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Abstract The kinetics of phase ordering has been investigated for numerous systems via the growth of the
characteristic length scale �(t) ∼ tα quantifying the size of ordered domains as a function of time t , where
α is the growth exponent. The behavior of the squared magnetization 〈m(t)2〉 has mostly been ignored,
even though it is one of the most fundamental observables for spin systems. This is most likely due to
its vanishing for quenches in the thermodynamic limit. For finite systems, on the other hand, we show
that the squared magnetization does not vanish and may be used as an easier to extract alternative to
the characteristic length. In particular, using analytical arguments and numerical simulations, we show
that for quenches into the ordered phase, one finds 〈m(t)2〉 ∼ m2

0t
dα/V , where m0 is the equilibrium

magnetization, d the spatial dimension, and V the volume of the system.

1 Introduction

Phase-ordering kinetics is omnipresent in nature and a
very general phenomenon [1–3]. It occurs in many phys-
ical situations, e.g., when quenching a system from a
disordered state at high temperature to a low temper-
ature where in equilibrium it would be in an ordered
state. In case of spin models such as the Ising model,
this corresponds to a nonequilibrium relaxation from
the paramagnetic to a ferromagnetic state. During this
process, one observes the growth of ordered regions (or
domains) with time t which is driven by the reduc-
tion of the total area of domain walls, as every domain
wall contributes energetically. The goal is to quantify
this phase-ordering process. Usually this is achieved by
investigating the characteristic length scale �(t) as a
measure for the average linear extent of the domains,
which typically grows like a power-law �(t) ∼ tα. We
show that instead of measuring �(t), one may alterna-
tively investigate the conceptually much easier squared
magnetization 〈m(t)2〉 during this process; a quantity
apparently overlooked in the past as being interesting.
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We find 〈m(t)2〉 ∼ �(t)d ∼ tdα, both from our analytical
arguments as well as from simulations of the Ising model
with nearest-neighbor interactions and the long-range
Ising model with power-law interactions in one and two
dimensions. This should not be confused with the zero-
field-cooled or thermoremanent magnetization in the
response of the system after quenching with an applied
(small) magnetic field [4–7]. While the equilibrium and
nonequilibrium properties of the nearest-neighbor Ising
model are, a priori, extremely well studied, both proper-
ties are not studied to the same extent in the long-range
model. The Ising model with long-range interactions is
of special interest, as it allows one to tune the inter-
action range, thereby serving as a generic model for
long-range interactions that are omnipresent in natu-
ral and other sciences, ranging from electrostatic forces
over neuroscience to economical phenomena [8–12].

2 Model and methods

The nearest-neighbor Ising model (NNIM) has the ubiq-
uitous Hamiltonian

H = −J0

∑

〈i, j〉
sisj , (1)

where si = ±1 are Ising spins, J0 is the coupling
strength, and 〈i, j〉 symbolizes summation over only the
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nearest neighbors of a d -dimensional (hypercubic) lat-
tice. We use periodic boundary conditions to minimize
boundary effects so that spins at opposing boundaries
interact with each other as if they were nearest neigh-
bours. As an extension to this model, we consider the
long-range Ising model (LRIM) with Hamiltonian

H = −1
2

∑

i

∑

j

J(|�ri − �rj |)sisj , (2)

with J chosen to decay according to a power law, that
is

J(|�ri − �rj |) =
J0

|�ri − �rj |d+σ
, (3)

where d is the spatial dimension and σ > 0 can be tuned
to capture different long-range behavior. For σ ≤ 0,
the potential (without further normalization) diverges.
This case will not be considered here. To mitigate the
strong finite-size effects of this long-range model as
much as possible, we will use Ewald summation to cal-
culate effective interaction strengths J [13–15] over the
minimum image convention often associated with peri-
odic boundary conditions. Both models are investigated
in d = 1 and d = 2 (on square L × L lattices). In our
simulations J0 sets the unit of energy and J0/kB the
unit of temperature where kB is the Boltzmann con-
stant (i.e., we set J0 = kB = 1 for convenience).

The system is simulated using Monte Carlo (MC)
simulations. One of the big advantages of MC simu-
lations in equilibrium is that one may use collective
updates in which many degrees of freedom are updated
at once. Especially successful for spin models with both
nearest-neighbor and long-range interactions are clus-
ter algorithms [14, 16–20]. For nonequilibrium studies,
it is, however, important to only perform physical and
thereby local moves, so that one is restricted to single-
spin flip dynamics. The computational complexity for
a single spin flip scales as O(1) in the NNIM, but as
O(N) in the LRIM since all N ≡ V = Ld spins interact
with each other. Exploiting the observation that during
a sweep (which consists of N single-spin flip attempts)
only a small fraction of spins is updated, we were able
to significantly lower the prefactor of this scaling by a
factor ∼ 103 [15, 21]. This allows us to simulate rather
big systems of size N up to 40962, which was suffi-
cient for the present purpose. For a recently developed
much faster but more involved hierarchical and adap-
tive tree-like single-spin update algorithm that is com-
patible with O(log N) complexity, see Refs. [22, 23].

The simulation protocol in our phase-ordering kinet-
ics study is to prepare an initial disordered configu-
ration with magnetization m =

∑
i si/V ≈ 0. Subse-

quently, we quench the system below the critical tem-
perature Tc, where the system is ferromagnetic. The
process occurring is driven by the reduction of ener-
getically unfavorable domain boundaries, where even-
tually at late times, one of the two magnetic branches
with m fluctuating around ±m0 is “randomly” selected

with m0 denoting the equilibrium magnetization at the
quench temperature.

3 Results

We start our analysis by presenting in Fig. 1 snap-
shots during the phase-ordering process in d = 2 of
the NNIM compared to the LRIM with σ = 0.6 for
a quench from a randomly drawn disordered configu-
ration at T = ∞ to T = 0.1Tc, where Tc(σ) for the
LRIM was extracted from Ref. [14]. Phenomenologi-
cally, the events appear similar and in both systems,
the domains grow with time. While in the NNIM, the
domains form with very smooth boundaries, for the
LRIM, one observes more often relatively sharp corners,
especially at late times. Apparent are of course the dif-
ferent time scales involved. For the NNIM, the lattice
is close to be aligned at t ≈ 105 (in units of sweeps),
whereas in the LRIM, the same is observed already at
t ≈ 103. There could be different reasons for this: (i)
a larger amplitude in the LRIM, (ii) a different growth
exponent, or (iii) a combination of both.

3.1 Characteristic length

Therefore, in phase-ordering kinetics, one is mainly
interested in the quantification of the growth of
domains consisting of ordered regions with time. This
can be quantified by measuring the characteristic length
scale �(t) of the average domain size. It is known that
for the NNIM one has a power-law growth

�(t) ∼ tα, (4)

with α = 1/z = 1/2, where z = 2 is the usual equilib-
rium dynamical exponent [24, 25]. For the nonequilib-
rium behavior of the LRIM, there exists a long-standing

Fig. 1 Snapshots for the phase-ordering kinetics of the
NNIM (upper panel, red) with quench temperature T =
0.1Tc = 0.2269 and L = 4096 at times t = 103, 104, 105 (in
units of sweeps) and LRIM (lower panel, blue) with σ = 0.6,
T = 0.1Tc(σ) = 1.2555 [14], and L = 4096 at t = 20, 200,
1000 from left to right
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Fig. 2 Characteristic length scale �(t) for the d = 2 LRIM
on a log-log scale. Shown are the cases σ = 0.6, 0.7, 0.8, and
1.5 for linear system size L = 4096. The black straight
lines indicate the expected power-law growth as predicted
by Eq. (5)

prediction for the growth of the characteristic length
based on continuum descriptions of this model [26–28]:

�(t) ∼
⎧
⎨

⎩

t1/2 σ > 1
(t ln t)1/2 σ = 1
t1/(1+σ) σ < 1

, (5)

where for σ > 1, one has the same growth exponent α =
1/2 as in the NNIM. This scaling law does not depend
on the spatial dimension d and has been numerically
confirmed by us in d = 2 [15, 21] and subsequently also
settled to be valid in d = 1 [29].

In our studies, we extracted the values of the char-
acteristic length from the decay of the equal-time two-
point correlation function

C(�r, t) = 〈sisj〉 − 〈si〉〈sj〉, (6)

where 〈. . . 〉 stands for an average over different initial
(disordered) configurations and time evolutions and �r
is the distance between the locations of the spins si

and sj . To get an appropriate estimate of �(t), we take
the intersection of C(r, t) (= C(�r, t) averaged over all
directions) with a constant value c ∈ (0, 1) (we choose
c = 0.5). This method is rather involved and has the
drawback that for an efficient calculation of the corre-
lation function, one has to make use of a fast Fourier
transform [30, 31] to calculate 〈sisj〉.

In Fig. 2, we show the characteristic length for the
d = 2 LRIM with σ = 0.6, 0.7, 0.8, and 1.5. The sys-
tem was prepared in a disordered configuration and
quenched to T = 0.1Tc(σ) as explained above. Here,
we present new data for large systems of linear size
up to L = 4096 and average over 50 independent time
evolutions. For the values of σ that are in the long-
range regime, a growth with α = 1/(1+σ) is expected,
whereas for σ > 1, one expects α = 1/2. As can be seen
from the log-log plots of this figure, the data are con-
sistent with this prediction depicted by the black solid

lines. This is a reconfirmation of our results previously
reported for up to L = 2048 [15, 21].

3.2 Magnetization

In the paramagnetic phase in equilibrium, one triv-
ially has 〈m(T )〉 = 0 since the entropic contributions
dominate, where m =

∑
i si/V is the usual magnetiza-

tion. Below the critical temperature, in the ferromag-
netic phase, the spontaneous magnetization m0(T ) 
= 0,
i.e., one in practice observes 〈|m(T )|〉 ≈ m0. However,
due to the Z2 symmetry, for finite systems in equilib-
rium, one still in principle has 〈m(T )〉 = 0. In practice,
this is often not observed in equilibrium simulations
for large systems since there is a first-order transition
between the magnetic branches below Tc suppressing
the crossover. During a quench from the paramagnetic
phase to the ferromagnetic phase, m of finite systems
goes for each individual run from the initial magneti-
zation m ≈ 0 in the disordered state1 into one of the
two ordered branches with m = ±m0(T ) (≈ ±1 for low
T ), where the sign is realized randomly for each run.
This means that for the time evolution of the expec-
tation value of the magnetization, one has 〈m(t)〉 = 0.
What is nonzero, however, is the expectation value of
the squared magnetization 〈m(t)2〉 as a function of time
since each individual run still evolves into one of the
magnetization branches.

In Fig. 3, we present these individual time evolutions
of the magnetization following a quench in the ordered
region. In total, we have run 500 independent time evo-
lutions for the d = 1 NNIM, 150 for the d = 1 LRIM,
and 50 for the d = 2 NNIM and LRIM, respectively.
The d = 1 model is shown in (a) for the NNIM and
in (b) for the LRIM with σ = 0.6. Plots (c) and (d)
are the analog plots for d = 2. The quench tempera-
ture was generally chosen to be T = 0.1Tc with the
“exception” of the d = 1 NNIM in (a) where this choice
degenerates to T = 0.2 It is apparent that in most cases,
roughly 50% of the runs choose a positive magnetiza-
tion, whereas the other 50% are negatively magnetized.
The trajectories for all four different systems look very
different. While the time evolutions of the magnetiza-
tion for the d = 1 NNIM more or less resemble a “ran-
dom walk”, the curves for the corresponding LRIM look
much more directed. In some of the simulations, config-
urations occur that get “stuck” into a (strictly speak-
ing meta-stable) striped state configuration as can be
appreciated from the curves that are roughly constant
at m 
= ±1. This is a well-known phenomenon for the
d = 2 NNIM (especially at zero temperature) [34] and
has recently also been investigated in the LRIM [35].

1In simulations, there exists a choice of starting the sim-
ulation using m ≡ 0 (“microcanonical”) or m ≈ 0 (“canon-
ical”). Here we have used m ≈ 0.

2The d = 1 NNIM is only ordered at T = 0, so that
formally Tc = 0. The critical temperature Tc = 2/ ln(1+

√
2)

for the d = 2 NNIM is well known [32]. For the LRIM, there
exist numerical studies in d = 1 [33] and d = 2 [14] from
where we have extracted Tc.
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Fig. 3 Magnetization
m versus time t in d = 1 for
a the NNIM and b the
LRIM with σ = 0.6,
whereas c and d show the
analogous data in d = 2.
For the d = 1 NNIM we
used T = 0 and for all other
cases T = 0.1Tc as our
quench temperature. For
details, see text. Note the
(very) different time scales
of the plots
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We now present an analytic argument for the growth
of the expectation value of the squared magnetization
〈m(t)2〉, which is clearly nonzero from above data. Since
we know that the average linear domain size scales with
time t as �(t) ∼ tα, the average volume of a domain
scales in d dimensions as

Vd(t) ∼ �(t)d ∼ tdα, (7)

so that the average number of domains in a total volume
V = Ldis given by

Nd(t) ∼ V/Vd(t) ∼ (L/�(t))d. (8)

Next, assume that a configuration at time t consists of
Nd(t)domains of linear sizes �d whose mean is �(t) such
that Nd(t)�(t)d ∼ V. This can be achieved by writing
the probability distribution P (�d, t) of linear domain
sizes �d in the dynamical scaling form

P (�d, t) = �(t)−1f(�d/�(t)) (9)

where the scaling function f (x ) satisfies
∫ ∞
0

dxf(x) = 1
and 〈x〉 ≡ ∫ ∞

0
dxxf(x) = 1. The first condition implies

that P (�d, t) is normalized to unity and the second
condition leads to the desired property that

〈�d(t)〉 ≡
∫ ∞

0

d�d�dP (�d, t) = 〈x〉�(t) = �(t).

(10)

Higher-order moments scale similarly with �(t) as

〈�d(t)n〉 ≡
∫ ∞

0

d�d�
n
dP (�d, t) = 〈xn〉�(t)n. (11)

The total magnetization M(t) = V m(t) results by sum-
ming up the Nd(t)contributions

Md = ±Vdm0, (12)

where the sign ±1is random and it is assumed that each
domain has already equilibrated locally to the spon-
taneous magnetization density m0(T )at T < Tc.Due
to the random sign, M(t) =

∑Nd
i=1 Md of each time

evolution is equally likely positive or negative so that
〈M〉(t) = 0. For the squared magnetization, all contri-
butions add up and by a random-walk argument (with
M (t) playing the role of the end-to-end distance), one
obtains 〈M(t)2〉 = Nd〈M2

d〉. Using Vd ∼ �d
d and (11)

gives

〈M(t)2〉 ∼ Ndm
2
0〈x2d〉�(t)2d ∼ V m2

0�(t)
d (13)

which implies for m(t) = M(t)/V

〈m(t)2〉 ∼ m2
0

�(t)d

V
∼ m2

0

tdα

V
. (14)

This result confirms that the squared magnetization is
zero in the limit V → ∞, as one would expect for
a global quantity. It is the amplitude of the leading
finite-size scaling correction that carries the signature of
the growing length scale. Note that a similar power-law
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Fig. 4 Shown is V 〈m(t)2〉
versus t after a quench into
the ordered phase in d = 1
for a the NNIM and b the
LRIM with σ = 0.6. The
other panels c and d show
analogous data for d = 2
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scaling behavior is known from the critical short-time
dynamics following a quench from a disordered initial
state with vanishing magnetization to the critical point
of a system: 〈m(t)2〉 ∼ t(d−2β/ν)/z/V where β and ν are
the critical exponents of the magnetization and correla-
tion length, respectively, and z is the dynamical critical
exponent [36, 37]. Putting formally β/ν = 0 for a non-
critical quench to temperatures below the critical tem-
perature and identifying 1/z = α with its non-critical
value, Eq. (14) is recovered. Even though the physical
situations are quite different, the origin of the similar
scaling behavior can be traced to the applicability of
the random-walk argument (or central limit theorem)
in both cases.

The simplest but unrealistic realization of the
dynamic scaling function in (9) would be f(x) = δ(x−1)
(with 〈xn〉 = 1) which corresponds to assuming that
all Nd domain sizes are equal, �d = �(t), so that the
random-walk picture assumes its simplest form. A pure
exponential, f(x) = e−x (with 〈xn〉 = n!), is clearly a
more realistic ansatz. Empirically an even better choice
[38] is the double exponential f(x) = a(e− 2ax

a+1 −e− 2ax
a−1 ),

parameterized by the constant a. For a = 2, it
fits numerical data for the two-dimensional nearest-
neighbor Blume–Capel model very well [38]. For this
parameter choice, f (x ) steeply increases for small x as
16x/3, develops a peak at xmax = (3/8) ln 3 of height
fmax = 4/(3

√
3), and for large x decays exponentially

as 2e−4x/3. Recall that the Blume–Capel model is a
spin-1 model with si = ±1 and 0, where the vacancies
si = 0 can be suppressed by a large crystal-field cou-
pling so that in this limit the model becomes equivalent
to the Ising model.

A simpler, less microscopic argument goes as follows.
The dynamical scaling properties of the coarsening pro-
cess imply in general that C(�r, t) depends only on
the scaling variable �r/�(t) but not on �r and t sepa-
rately. This in turn implies that the structure factor,
its Fourier transform S(�k, t) =

∫
d�rC(�r, t)ei�k�r, exhibits

the dynamic scaling behavior S(�k, t)/�(t)d = f(�k�(t)).
Since this does not depend on t as k → 0 and a
direct calculation yields the usual result S(�k = �0,
t) = V 〈m(t)2〉 (recall that 〈m〉 = 〈si〉 = 0), one con-
cludes that 〈m(t)2〉 ∼ �(t)d/V , in agreement with the
prediction (14) based on microscopic arguments.

We now check the prediction in Eq. (14) numerically:
The upper two subplots of Fig. 4 show V 〈m(t)2〉 versus
t in d = 1 after a quench to (a) T = 0 for the NNIM and
(b) T = 0.1Tc for the LRIM with σ = 0.6. The other
subplots (c) and (d) show the analogous data for d = 2.
Here, instead of 〈m(t)2〉, we have plotted V 〈m(t)2〉
to check for the predicted prefactor in (14). The factor
m2

0 is non-universal and dependent on temperature. We
find in all cases that the data for different system sizes
collapse reasonably well onto each other, confirming the
prefactor of the prediction. In particular they agree well
with the predicted time dependence drawn as a solid
line with the theoretical slope (and adjusted ampli-
tude). Furthermore, adapting the recipe of Ref. [39],
we have verified that least-square fits using the ansatz
V 〈m(t)2〉 = atdα provide estimates for the growth expo-
nent α that are compatible with the theoretical expecta-
tions within a few percent accuracy. Details of this quite
elaborate fitting exercise are discussed in the Appendix.

The big advantage of analyzing 〈m(t)2〉 is of course
that this is extremely easy to calculate compared to
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the rather involved estimation of �(t) via the correla-
tion function. When compared to the estimation of �(t)
via counting the spin sign-changes it is not (overly) sen-
sitive to single thermally excited spins, either. One of
the drawbacks is, however, that this quantity has sig-
nificantly larger error bars.

4 Conclusion

We have investigated the behavior of the (squared)
magnetization following a quench from a disordered
state into the ordered phase, which is an often over-
looked quantity during coarsening. While for finite sys-
tems of size V = Ld, the average magnetization is zero,
the average squared magnetization carries the signature
of growing domains. Using analytical arguments, it is
shown that 〈m(t)2〉 ∼ �(t)d/V , i.e., the squared mag-
netization may be used as an alternative observable to
quantify the coarsening of domains. The predicted time
dependence is verified numerically in d = 1 and d = 2
both for the NNIM and the LRIM with σ = 0.6. We
also confirm the prefactor 1/V of the growth, validat-
ing our prediction. Additionally, we have also presented
new data for the growth of the characteristic length �(t)
itself for the d = 2 LRIM with σ = 0.6, 0.7, 0.8, and
1.5 for system sizes up to L = 4096 using for �(t) the
standard definition from the intercept of the equal-time
two-point correlation function (with c = 0.5). It would
be interesting to investigate the time dependence of the
squared magnetization in other coarsening systems such
as the XY model both in the short-range and long-range
variant.
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Appendix: Growth exponent α
from least-square fitting

While the layout of our study primarily targeted on a
qualitative confirmation of the predicted scaling behav-
ior, we eventually also attempted to perform least-
square fits to the data assuming the expected asymp-
totic functional dependence V 〈m(t)2〉 = atdα and
�(t) = atα, which amounts to linear two-parameter fits.

We compared the results of fits with equal spacings
in t and ln t. Because logarithmic spacings give auto-
matically a uniform weight to the data over the full fit
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Table 1 Summary of fitted growth exponents α using the ansatz V 〈m(t)2〉 = atdα respectively �(t) = atα (last line)

Model L tmin,max dof α ln(a) χ2
r αmin αmax αav

1D NNIM 16,384 102, 106 36 0.506(5)[9] 1.01(5) 0.33 0.497 0.507 0.505

1D LRIM 32,768 60, 3000 14 0.62(3)[6] 3.7(2) 0.12 0.579 0.683 0.627

2D NNIM 2048 103, 106/2 24 0.49(1)[1] 1.89(12) 0.24 0.475 0.495 0.487

2D LRIM 2048 10, 103 17 0.63(2)[2] 5.46(16) 0.056 0.612 0.649 0.628

2D LRIM 4096 10, 103 17 0.64(2)[1] 4.94(20) 0.002 0.637 0.646 0.642

2D LRIM 4096 10, 103 13 0.644(1)[8] 0.862(4) 0.18 0.636 0.650 0.645

The numbers in square brackets [ . . . ] indicate the systematic error due to the choice of the fit interval (read off from the

last 3 columns). χ2
r stands short for χ2/dof

interval, we finally opted for this latter choice using 10
t values per decade (we have explicitly checked that
using 20 or more t values per decade does not signif-
icantly alter the parameter estimates). All fit results
reported below refer to this case if not otherwise indi-
cated. Another advantage of the logarithmic spacing is
that the used t values are naturally widely spaced (in
particular for larger t), so that correlations of the data
for closeby times do not play such a prominent role
(of course, for a high-precision study, one could deal
with such correlations by jackknife blocking techniques
which are, however, rather laborious and hence left for
future work).

For both considered quantities, one expects correc-
tions to asymptotic scaling for small times t and finite-
size corrections for large times. Since these corrections
are not taken into account in the fit ansatz, we have
estimated their influence on the parameter estimates
by systematically varying both ends of the fit interval
t ∈ [tmin, tmax] over a rather wide range.

In the following, we go through the data presented in
Fig. 4a–d point by point:

(a) 1D NNIM:
For the largest considered lattice size L = 16384, we

obtain from a fit over t ∈ [102, 106] with 36 degrees
of freedom (dof) covering 4 decades in t the estimates
α = 0.506(5), ln(a) = 1.01(5), a = 2.76(12) with chi-
squared value per dof, χ2/dof = 0.33. Using for compar-
ison equally spaced t values with Δt = 2500 in the same
fit interval (with 397 dof) yields the compatible esti-
mates of α = 0.508(4), ln(a) = 0.98(5), a = 2.67(12)
with χ2/dof = 0.035 (note that since for equally spaced
t the spacing is much finer, the χ2/dof value is stronger
affected by the data correlations).

By varying the boundaries tmin and tmax of the fit
interval over the range tmin = 100, 200, . . . , 1000 and
tmax = 100000, 200000, . . . , 1000000, the estimates of
α from the 100 fits vary between αmin = 0.497 and
αmax = 0.507, with an average of αav = 0.505. Thus,
quoting α = 0.506(5)[9] (where the number “[9]” in
square brackets roughly indicates the systematic uncer-
tainty) is a rather conservative estimate agreeing with

the theoretically expected value of α = 1/2 within 2–3%
accuracy. All estimates of α are collected in Table 1.

(b) 1D LRIM (σ=0.6):
A glance on the data for the 1D LRIM in Fig. 4b

shows that here the situation is more difficult. In par-
ticular, the finite-size corrections creep in much more
gradually than for the 1D NNIM and even for the large
lattice size L = 32768 they obviously start to become
important already for t ≈ 5×103. This limits the avail-
able asymptotic fitting range substantially. A quite con-
servative fit interval is t ∈ [60, 3000], still covering
more than 1.5 decades in t . This gives α = 0.62(3),
ln(a) = 3.7(2), a = 41(7) with an acceptable χ2/dof
= 0.12 for 14 dof.

Varying the fit boundaries tmin = 20, 30, . . . , 100
and tmax = 1000, 2000, . . . , 5000, we obtain from the
90 fits αmin = 0.579, αmax = 0.683, and αav = 0.627.
The large spread in α reflects that for the 1D LRIM
the asymptotic regime can hardly be identified. As final
result we quote α = 0.62(3)[6]. The agreement with the
theoretical prediction α = 1/1.6 = 0.625 is (apparently)
excellent, but this should be taken with great care since
the overall uncertainty of about 15% is relatively high
in this case.

(c) 2D NNIM:
For the L = 2048 data, a fit over t ∈ [1000, 500000]

covering 2.5 decades in t yields the estimates α =
0.49(1), ln(a) = 1.89(12), a = 6.62(85) with χ2/dof
= 0.24 for 24 dof.

Varying the fit boundaries tmin = 100, 200, . . . ,
1000 and tmax = 100000, 150000, . . . , 500000, we get
from the 90 fits αmin = 0.475, αmax = 0.495, and
αav = 0.487. Our final estimate α = 0.49(1)[1] hence
verifies the theoretical prediction α = 1/2 with an over-
all accuracy of 4%.

(d) 2D LRIM (σ=0.6):
For the 2D LRIM, the data for the largest lattice

size L = 4096 shown in Fig. 4d looks somewhat off the
trend for the smaller lattices. We have checked that this
behavior is reproduced when averaging over different
start configurations and time evolutions (and also when
employing a completely independent computer code).
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We therefore analyzed here L = 2048 and L = 4096
separately, and in the latter case extracted α also from
the scaling of the characteristic length �(t) for compar-
ison.

For L = 2048, a fit over t ∈ [10, 1000] covering 2
decades in t gives the estimate α = 0.63(2), ln(a) =
5.46(16), a = 235(40) with a rather small χ2/dof =
0.056 for 17 dof.

Varying the fit boundaries tmin = 5, 10, . . . , 50 and
tmax = 500, 600, . . . , 1000, we obtain from 60 fits
αmin = 0.612, αmax = 0.649, and αav = 0.628. The
final estimate α = 0.63(2)[2] agrees well with the pre-
diction α = 1/1.6 = 0.625 with an accuracy of about
6%.

For L = 4096, a fit over the same range t ∈ [10, 1000]
yields α = 0.64(2), ln(a) = 4.94(20), a = 140(30) with
an even smaller χ2/dof = 0.002 for 17 dof.

Varying here the fit boundaries over a larger range,
tmin = 5, 10, . . . , 100 and tmax = 500, 600, . . . , 2000,
the 320 fits yield αmin = 0.637, αmax = 0.646, and
αav = 0.642. As final estimate, we quote α = 0.64(2)[1]
with an accuracy of about 4–5%.

Thus, also for the L = 4096 data, the scaling expo-
nent α turns out to be consistent with the theoretical
prediction α = 0.625, which supports the visual impres-
sion of Fig. 4d that the L = 4096 data are mainly
shifted vertically compared to the smaller lattices.

Characteristic length �(t): For the 2D LRIM with
σ = 0.6, we have also performed fits to the hitherto
unpublished data of �(t) for L = 4096 shown in Fig. 2.
For comparison with the magnetization data, we chose
the same fit interval t ∈ [10, 1000]. This fit gives α =
0.644(1), ln(a) = 0.862(4), a = 2.37(1) with χ2/dof
= 0.18 for 13 dof. The estimate for α is compatible
with that from the magnetization data, but in units
of the here much smaller statistical error, it is quite
a bit larger than the theoretically expected value of
α = 1/1.6 = 0.625.

Varying here the fit boundaries tmin = 10, 20, . . . ,
100 and tmax = 500, 600, . . . , 1000, we get from the
60 fits αmin = 0.636, αmax = 0.650, and αav =
0.645. As conservative final estimate, one may take
α = 0.644(1)[8], which appears rather accurate (0.16%
statistical and 1.25% systematic error, 1.5% total uncer-
tainty)—but within error bars it is clearly off the theo-
retical expectation (the deviation from the theoretical
prediction α = 1/1.6 = 0.625 is 3.0%). However, com-
pared to α = 0.63(2)[2] and α = 0.64(2)[1] from the
magnetization data for L = 2048 and L = 4096, the
estimate of α extracted from �(t) is fully compatible.
Mainly due to the much smaller statistical error by a
factor of about 10–20, it appears much less compatible
with the theoretical value.

Our raw data clearly show that the relative errors
of the magnetization decrease with t , whereas for �(t)
obtained via the correlation function they do increase
with t . We have determined �(t) only for the 2D LRIM,
but the observed trend should be general. In error

weighted fits, this gives for the magnetization implic-
itly a higher weight to the asymptotic region of large
times t .

On an absolute scale, the statistical errors for �(t)
are, however, considerably smaller (which is consistent
with the apparent better accuracy of the α estimate
from �(t)): For the 2D LRIM with L = 4096 a factor
of ≈ 10 at time t = 1000 and ≈ 100 for small times
t � 100−200.

We hence conclude that estimating the growth expo-
nent α from the characteristic length scale �(t) is (to our
own surprise) not more reliable than using the magne-
tization, which is much easier to measure. Even though
the raw data for �(t) are much more precise, the system-
atic uncertainties due to neglected corrections for small
and large t are of the same order as for the magnetiza-
tion and apparently harder to control. Overall this does
not permit a more reliable estimate of α from �(t).
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