
Eur. Phys. J. B (2020) 93: 79
https://doi.org/10.1140/epjb/e2020-100535-0 THE EUROPEAN

PHYSICAL JOURNAL B
Regular Article

Massively parallel simulations for disordered systems?

Ravinder Kumar1,2, Jonathan Gross1, Wolfhard Janke1, and Martin Weigel2,a

1 Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany
2 Centre for Fluid and Complex Systems, Coventry University, Coventry CV1 5FB, UK

Received 31 October 2019 / Received in final form 28 February 2020
Published online 4 May 2020
c© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature,

2020

Abstract. Simulations of systems with quenched disorder are extremely demanding, suffering from the
combined effect of slow relaxation and the need of performing the disorder average. As a consequence, new
algorithms and improved implementations in combination with alternative and even purpose-built hardware
are often instrumental for conducting meaningful studies of such systems. The ensuing demands regarding
hardware availability and code complexity are substantial and sometimes prohibitive. We demonstrate how
with a moderate coding effort leaving the overall structure of the simulation code unaltered as compared to
a CPU implementation, very significant speed-ups can be achieved from a parallel code on GPU by mainly
exploiting the trivial parallelism of the disorder samples and the near-trivial parallelism of the parallel
tempering replicas. A combination of this massively parallel implementation with a careful choice of the
temperature protocol for parallel tempering as well as efficient cluster updates allows us to equilibrate
comparatively large systems with moderate computational resources.

1 Introduction

Four or five decades of a concerted research effort notwith-
standing, systems with strong disorder such as spin
glasses and random-field systems [1,2] are still puzzling
researchers with a fascinating range of rich behaviors
that are only partially understood. Examples include the
nature of the spin-glass phase in low dimensions [3,4],
universality and dimensional reduction at critical points
[5–7], as well as dynamic phenomena such as rejuvenation
and aging [8,9]. While mean-field theory and perturba-
tion expansions for finite dimensions have set the stage
for the field [10,11], a lot of the progress in recent years
has been through extensive numerical work, mostly in
the form of Monte Carlo simulations [12] and ground-
state calculations relying on combinatorial optimization
techniques [13]. While hence computational methods have
had a pivotal role in improving our understanding of sys-
tems with strong disorder, simulations of such systems are
far from technically straightforward. Due to the rugged
free-energy landscape [14] with a multitude of minima sep-
arated by energy barriers standard approaches utilizing
local updates such as single-spin flip Metropolis or heat-
bath algorithms are only able to equilibrate the tiniest of
samples, and generalized-ensemble techniques have more

? Contribution to the Topical Issue “Recent Advances in the
Theory of Disordered Systems”, edited by Ferenc Iglói and
Heiko Rieger.

a e-mail: martin.weigel@gmail.com

recently always been used for simulating spin glasses, in
particular, see, e.g., references [3,15–20].

Parallel tempering or replica-exchange Monte Carlo has
established itself as de facto standard for equilibrium sim-
ulations of spin-glass systems [21,22]. The main difficulty
there relates to the choice of the temperature and sweep
protocols for the method in order to achieve optimal
(or at least acceptable) mixing behavior of the overall
Markov chain. A number of schemes to this end have
been proposed in the past [23–26]. The basic methods use
fixed temperature sequences following (inversely) linear
or exponential progressions, but in many cases these lead
to far from optimal performance. Adaptive approaches
[23–25] move the temperature points and set the sweep
numbers in such a way as to dynamically optimize the
mixing behavior of the chain, but they typically require
rather extensive pre-runs to establish the best parameters.
Below we describe and discuss a compromise approach
that uses a family of temperature protocols that can be
optimized for the problem studied with moderate effort. It
is worthwhile noting that more recently an alternative to
parallel tempering known as population annealing [27,28]
has gained traction for simulations of disordered systems
[4,20,29,30], especially since it is particularly well suited
for parallel and GPU computing [31]. In the present paper,
however, we focus on the more traditional setup using
replica-exchange Monte Carlo.

While parallel tempering has been able to speed up
spin-glass simulations dramatically, they still suffer from
slow dynamics close to criticality and throughout the

https://epjb.epj.org/
https://doi.org/10.1140/epjb/e2020-100535-0
mailto:martin.weigel@gmail.com


Page 2 of 13 Eur. Phys. J. B (2020) 93: 79

ordered phase. Further relief could potentially be expected
from approaches alike to the cluster updates that have
proven so successful for the simulation of pure or weakly
disordered systems [32–35]. While these methods can be
generalized quite easily to the spin-glass case [36,37],
the resulting algorithms typically result in clusters that
percolate in the high-temperature phase, way above the
spin-glass transition, and hence such updates are not effi-
cient [38]. For the case of two dimensions, a cluster method
that exchanges clusters between pairs of replicas and thus
operates at overall constant energy turns out to be efficient
if combined with local spin flips and parallel tempering
[16]. In three dimensions, however, also this approach
is affected by the early percolation problem, although
recently a manual reduction of the effective cluster size has
been proposed as an ad hoc way of alleviating this prob-
lem [39]. Similar cluster updates have also been discussed
for the case of systems without frustrating interactions,
but in the presence of random fields [40].

Even with the best algorithms to hand relaxation times
remain daunting, and with the simultaneous presence
of strong finite-size corrections to scaling the appetite
of researchers studying systems with strong disorder for
more computing power seems insatiable. As a result, enor-
mous effort has also been invested in the optimization of
implementation details and the utilization of new hard-
ware platforms. One line of research, which is in the tradi-
tion of earlier hardware for spin systems [41], relates to the
design and construction of special-purpose machines based
on field-programmable gate arrays (FPGAs) for simula-
tions of spin glasses and related problems [42,43]. While
this approach has been very successful [3,8,9], the finan-
cial and time effort invested is enormous, and hence the
demand for simpler, off-the-shelf solutions remains strong.
A significant competitor in this context are graphics pro-
cessing units (GPUs) that are able to deliver performances
quite comparable to those of the special-purpose machines
to a much wider audience of users [44]. While GPUs are
more widely available and easier to program than FPGAs,
many of the approaches and code layouts proposed for
efficient simulation of spin glasses on GPUs are very elabo-
rate, using a multitude of advanced techniques to speed up
the calculation [45–48]. In the present paper, instead, we
demonstrate how with very moderate effort and a straight-
forward parallelization of pre-existing CPU code, excellent
performance of spin-glass simulations can be achieved on
GPU.

The remainder of this paper is organized as follows.
In Section 2 we introduce the Edwards-Anderson spin
glass and the parallel tempering method used for its
simulation. Subsequently, we discuss a new parameter-
driven scheme for determining an optimized temperature
schedule. Finally, we shortly describe a cluster simula-
tion method originally proposed for simulations of spin
glasses in two dimensions. Section 3 discusses the con-
siderations relating to our GPU implementation of this
simulation scheme and how it relates to previous spin-glass
simulation codes on GPU. In Section 4 we benchmark
the resulting codes for the Ising spin glass in two and
three dimensions, using discrete and continuous coupling
distributions. Finally, Section 5 contains our conclusions.

2 Model and methods

2.1 Edwards-Anderson spin glass

While methods very similar to those discussed here can
be used for simulations of a wide range of lattice spin
systems, for the sake of definiteness we focus on the case of
the Edwards-Anderson spin-glass model with Hamiltonian
[49]

H = −
∑
〈i,j〉

Jijsisj −H
∑
i

si, (1)

where si = ±1, i = 1, . . . , N = Ld, are Ising spins on a
d-dimensional lattice chosen in the present work to be
square or simple cubic, applying periodic boundary con-
ditions. The couplings Jij are quenched random variables
which for the examples discussed here are drawn from
either a standard normal distribution or from the discrete
bimodal,

P (Jij) = pδ(Jij − 1) + (1− p)δ(Jij + 1). (2)

In zero field, the system undergoes a continuous spin-
glass transition in three dimensions [50,51], while there
is compelling evidence for a lack of spin-glass order in
two-dimensional systems [52].

Two of the basic quantities we consider are the internal
energy per spin,

e =
1

N
[〈H({si})〉], (3)

where 〈·〉 denotes a thermal and [·] the disorder average,
as well as the Parisi overlap parameter [53,54],

q =

[〈
1

N

∑
i

s
(1)
i s

(2)
i

〉]
, (4)

which takes a non-zero value in the spin-glass (but also

in a ferromagnetic [55]) phase. Here, s
(1)
i and s

(2)
i denote

the spins of two independent systems with the same disor-
der configuration but different stochastic time evolutions
simulated in parallel.

2.2 Parallel tempering simulations

While for simpler systems single-spin flip simulations
using, for instance, the transition probabilities proposed
by Metropolis et al. [56] are sufficient to approach station-
arity of the Markov chain, this is much more difficult for
problems with strong disorder exhibiting a rugged (free)
energy landscape as schematically depicted in Figure 1.
At temperatures where the typical energy is below that
of the highest barriers, simulations with local, canonical
dynamics are not able to explore the full configuration
space at reasonable time scales and instead get trapped in
certain valleys of the (free) energy landscape. The parallel
tempering approach [21] attempts to alleviate this prob-
lem by the parallel simulation of a sequence of replicas

https://epjb.epj.org/


Eur. Phys. J. B (2020) 93: 79 Page 3 of 13

Fig. 1. Schematic representation of the rugged energy land-
scape of a system with strong disorder such as a spin glass.

of the system running at different temperatures. Through
equilibrium swap moves of replicas usually proposed for
adjacent temperature points, copies that are trapped in
one of the metastable states at low temperatures can
travel to higher temperatures where ergodicity is restored.
Continuing their random walk in temperature space, repli-
cas ultimately wander back and forth between high and
low temperatures and thus explore the different valleys
of the landscape according to their equilibrium weights.
More precisely, the approach involves simulating NT repli-
cas at temperatures T0 < T1 < · · · < TNT−1. As is easily
seen, in order to satisfy detailed balance the proposed
swap of two replicas running at temperatures Ti and Tj
should be accepted with probability [21]

pacc = min
[
1, e(1/Ti−1/Tj)(Ei−Ej)

]
, (5)

where Ei and Ej denote the configurational energies of the
two system replicas. If the swap is accepted, replica i will
now evolve at temperature Tj and replica j at tempera-
ture Ti. On the technical side, it is clear that this can be
seen, alternatively, as an exchange of spin configurations
or as an exchange of temperatures. While the method does
not provide a magic bullet for hard optimization prob-
lems where the low lying states are extremely hard to find
(such as for “golf course” type of energy landscapes) [57],
it leads to tremendous speed-ups in simulations of spin
glasses in the vicinity and below the glass transition, and
it has hence established itself as the de facto standard
simulational approach for this class of problems.

2.3 Choice of temperature set

The parallel tempering scheme exhibits a number of
adjustable parameters which can be tuned to achieve
acceptable or even optimal performance. These include,
in particular, the temperature set {Ti} as well as the
set {θi} of the numbers of sweeps of spin flips to be
performed at temperature i before attempting a replica
exchange move. In the majority of applications θi = θ is
chosen independent of the temperature point, and there
is some indication that more frequent swap proposals in
general lead to better mixing, such that swaps are often
proposed after each sweep of spin flips (for some theo-
retical arguments underpinning this choice see Ref. [58]).

Fig. 2. Schematic illustration of the canonical energy his-
tograms at different temperatures. For parallel tempering to
work efficiently, all pairs of neighboring temperatures need to
have sufficient histogram overlap, such as for the temperatures
T0, T1 and T2 shown here. Temperature T3, on the other hand,
does not provide sufficient overlap with the simulation at T2,
leading to a poor acceptance rate for the exchange moves.

Simple schemes for setting the temperature schedule that
have been often employed use certain fixed sequences such
as an inversely linear temperature schedule, corresponding
to constant steps in inverse temperature β, or a geometric
sequence where temperatures increase by a constant fac-
tor at each step [26,59]. For certain problems these work
surprisingly well, but there is no good way of knowing a
priori whether this will be the case for a given system.

In order to minimize bias (systematic error) and statis-
tical error, it is clear that the optimal temperature and
sweep schedules will result in minimal relaxation times
into equilibrium and decorrelation times in equilibrium.
As these times are relatively hard to accurately determine
numerically [60], and they also depend on the observables
considered, it is convenient to instead focus on the mini-
mization of the round-trip or tunneling time τtunnel, i.e.,
the expected time it takes for a replica to move from the
lowest to the highest temperature and back, which is a
convenient proxy for the more general spectrum of decor-
relation times. The authors of reference [24] proposed a
method for rather directly minimizing τtunnel by placing
temperatures in a way that maximizes the local diffusiv-
ity of replicas, but the technique is rather elaborate and
the numerical differentiation involved can make it difficult
to control. As the random walk of replicas in tempera-
ture space immediately depends on the replica exchange
events, it is a natural goal to ensure that such swaps occur
with a sufficient probability at all temperatures [59]. It is
clear from equation (5) that these probabilities correspond
to the overlap of the energy histograms at the adjacent
temperature points, see also the illustration in Figure 2.
Different approaches have been used to ensure a constant
histogram overlap, either by iteratively moving tempera-
ture points [23], or by pre-runs and the use of histogram
reweighting [25]. Interestingly, however, constant overlaps
do not, in general, lead to minimum tunneling times in
cases where the autocorrelation times of the employed
microscopic dynamics have a strong temperature depen-
dence, but optimal tunneling can be achieved when using
constant overlap together with a sweep schedule taking

https://epjb.epj.org/


Page 4 of 13 Eur. Phys. J. B (2020) 93: 79

Fig. 3. Temperature sequence of the family defined through
equations (6) and (7) for Tmin = 0.2 and Tmax = 1.5 with NT =
32 temperature points and different values of the exponent φ.

the temperature dependence of autocorrelation times into
account, i.e., by using θi ∼ τcan(Ti) [25].

While the various optimized schemes lead to signif-
icantly improved performance, the additional computa-
tional resources required for the optimization are rather
substantial, in particular for disordered systems where the
optimization needs to be performed separately for each
disorder sample. As an alternative we suggest to directly
optimize the tunneling times among a suitably cho-
sen family of temperature schedules. The corresponding
family of temperature sequences is given by

Ti = iφTnorm + Tmin, i = 0, . . . , NT − 1, (6)

where φ is a free parameter and

Tnorm =
Tmax − Tmin

(NT − 1)φ
, (7)

and NT as before denotes the number of temperatures.
Clearly, the case φ = 1 corresponds to a linear schedule,
while φ < 1 and φ > 1 result in the temperature spacing
becoming denser towards higher and lower temperatures,
respectively. This is illustrated in Figure 3, where we show
the temperature spacing resulting from different choices of
φ while keeping Tmin, Tmax and NT fixed.

To optimize the schedule we vary the parameters in the
protocol while monitoring the resulting tunneling times.
In the following we demonstrate this for the case of
the Edwards-Anderson spin glass in two dimensions with
Gaussian coupling distribution. We fix Tmax = 1.5, where
the system is very quick to relax at any system size, and
choose Tmin = 0.2 as the lowest temperature we want to
equilibrate the system at. To arrive at reliable estimates
for the tunneling times, simulations need to be in equi-
librium, and we employ the usual logarithmic binning
procedure to ensure this. This is illustrated in Figure 4
for systems of size L = 15 and L = 40, respectively, where
it is seen that the tunneling times equilibrate relatively
quickly as compared to quantities related to the spin-glass
order parameter and so excessively long simulations are
not required for the optimization process. Optimizing the
protocol then amounts to choosing the exponent φ and

Fig. 4. Logarithmically binned time series of tunneling times
of parallel tempering simulations of the 2D Gaussian Edwards-
Anderson model for individual samples of size L = 15 (upper
panel) and L = 40 (lower panel), respectively. Here, a Monte
Carlo step (MCS) refers to one sweep of spin flips for each
replica and one (attempted) replica-exchange move for all
replicas.

the total number NT of temperature points. To keep the
numerical effort at bay we optimize the two parameters
separately. The results of the corresponding simulations
are summarized in Figure 5. As the top panel shows, there
is a rather clear-cut minimum in the tunneling times as a
function of φ that shifts from φ < 1 towards larger values
of φ as the system size L is increased. This trend indi-
cates that for larger systems a higher density of replicas
is required at lower temperatures – a tendency that is in
line with the general picture of spin-glass behavior.

Likewise it is possible to find the optimal number NT
of temperature points. The corresponding data from sim-
ulations at φ = φ∗ for each system size are shown in the
middle panel of Figure 5. It is seen that using too few
temperature points leads to rapidly increasing tunneling
times. This is a consequence of too small histogram over-
laps in this limit. Too many temperature points, on the
other hand, are also found to lead to sub-optimal values
of τtunnel, which is an effect of the increasing number of
temperature steps that need to be traversed to travel from
the lowest to the highest temperature (and back) as NT is
increased. This effect only sets in for relatively large NT ,
however, and as is seen in the middle panel of Figure 5
there is a rather shallow minimum for sufficiently large
numbers of replicas. To find the optimum investment in
computer time, on the other hand, it is useful to also con-
sider the tunneling time in units of (scalar) CPU time,

https://epjb.epj.org/


Eur. Phys. J. B (2020) 93: 79 Page 5 of 13

Fig. 5. Tunnelling times for parallel tempering simulations
with temperature protocol (6) relative to their minimum τ∗tunnel
for each system size as a function of the exponent φ forNT = 32
(upper panel) and NT for the optimized value φ = φ∗ (lower
and bottom panels), respectively.

which is expected to be proportional to NT τtunnel. This is
shown in the bottom panel of Figure 5, where it becomes
clear that the optimal choice in terms of the total com-
putational effort shifts significantly towards smaller NT .
If copies at different temperatures are simulated in paral-
lel, on the other hand, it is more appropriate to consider
the latency instead of the total work, in which case the
choice suggested by the middle panel of Figure 5 is more
relevant.

Good values for φ and NT can be inferred for system
sizes not directly simulated by applying finite-size scal-
ing. In Figure 6 we show the optimal values φ∗ and N∗T
determined from the procedure above as a function of sys-
tem size L. As is seen from the plot, both quantities are
approximately linear in L, and so we perform fits of the
functional form

φ∗(L) = aφ + bφL (8)

Fig. 6. Optimized parameters φ∗ and N∗
T for parallel temper-

ing simulations of the 2D Gaussian Edwards-Anderson spin
glass as a function of linear system size L.

and

N∗T (L) = aNT
+ bNT

L (9)

to the data, resulting in aφ = 0.406, bφ = 0.014 and
aNT

= 0.025, bNT
= 0.644, respectively. We note that on

general grounds [61] we expect that the required num-
ber of temperatures NT grows like Ld/2, and so a steeper
than linear increase of NT is expected in three dimen-
sions. The resulting fits are convenient mechanisms for
predicting good values for the schedule parameters for
larger or intermediate system sizes. We note that both
the curves for φ and NT do not show very sharp minima
in τtunnel, such that the scheme is not extremely sensitive
with respect to the precise choice of parameter values, cf.
the results in Figure 5.

2.4 Cluster updates

Even with the help of parallel tempering it remains hard
to equilibrate the spin-glass systems considered here. An
additional speed-up of relaxation can come from the use
of non-local updates, in particular for the case of sys-
tems in two dimensions. An efficient cluster update for
this case was first proposed by Houdayer [16]. It is sim-
ilar in spirit to the approach suggested much earlier by
Swendsen and Wang [36], but it uses replicas running at
the same temperature. For two such copies with identical
coupling configuration {Jij} the method operates on the
space of overlap variables,

qi = s
(1)
i s

(2)
i . (10)

https://epjb.epj.org/


Page 6 of 13 Eur. Phys. J. B (2020) 93: 79

cf. the definition of the total overlap in equation (4). To
perform an update one randomly chooses a lattice site
i0 with qi0 = −1 and iteratively identifies all neighboring
spins that also have qi = −1, which is most conveniently
done using a breadth-first search. The update then con-
sists in exchanging the spin configuration of all lattice
sites thus identified to belong to the cluster. As is eas-
ily seen, while the energy of both configurations will
potentially change, the total energy E(1) + E(2) remains
unaltered. Hence such moves can always be accepted and
the approach is rejection free. For the same reason it is
clearly not ergodic and it hence must be combined with
another update such as single-spin flips to result in a valid
Markov chain Monte Carlo method. As it turns out, the
clusters grown in this way percolate (only) as the critical
point T = 0 of the square-lattice system is approached,
and as was demonstrated in reference [16] the method
hence leads to a significant speed-up of the dynamics.

To implement this technique in practice, we use the
two replicas of the system at each temperature already
introduced in equation (4). Following reference [16] also
larger numbers of replicas at each temperature could be
used, but in practice we find little advantage of such a
scheme, and it is instead more advisable to invest addition-
ally available computational resources into simulations for
additional disorder realisations. We note that with some
modifications the same approach might also be used for
systems in three and higher dimensions [39], although the
accelerating effect might be weaker there. In total our
updating scheme hence consists of the following steps:

1. Perform Nmetro Metropolis sweeps for each replica
(usually we choose Nmetro = 1).

2. Perform one Houdayer cluster move for each pair of
replicas running with the same disorder and at the
same temperature.

3. Perform one parallel tempering update for all pairs
of replicas running with the same disorder at neigh-
boring temperatures.

In the following, we will refer to one such full update as a
Monte Carlo step (MCS).

The simulation scheme for spin-glass systems described
so far is completely generic, and it can be implemented
with few modifications on a wide range of different archi-
tectures and using different languages. In the following,
we will discuss how it can be efficiently realized on GPUs
using CUDA.

3 Implementation on GPU

From the description of simulation methods in Section 2
it is apparent that a simulation campaign for a system
with strong disorder naturally leads to a computational
task with manifold opportunities for a parallel implemen-
tation: parallel tempering requires to simulate up to a
few dozen replicas at different temperatures, the measure-
ment of the overlap parameter q and the cluster update
mandate to simulate two copies at each temperature, and
finally the disorder average necessitates to consider many
thousands of samples. This problem is hence ideally suited

for the massively parallel environment provided by GPUs.
A number of GPU implementations of spin-glass sim-
ulation codes have been discussed previously, see, e.g.,
reference [44,46–48,62]. In the present work we focus on
a reasonably simple but still efficient approach that also
allows to include an implementation of the cluster updates
that have not previously been adapted to GPU (but see
Ref. [63] for a GPU code for cluster-update simulations of
ferromagnets).

Our implementation targets the Nvidia platform using
CUDA [64], but a very similar strategy would also be suc-
cessful for other platforms and OpenCL [65]. GPUs offer
a hybrid form of parallelism with a number of multipro-
cessors that each provide vector operations for a large
number of light weight threads. Such threads are orga-
nized in a grid of blocks that are independently scheduled
for execution [66,67]. Of crucial importance for achieving
good performance is the efficient use of the memory hier-
archy, and in particular the goal of ensuring locality of
memory accesses of threads in the same block, as well as
the provision of sufficient parallel “slack”, i.e., the avail-
ability of many more parallel threads than can actively
execute instructions on the given hardware simultaneously
[68]. The latter requirement, which is a consequence of the
approach of “latency hiding”, where thread groups wait-
ing for data accesses are set aside in favor of other groups
that have completed their loads or stores and can hence
continue execution without delays, is easily satisfied in the
current setup by ensuring that the total number of replicas
simulated simultaneously is sufficiently large.

To achieve the goal of locality in memory accesses, also
known as “memory coalescence” in the CUDA framework
[66], it is crucial to tailor the layout of the spin config-
urations of different replicas in memory to the intended
access pattern. In contrast to some of the very advanced
implementations presented in references [46–48,62], here
we parallelize only over disorder samples and the repli-
cas for parallel tempering and the cluster update and
hence avoid the use of a domain decomposition and addi-
tional tricks such as multi-spin coding etc. This leads to
much simpler code and, as we shall see below, it still
results in quite good performance. Additionally, it has the
advantage of being straightforward to generalize to more
advanced situations such as systems with continuous spins
or with long-range interactions. To facilitate the imple-
mentation of the replica-exchange and cluster updates,
it is reasonable to schedule the replicas belonging to the
same disorder realization together. We hence use CUDA
blocks of dimension (NT , NC , NR), where NT is the num-
ber of temperatures used in parallel tempering, NC is the
number of replicas at the same temperature used in the
cluster update, and NR denotes the number of distinct
disorder configurations simulated in the same block, cf.
Figure 7 for an illustration. In current CUDA versions, the
total number of threads per block cannot exceed 1024, and
the total number of resident threads per multiprocessor
cannot exceed 2048 (or 1024 for compute capability 7.5).
It is usually advantageous to maximize the total number
of resident threads per multiprocessor, so a block size of
1024 threads is often optimal, unless each thread requires
many local variables which then suffer from spilling from

https://epjb.epj.org/


Eur. Phys. J. B (2020) 93: 79 Page 7 of 13

Fig. 7. Distribution of threads in a thread block for the spin
updates. Each grid point corresponds to a GPU thread, where
each thread deals with a copy of the spin system for a different
combination of temperature Ti, replica number Ci for cluster
updates, and disorder realization Ri.

registers to slower types of memory, but this is not the
case for the present problem. To achieve optimal load, it
is then convenient to choose NT as a power of two and,
given that we always use NC = 2 (cf. the discussion in
Sect. 2.4), we then choose NR = 512/NT . It is of course
also possible to use any integer value for NT and then use
NR = b512/NT c, leading to somewhat sub-optimal perfor-
mance. Overall, we employ NB blocks, leading to a total
of NRNB disorder realizations.

In the Metropolis kernel, each thread updates a sepa-
rate spin configuration, moving sequentially through the
lattice. To ensure memory coalescence, the storage for the
spin configurations is organized such that the spins on the
same lattice site but in different replicas occupy adjacent
locations in memory. Note that for each disorder real-
ization NTNC configurations share the sample couplings,
such that smaller overall array dimensions are required
for accessing the couplings as compared to accessing the
spins. Random-site spin updates can also be implemented
efficiently in this setup while maintaining memory coales-
cence by using the same random-number sequence for the
site selection but different sequences for the Metropolis
criterion (or other update rule) [69]. Random numbers for
the updates are generated from a sequence of inline gener-
ators local to each thread, here implemented in the form
of counter-based Philox generators [70,71].

To keep things as simple as possible, the parallel tem-
pering update is performed on CPU [72]. This does not
require data transfers as only the configurational energies
are required that need to be transferred from GPU to CPU
in any case for measurements. The actual spin configura-
tions are not transferred or copied as we only exchange
the temperatures. Since even for large-scale simulations
no more than a few dozen temperatures are required, this
setup does not create a bottleneck for parallel scaling.
To implement the bidirectional mapping between temper-
atures and replicas we use two arrays. On a successful
replica exchange move the corresponding entries in the two
arrays are swapped. As well shall see below, this leads to
very efficient code and the overhead of adding the parallel
tempering dynamics on top of the spin flips is quite small.

The cluster update as proposed by Houdayer [16] or
any generalizations to higher-dimensional systems [39] are
implemented in the same general setup, but now a single
thread updates two copies as the cluster algorithm oper-
ates in overlap space. The block configuration is hence
changed to (NT , NC/2, NR). Given that the register usage
is not excessive, this decrease can be compensated by
the scheduler by sending twice the number of blocks to
each multiprocessor, such that occupancy remains opti-
mal. Due to the irregular nature of the cluster growth,
however, full coalescence of memory accesses can no longer
be guaranteed, leading to some performance degradation
as compared to the spin-flip kernel. A more profound
problem results from the fact that the cluster updates
discussed in Section 2.4 are of the single-cluster nature,
such that differences in cluster sizes lead to deviations
in run-time between different (pairs of) replicas, such
that part of the GPU is idling, thus reducing the com-
putational efficiency. This problem occurs at all levels,
from fluctuations between disorder configurations, to dif-
ferent cluster sizes at different temperatures, and even
fluctuations in the behavior of different pairs of replicas
running with the same disorder and at the same temper-
ature. This is a fundamental limitation of the approach
employed here, and we have not been able to eliminate
it. Particularly important are the variations with temper-
ature as clusters will be very small at high temperatures
and potentially percolating at the lowest temperatures.
Possible steps towards alleviating this effect could be to
perform several cluster updates in the high-temperature
copies while waiting for the low-temperature ones or a
formal conversion to a multi-cluster variant which, how-
ever, means that all operations on q = +1 clusters (i.e.,
the exchange of spin configurations there) leave the sys-
tems invariant. These problems notwithstanding, however,
the cluster update, if used with moderation where it
does not affect the overall parallel efficiency too strongly,
is still very useful for speeding up the equilibration of
the system.

Finally, measurements are taken at certain intervals
using the same execution configuration, where measure-
ments of single-replica quantities use blocks of dimensions
(NT , NC , NR) and two-replica quantities such as the spin-
glass susceptibility and the modes for the correlation
length use blocks of size (NT , NC/2, NR).

As one step of verification of the correctness of our
implementation, for the two-dimensional case we com-
pared the internal energies as a function of temperature
found after careful equilibration to the exact result
derived from a Pfaffian technique that allows to deter-
mine the partition function on finite lattices [73]. As is
apparent from the comparison performed for a sample
of 500 disorder configurations that is shown in Figure 8
there is excellent agreement, and the simulation data are
compatible with the exact result within error bars.

4 Performance

We assess the performance of the GPU implementation
discussed above via a range of test runs for the Edwards-
Anderson model in two and three dimensions, using both

https://epjb.epj.org/


Page 8 of 13 Eur. Phys. J. B (2020) 93: 79

Fig. 8. Average internal energy per spin from parallel temper-
ing, cluster update simulations of the 2D Edwards-Anderson
spin-glass model with Gaussian couplings implemented on
GPU. The data for a linear system size L = 15 are averaged
over 500 disorder samples. The line shows the exact result as
calculated by the technique described in reference [73].

bimodal and Gaussian couplings. For spin-glass simula-
tions, it usually does not make sense to take very frequent
measurements of observables as there are strong auto-
correlations and the fluctuations induced by the random
disorder dominate those that are of thermal origin [17,74].
Hence the overall run-time of our simulations is strongly
dominated by the time taken to update the configura-
tions. As is discussed below in Section 4.4, the time taken
for the parallel tempering moves is small against the time
required for spin flips and the cluster update, and it also
does not vary between different models, such that we first
focus on the times spent in the GPU kernels devoted to
the Metropolis and Houdayer cluster updates. To compare
different system sizes, we normalize all times to the num-
ber of spins in the system, i.e., we consider quantities of
the form

tupdate =
tkernel

NTNRNCNBLd
, (11)

where tkernel is the total GPU time spent in a given kernel.
The quantity tupdate corresponds to the update time per
replica and spin for the considered operation. All bench-
marks discussed below were performed on an Nvidia GTX
1080, a Pascal generation GPU with 2560 cores distributed
over 20 multiprocessors, and equipped with 8 GB of RAM.
We expect the general trends observed to be independent
of the specific model considered, however.

4.1 Two-dimensional system with bimodal couplings

For the case of a bimodal coupling distribution, Jij = ±J ,
we store the couplings in 8-bit wide integer variables.
For our benchmarks we choose the symmetric case, i.e.,
p = 1/2 in equation (2). Considering the time spent in
the Metropolis and cluster-update kernels separately, we
first study how the spin-update times evolve as the sys-
tems relax towards equilibrium. In Figures 9a and 9d we
show how the normalized times according to equation (11)
develop with the number of Monte Carlo steps (MCS) for
the Metropolis and cluster-update kernels, respectively.

It is clear that for both updates, the run times per step
converge relatively quickly, such that after approximately
27 = 128 steps the normalized update times are suffi-
ciently close to stationary. We note that in the present
configuration, the normalized times taken for the clus-
ter update are about 2–5 times larger than those for the
single-spin flips.

As discussed above in Section 3, the size of thread
blocks should be optimized to result in good performance.
Often, best results are achieved for cases of optimal occu-
pancy [68], but memory considerations can sometimes
shift the corresponding optima. Occupancy plays the key
role for the Metropolis kernel as is seen in Figure 9b
which shows tupdate as a function of the number NB
of thread blocks. As discussed above, NT , NC and NR
were chosen to result in blocks of 1024 threads. The
limit of 2048 simultaneously resident threads per multi-
processor means that at most two blocks can be active
on each of the 20 multiprocessors of the GTX 1080 card.
As a consequence, the best performance is achieved for
NB = 40 and its multiples, with a sub-dominant mini-
mum at NB = 20. For the cluster update this structure
is absent, cf. Figure 9e. This is mostly a consequence of
the lack of memory coalescence resulting from the clus-
ter algorithm: while in the Metropolis update adjacent
threads in a block access adjacent spins in memory, the
cluster construction starts from a random lattice site and
proceeds in the form of a breadth-first search, resulting in
strong thread divergence. Our simulations are hence per-
formed at NB = 40 which is the dominant minimum for
the Metropolis kernel and which is also within the broad
minimum for the cluster update.

The lattice-size dependence of GPU performance for
the 2D bimodal model is shown in Figures 9c and 9f.
As is seen from Figure 9c the smaller system sizes show
slightly smaller spin-flip times than the larger ones. This
again is an effect of memory coalescence that is greater for
smaller systems where several rows of spins fit into a sin-
gle cache line. For the cluster update, on the other hand,
the decrease of spin-flip times with increasing system size
seen in Figure 9f is an effect of the normalization accord-
ing to equation (11): in each update only a single cluster
is grown and the cluster size depends on temperature but
only weakly on system size, such that the normalization
by 1/L2 leads to a decay of tupdate with L.

4.2 Two-dimensional system with Gaussian couplings

Representative of simulations of systems with a continu-
ous coupling distribution we consider the case of Gaussian
couplings. The code for this case is very similar to the one
for discrete couplings with the difference that now the
couplings are stored in 32-bit floating-point variables. We
again run a range of benchmark simulations. The results
are summarized in Figure 10, showing the timings for
the Metropolis kernel in Figures 10a–10c, and those for
the cluster update in Figures 10d–10f. Overall, the results
are similar to those obtained for the 2D ±J model, but
the updating times are in general somewhat larger for
the Gaussian system since the floating-point operations
involved in evaluating the Metropolis criterion are more

https://epjb.epj.org/


Eur. Phys. J. B (2020) 93: 79 Page 9 of 13

Fig. 9. Timing data for simulations of the 2D ±J Edwards-Anderson model on the Nvidia GTX 1080 GPU. (a)–(c) show the
time per spin and update spent in the Metropolis kernel, while (d)–(f) represent the time spent in the cluster-update kernel.

Fig. 10. Updating times for GPU simulations of the 2D Gaussian Edwards-Anderson model on the GTX 1080 GPU. Panels
(a)–(c) are for the Metropolis kernel, while panels (c)–(f) relate to the cluster update.

expensive than the integer arithmetic required for the
bimodal system. The times for the Metropolis update are
almost independent of system size, clearly showing that
the increased coalescence that was responsible for higher
performance on smaller systems in the bimodal system is
no longer relevant here as more time is spent on fetching
the couplings and evaluating the acceptance criterion.

4.3 Three-dimensional system with bimodal couplings

We finally also considered the system with bimodal cou-
plings in three dimensions, where the higher connectivity
and related general reduction in memory coalescence leads
to an overall increase in spin-flip times in the Metropolis

kernel, cf. Figures 11a–11c. The optimum point of per-
formance at NB = 40 remains unaltered, and the overall
single-spin flip times are very nearly independent of sys-
tem size, see Figure 11c. The cluster update, on the other
hand, appears to be performing very differently from the
2D cases, cf. Figures 11d–11f. In particular, we observe
that the normalized time spent in the cluster-update ker-
nel does no longer decrease with increasing L, but remains
constant beyond L & 8, see Figure 11f. This is an effect
of the cluster algorithm itself, however, and not a short-
coming of the presented implementation: at least without
further modifications in the spirit of the proposal put
forward in reference [39] the clusters grown by the con-
struction introduced by Houdayer [16] start to percolate at

https://epjb.epj.org/


Page 10 of 13 Eur. Phys. J. B (2020) 93: 79

Fig. 11. Timing data for GPU simulations of the 3D Edwards-Anderson model with bimodal couplings.

temperatures significantly above the spin-glass transition
point [38,39]. As the times shown in Figure 11f are effec-
tively an average over the replicas running at all the differ-
ent temperatures considered, the updating times per spin
approach a constant. Here, we do not explicitly attempt
to improve the percolation properties of the update itself,
but it is clear that our GPU implementation allows such
modifications without compromising its performance.

4.4 Cost of the parallel tempering step

As discussed above in Section 3, the replica-exchange
moves in our code are performed on GPU after transfer-
ring the data for the energies from GPU to CPU. While
this might seem wasteful, the simplicity of the resulting
code appears very attractive if only there is no signifi-
cant performance penalty associated with this approach.
To check whether this is the case we show in Figure 12
the updating time for the parallel tempering step for the
2D bimodal system which, according to equation (11) is
again normalized to a single spin to make the result com-
parable to the data shown in Figures 9, 10 and 11. It is
clear that for the larger system sizes, where most of the
resources for a simulation campaign would be invested,
the cost of the replica-exchange steps is small compared
to the time spent on updating spins. While the data shown
are specifically recorded for simulations of the 2D bimodal
Edwards-Anderson model, the time taken for the swap
moves only depends on the number of temperature points
and it is thus independent of the specific system under
consideration, such that the conclusion of negligible cost
of the parallel tempering holds even more for the compu-
tationally more expensive simulations of the 2D Gaussian
and 3D spin-glass models.

4.5 Speed-up

We finally turn to a comparison of the performance of the
GPU code introduced above to a reference CPU imple-
mentation of exactly the same simulation. The results of

Fig. 12. Time spent in the parallel tempering moves for GPU
simulations of the 2D bimodal spin-glass model, normalized to
the individual spin. The data are averaged over 640 disorder
realizations.

this comparison are summarized in Figure 13. To better
understand the performance of different parts of the sim-
ulation, we broke the total run-time of both the GPU
and CPU simulations into the times spent in (1) flip-
ping spins using the Metropolis algorithm, (2) performing
Houdayer’s cluster update, (3) exchanging replicas in the
parallel tempering (PT) method, and (4) in measure-
ments of the basic observables. The resulting break-down
of times is illustrated in the left column of Figure 13,
showing the two-dimensional bimodal (top) and Gaussian
(bottom) models, respectively. We find the system size
dependence of the times per spin to be rather moderate
beyond a certain system size (cf. the representations in
Figs. 9 and 10), and consequently we only show results for
a single size L = 40 in Figure 13. The CPU code was run
on a 6-core/12-threads Intel Xeon E5-2620 v3 CPU run-
ning at 2.40GHz either using a single thread or running 24
disorder realizations in parallel in the multi-threaded ver-
sion on a dual-CPU system using hyper-threading, while
the GPU code as before was benchmarked on the GTX
1080. It is clearly seen that the CPU code spends the

https://epjb.epj.org/


Eur. Phys. J. B (2020) 93: 79 Page 11 of 13

Fig. 13. Times spent in different parts of the simulation on a log-scale as compared between the GPU and single-threaded as
well as multi-threaded CPU implementations for 2D systems of linear size L = 40 drawn from bimodal and Gaussian coupling
distributions, respectively (left column). The middle and right columns show relative timings (speed-ups) of the GPU code as
compared to the single-threaded (middle column) and multi-threaded (right column) CPU runs, respectively.

majority of time in flipping spins, whereas on GPU more
time is spent in the cluster update as this does not par-
allelize as well as the Metropolis algorithm. To support
this observation further, we show the relative run-times,
i.e., speed-ups, of the individual parts of the simulation
as compared to the single-threaded (middle column) and
multi-threaded (right column) CPU runs, respectively.
While we observe speed-ups between GPU and a single
CPU thread of between 200 and 300 for the spin flips,
the cluster update only improves by a factor of 50–75, on
average. The parallel tempering moves, on the other hand,
are executed on CPU even in the GPU version of the code
and do not experience any speed-up, but their contribu-
tion to the overall run-time is negligibly small. Overall,
we still observe a speed-up by a factor of about 125 for
the whole GPU simulation compared to a single-threaded
CPU code. For the multi-threaded CPU implementation
run-times are divided by a factor in between the num-
ber 12 of physical cores and the number 24 of threads,
which indicates good intra-CPU scaling. As a result, com-
pared to a full dual-CPU node our GPU implementation
achieves an about eight-fold speed-up overall.

5 Summary

We have discussed the computational challenges of sim-
ulating disordered systems on modern hardware, and
presented a versatile and efficient implementation of the
full spin-glass simulation stack consisting of single-spin
flips, cluster updates and parallel tempering updates in
CUDA. Due to the favorable relation of performance to

price and power consumption in GPUs, they have turned
into a natural computational platform for the simulation
of disordered systems. While a range of very efficient, but
also very complex, simulational codes for the problem have
been proposed before [45–48], our focus in the present
work was on the provision of a basic simulation frame-
work that nevertheless achieves a significant fraction of
the peak performance of GPU devices for the simulation of
spin-glass systems. To be representative of typical instal-
lations accessible to users, we used Nvidia GPUs from the
consumer series (GTX 1080).

Comparing our GPU implementation to our reference
CPU code, we find a speed-up factor of more than 200
for the Metropolis kernel, which is not far from the per-
formance of more advanced recent GPU simulations of
spin models, see, e.g., reference [31]. The cluster update
algorithm used here is much less well suited for a parallel
implementation, especially since it is a single-cluster vari-
ant for which the strong variation in cluster sizes leads
to the presence of idling threads. Here, performance could
be further improved by moving to a multi-cluster code, in
line with the experience for ferromagnets [63]. Neverthe-
less, overall we still observe a speed-up of the GPU code
of about 125 as compared to a single CPU thread, and of
about 8 as compared to a full dual-processor CPU node
with 24 threads.

In combination with our simple, parametric scheme
for choosing the temperature schedule, the proposed
simulation framework provides an accessible and highly
performant code base for the simulation of spin-glass sys-
tems that can easily be extended to other systems with
quenched disorder such as the random-field problem [75].

https://epjb.epj.org/


Page 12 of 13 Eur. Phys. J. B (2020) 93: 79

We would like to thank Jeffrey Kelling for fruitful discus-
sions. Part of this work was financially supported by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under project No. 189 853 844 – SFB/TRR 102
(project B04) and under Grant No. JA 483/31-1, the Leipzig
Graduate School of Natural Sciences “BuildMoNa”, the
Deutsch-Französische Hochschule (DFH-UFA) through the
Doctoral College “L4” under Grant No. CDFA-02-07, the
EU through the IRSES network DIONICOS under contract
No. PIRSES-GA-2013-612707, and the Royal Society through
Grant No. RG140201.

Author contribution statement

RK, JG, WJ and MW contributed to the design and
implementation of the research, to the analysis of the
results and to the writing of the manuscript.

Publisher’s Note The EPJ Publishers remain neutral with
regard to jurisdictional claims in published maps and institu-
tional affiliations.

References

1. K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986)
2. A.P. Young, ed., Spin Glasses and Random Fields (World

Scientific, Singapore, 1997)
3. R.A. Baños, A. Cruz, L.A. Fernandez, J.M. Gil-Narvion,

A. Gordillo-Guerrero, M. Guidetti, D. Iñiguez, A.
Maiorano, E. Marinari, V. Mart́ın-Major et al., PNAS 109,
6452 (2012)

4. W. Wang, J. Machta, H.G. Katzgraber, Phys. Rev. B 90,
184412 (2014)

5. G. Parisi, N. Sourlas, Phys. Rev. Lett. 43, 744 (1979)
6. N.G. Fytas, V. Mart́ın-Mayor, Phys. Rev. Lett. 110,

227201 (2013)
7. N.G. Fytas, V. Mart́ın-Mayor, M. Picco, N. Sourlas, Phys.

Rev. Lett. 116, 227201 (2016)
8. M. Baity-Jesi, E. Calore, A. Cruz, L.A. Fernandez,

J.M. Gil-Narvion, A. Gordillo-Guerrero, D. Iñiguez, A.
Maiorano, E. Marinari, V. Mart́ın-Major et al. Janus
Collaboration, Phys. Rev. Lett. 120, 267203 (2018)

9. M. Baity-Jesi, E. Calore, A. Cruz, L.A. Fernandez, J.M.
Gil-Narvión, A. Gordillo-Guerrero, D. Iñiguez, A. Lasanta,
A. Maiorano, E. Marinari, et al., PNAS 116, 15350
(2019)

10. T. Nattermann, in Spin Glasses and Random Fields,
edited by A.P. Young (World Scientific, Singapore, 1997),
p. 277

11. M. Mézard, G. Parisi, M.A. Virasoro, Spin Glass Theory
and Beyond (World Scientific, Singapore, 1987)

12. D.P. Landau, K. Binder, A Guide to Monte Carlo Simula-
tions in Statistical Physics, 4th edn. (Cambridge Univer-
sity Press, Cambridge, 2015)

13. A.K. Hartmann, H. Rieger, Optimization Algorithms in
Physics (Wiley, Berlin, 2002)

14. W. Janke, ed., Rugged Free Energy Landscapes —
Common Computational Approaches to Spin Glasses,
Structural Glasses and Biological Macromolecules, Lect.
Notes Phys. (Springer, Berlin, 2007), Vol. 736

15. B.A. Berg, W. Janke, Phys. Rev. Lett. 80, 4771 (1998)

16. J. Houdayer, Eur. Phys. J. B 22, 479 (2001)
17. H.G. Katzgraber, M. Körner, A.P. Young, Phys. Rev. B

73, 224432 (2006)
18. R. Alvarez Baños, A. Cruz, L.A. Fernandez, J.M. Gil-

Narvion, A. Gordillo-Guerrero, M. Guidetti, A. Maiorano,
F. Mantovani, E. Marinari, V. Mart́ın-Mayor et al., J. Stat.
Mech.: Theory Exp. 2010, P06026 (2010)

19. A. Sharma, A.P. Young, Phys. Rev. B 84, 014428
(2011)

20. W. Wang, J. Machta, H.G. Katzgraber, Phys. Rev. B 92,
094410 (2015)

21. K. Hukushima, K. Nemoto, J. Phys. Soc. Jpn. 65, 1604
(1996)

22. W. Wang, J. Machta, H.G. Katzgraber, Phys. Rev. E 92,
013303 (2015)

23. K. Hukushima, Phys. Rev. E 60, 3606 (1999)
24. H.G. Katzgraber, S. Trebst, D.A. Huse, M. Troyer, J. Stat.

Mech.: Theory Exp. 2006, P03018 (2006)
25. E. Bittner, A. Nussbaumer, W. Janke, Phys. Rev. Lett.

101, 130603 (2008)
26. I. Rozada, M. Aramon, J. Machta, H.G. Katzgraber,

arXiv:1907.03906 (2019)
27. K. Hukushima, Y. Iba, AIP Conf. Proc. 690, 200 (2003)
28. J. Machta, Phys. Rev. E 82, 026704 (2010)
29. W. Wang, J. Machta, H.G. Katzgraber, Phys. Rev. E 92,

063307 (2015)
30. L. Barash, J. Marshall, M. Weigel, I. Hen, New. J. Phys.

21, 073065 (2019)
31. L.Y. Barash, M. Weigel, M. Borovský, W. Janke, L.N.

Shchur, Comput. Phys. Commun. 220, 341 (2017)
32. R.H. Swendsen, J.S. Wang, Phys. Rev. Lett. 58, 86 (1987)
33. U. Wolff, Phys. Rev. Lett. 62, 361 (1989)
34. R.G. Edwards, A.D. Sokal, Phys. Rev. D 38, 2009

(1988)
35. L. Chayes, J. Machta, Physica A 254, 477 (1998)
36. R.H. Swendsen, J.S. Wang, Phys. Rev. Lett. 57, 2607

(1986)
37. S. Liang, Phys. Rev. Lett. 69, 2145 (1992)
38. J. Machta, C.M. Newman, D.L. Stein, J. Stat. Phys. 130,

113 (2008)
39. Z. Zhu, A.J. Ochoa, H.G. Katzgraber, Phys. Rev. Lett.

115, 077201 (2015)
40. O. Redner, J. Machta, L.F. Chayes, Phys. Rev. E 58, 2749

(1998)
41. H.W.J. Blöte, L.N. Shchur, A.L. Talapov, Int. J. Mod.

Phys. C 10, 1137 (1999)
42. F. Belletti, M. Cotallo, A. Cruz, L.A. Fernández, A.G.

Guerrero, M. Guidetti, A. Maiorano, F. Mantovani,
E. Marinari, V. Mart́ın-Mayor et al., Comput. Sci. Eng.
11, 48 (2009)

43. M. Baity-Jesi, R.A. Baños, A. Cruz, L.A. Fernandez,
J.M. Gil-Narvion, A. Gordillo-Guerrero, D. Iñiguez, A.
Maiorano, F. Mantovani, E. Marinari et al., Comput. Phys.
Commun. 185, 550 (2014)

44. M. Weigel, J. Comput. Phys. 231, 3064 (2012)
45. M. Bernaschi, G. Parisi, L. Parisi, Comput. Phys.

Commun. 182, 1265 (2011)
46. T. Yavors’kii, M. Weigel, Eur. Phys. J. Special Topics 210,

159 (2012)
47. M. Baity-Jesi, L.A. Fernández, V. Mart́ın-Mayor, J.M.

Sanz, Phys. Rev. B 89, 014202 (2014)
48. M. Lulli, M. Bernaschi, G. Parisi, Comput. Phys.

Commun. 196, 290 (2015)
49. S.F. Edwards, P.W. Anderson, J. Phys. F 5, 965 (1975)

https://epjb.epj.org/
https://arxiv.org/abs/1907.03906


Eur. Phys. J. B (2020) 93: 79 Page 13 of 13

50. N. Kawashima, A.P. Young, Phys. Rev. B 53, R484 (1996)
51. M. Hasenbusch, A. Pelissetto, E. Vicari, J. Stat. Mech.:

Theory Exp. 2008, L02001 (2008)
52. R.N. Bhatt, A.P. Young, Phys. Rev. B 37, 5606 (1988)
53. G. Parisi, Phys. Rev. Lett. 50, 1946 (1983)
54. A.P. Young, Phys. Rev. Lett. 51, 1206 (1983)
55. B.A. Berg, A. Billoire, W. Janke, Phys. Rev. E 66, 046122

(2002)
56. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H.

Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)
57. J. Machta, Phys. Rev. E 80, 056706 (2009)
58. P. Dupuis, Y. Liu, N. Plattner, J.D. Doll, Multiscale

Model. Sim. 10, 986 (2012)
59. C. Predescu, M. Predescu, C.V. Ciobanu, J. Chem. Phys.

120, 4119 (2004)
60. A.D. Sokal, Functional Integration: Basics and Appli-

cations, in Proceedings of the 1996 NATO Advanced
Study Institute in Cargèse, edited by C. DeWitt-Morette,
P. Cartier, A. Folacci (Plenum Press, New York, 1997),
pp. 131–192

61. W. Janke, in Computational Many-Particle Physics, edited
by H. Fehske, R. Schneider, A. Weiße, Lect. Notes Phys.
(Springer, Berlin, 2008), Vol. 739, pp. 79–140

62. Y. Fang, S. Feng, K.-M. Tam, Z. Yun, J. Moreno,
J. Ramanujam, M. Jarrell, Comput. Phys. Commun. 185,
2467 (2014)

63. M. Weigel, Phys. Rev. E 84, 036709 (2011)

64. CUDA zone, http://developer.nvidia.com/category/zone/
cuda-zone

65. M. Scarpino, OpenCL in Action: How to Accelerate Graph-
ics and Computation Manning (Shelter Island, 2012)

66. D.B. Kirk, W.W. Hwu, Programming Massively Parallel
Processors (Elsevier, Amsterdam, 2010)

67. M. McCool, J. Reinders, A. Robison, Structured Par-
allel Programming: Patterns for Efficient Computation
(Morgan Kaufman, Waltham, MA, 2012)

68. M. Weigel, in Order, Disorder and Criticality, edited by
Y. Holovatch (World Scientific, Singapore, 2018), Vol. 5,
pp. 271–340

69. J. Gross, J. Zierenberg, M. Weigel, W. Janke, Comput.
Phys. Commun. 224, 387 (2018)

70. J.K. Salmon, M.A. Moraes, R.O. Dror, D.E. Shaw, in Pro-
ceedings of 2011 International Conference for High Per-
formance Computing, Networking, Storage and Analysis
(SC’11 ) (ACM, New York, 2011), p. 16

71. M. Manssen, M. Weigel, A.K. Hartmann, Eur. Phys. J.
Special Topics 210, 53 (2012)

72. J. Gross, W. Janke, M. Bachmann, Comput. Phys.
Commun. 182, 1638 (2011)

73. A. Galluccio, M. Loebl, J. Vondrák, Phys. Rev. Lett. 84,
5924 (2000)

74. M. Picco, arXiv:cond-mat/9802092 (1998)
75. M. Kumar, R. Kumar, M. Weigel, V. Banerjee, W. Janke,

S. Puri, Phys. Rev. E 97, 053307 (2018)

https://epjb.epj.org/
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
https://arxiv.org/abs/cond-mat/9802092

	Massively parallel simulations for disordered systems
	1 Introduction
	2 Model and methods
	2.1 Edwards-Anderson spin glass
	2.2 Parallel tempering simulations
	2.3 Choice of temperature set
	2.4 Cluster updates

	3 Implementation on GPU
	4 Performance
	4.1 Two-dimensional system with bimodal couplings
	4.2 Two-dimensional system with Gaussian couplings
	4.3 Three-dimensional system with bimodal couplings
	4.4 Cost of the parallel tempering step
	4.5 Speed-up

	5 Summary

	References

