but the adaptation to higher dimen-
sions is in progress. It could furthermore be extended
to more evolved polymer models based on the SAW.
Easy examples are SAWs with persistence [34] or under
stretching force [28,35], kinetic SAWs [18], edge-to-edge
SAWs [14], directed SAWs [12], SAWs that interact with
lattice sites [12,24], or self-avoiding rings [36]. More diffi-
cult are star polymers [37] or SAWs with nearest-neighbor
interactions such as θ-polymers [27]. These cases would
require some modifications, but the main ideas should
still apply. Other substrates such as invasion percola-
tion clusters or geometrical fractals [38] could also be
(re)investigated. Besides ν, γ, and µ, many other prop-
erties can now be determined more accurately. Examples
are (universal) shape parameters [39], exponents for higher
moments (“multifractal exponents”) [26,40], density or
free-energy fluctuations [12,24], and the scaling of prob-
ability distributions [41]. As a final remark, we would like
to point out that the idea of exploiting the fractal struc-
ture through such a renormalizing treatment is probably
not restricted to the study of SAWs but might, for exam-
ple, be used to investigate interacting spins or transport
phenomena on CPCs.
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