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Abstract. We describe how metastable states of Ising spin glasses can be counted by means of Monte
Carlo computer simulations. The method is applied to systems defined on hypercubic lattices in one to
six dimensions with up to about 103 spins. It is shown that the number of metastable states obtained for
different disorder realizations satisfies a log-normal distribution. We investigate the distribution of energies
of metastable states by means of moments and cumulants.

1 Introduction

One major characteristic of complex glassy systems is
the number of metastable states or local energy min-
ima. These are states for which any local modification
results in an increase in energy. Often the logarithm of
the number of these states is an extensive quantity and
not easily accessible. For Ising spin systems with ran-
dom Gaussian interactions metastable states are usually
defined as follows: A spin configuration {s} can be con-
sidered a metastable state (MSS) at T = 0 if any flip of a
single spin would lead to an increase in energy. Such con-
figurations are also called one-spin-flip stable [1]. Some of
them are also two-spin-flip stable, three-spin-flip stable,
etc. These higher degrees of stability will not be discussed
in this study. An intuitive measure for the complexity
of the energy landscape of the model is provided by the
number NS of such MSSs. In contrast to systems with geo-
metric frustration this number is in general not known for
spin glasses and has been derived analytically only for the
one-dimensional spin chain [2] and for a system with infi-
nite dimensions [3], i.e., for the Sherrington-Kirkpatrick
mean-field model [4]. However, an expansion of the latter
result provides estimates for finite dimensions [3] and fur-
ther analytical approximations exist for the square and the
simple cubic lattice [5]. So far, none of these predictions
have been computationally verified.

In this paper we apply Monte Carlo simulations
to determine the number of metastable states of the
Edwards-Anderson model on lattices of one to six
dimensions. The rest of the article is organized as follows.
We begin with a short review of previous work in
Section 2. In Section 3 we discuss the model and the
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methods we used. Section 4 is dedicated to the presen-
tation and discussion of our results. Finally in Section 5
we wrap up with a brief summary of our main findings
and an outlook to future work.

2 Previous studies

In one dimension, i.e., for a chain of N spins the prob-
lem can easily be solved [2]. An MSS is occupied if for
each spin the stronger of its two bonds is satisfied. The
weaker one might be broken. Therefore, only bonds that
are weaker than the two adjacent bonds can be broken
in an MSS, since such bonds are the weaker ones for both
involved spins. Hence such bonds act as degrees of freedom
in the space of metastable states and since in the limit of
large systems one in three bonds is weaker than its two
neighbors, it follows that the number of metastable states
is N I

S = 2N/3 ≈ e0.23105N .
There is also a solution for the limit of infinite dimen-

sions. Bray and Moore [3] have shown that for the
Sherrington-Kirkpatrick (SK) model [4] again in the limit
of large systems N∞S = e0.199228N by calculating the
distribution of MSSs as function of energy. They also
provided an expansion of this result in the inverse coor-
dination number of the lattice z−1, so that estimates
for D-dimensional hypercubic lattices are possible. The
identification of the maximum of the approximated dis-
tribution function allows one to estimate the number of
MSSs and their mean energy.1 The values thus obtained
are listed in Table 1.

1 In reference [3] the distribution of MSSs as function of energy is
derived by a first-order expansion in z−1 of the exact result for the
SK model. The values in Table 1 are obtained from the numerically
determined positions of the maxima of these distributions. Expres-
sions for NS and 〈E〉/(N

√
2D) in reference [3] (Eqs. (6.8) and (6.9))

are derived from a further first-order expansion and lead to slightly
different values.

https://epjb.epj.org/
https://doi.org/10.1140/epjb/e2020-100480-4
http://www.springerlink.com
mailto:Stefan.Schnabel@itp.uni-leipzig.de


Page 2 of 7 Eur. Phys. J. B (2020) 93: 53

Table 1. Estimates for lnNS/N and the mean rescaled
energy of MSSs obtained from the approximation in
reference [3].

D lnNS/N 〈E〉/(N
√

2D)

1 0.232970 −0.49274
2 0.215924 −0.49766
3 0.210305 −0.49991
4 0.207513 −0.50121
5 0.205844 −0.50205
6 0.204734 −0.50265
∞ (SK) 0.199228 −0.50605

Furthermore, in 2008 Waclaw and Burda [5] used an
analytic approximation in order to estimate the number
of metastable states for several graphs, among which they
found that for the square lattice N−1 ln[N II

S ] approaches
0.21808(2) and that for the simple cubic lattice the limit
of N−1 ln[N III

S ] is 0.21125(1).

3 Model and method

We consider the D-dimensional Edwards-Anderson (EA)
model [6] which is defined by the Hamiltonian

H = −
∑
〈ij〉

Jijsisj , si ∈ {−1, 1}. (1)

Here, 〈ij〉 is an edge of a hypercubic lattice with peri-
odic boundary conditions. Ising spins si ∈ {−1, 1} on the
lattice sites interact via bonds Jij , which are randomly
chosen according to a normal distribution:

P (Jij) =
1√
2π
e−J

2
ij/2, (2)

leading to disorder and frustration. Samples with different
disorder realizations {J} exhibit different behavior, but
these differences are expected to decrease with increasing
system size. It is thus justified to rely on disorder averages
of observables,

[O]:=
1

M

M∑
k=1

O({J}k), (3)

where M is the total number of realizations {J} randomly
drawn from the disorder distribution (2).

The investigation of MSSs of the EA model by means
of Monte Carlo simulations is challenging since their num-
ber is expected to grow exponentially with system size and
they are separated by high energy barriers. For small sys-
tems they can easily be found using optimization methods
like steepest descent or simulated annealing [7], however,
the selection of MSSs so-derived will be biased towards
states with a large basin of attraction. Recently, we have
introduced an algorithm [8,9] that is able to sample MSSs
of the EA model uniformly. Here, we will discuss this
method only briefly. For details we refer to our recent
publication in reference [8]. Starting from the fact that an

MSS within a simulation will be the result of some sort of
energy minimization process, the idea is to make this pro-
cess itself the object of a Monte Carlo simulation and to
introduce weights that will remove any bias. To this end
we define a combined state {{s}, {ξ}}, where {s} is a spin
configuration and {ξ} a set of uniformly distributed ran-
dom numbers. Both components can easily be modified
and the statistical properties of their distribution can be
controlled without difficulty. This combined state is then
interpreted as a random energy minimization that starts
with {s} and uses the numbers ξ to randomly select a spin
with positive energy which is then flipped until an MSS is
reached. In consequence, the resulting sequence of states
is a function of {{s}, {ξ}} and – as it turns out – it is
possible to assign weights to each sequence and therefore
to each combined state such that all MSSs are produced
with equal probability.

Importance sampling of short trajectories in state space
has been done in the past, albeit not with the ultimate aim
of investigating an ensemble of individual states. Exam-
ples can be found in the works of Sun [10] and Hartmann,
see, e.g., reference [11].

The problem of counting the total number of states of a
system is not often encountered. Usually, this is a known
quantity; the number of states – metastable or not – for
any Ising spin system comprising N spins, for instance, is
2N . In most cases only the relative statistical weights of
sets of states (e.g., states with one particular energy) are
derived from a Monte Carlo simulation. In order to mea-
sure the total number of states we need a reference set
of which the cardinality is known and to which we relate
the whole. In reference [8] we measured the distribution of
MSSs as a function of energy which involved ‘binning’, i.e.,
the separation of the energy scale into intervals of equal
width. If the energy resolution is high enough some inter-
vals will contain exactly one (twice degenerated) MSS, a
fact that we could exploit to normalize the entire distribu-
tion and count the total number of states. However, this
requires a very precise determination of the distribution
and was only possible for small systems.

In this study, we propose another approach [12] that
relies on the Hamming distance

dH({s}) =

N∑
i=1

(1− δsi,srefi
) (4)

to a specific MSS {sref} instead of energy. Here δ is the
Kronecker delta symbol. Since MSSs of low energy pos-
sess larger basins of attraction2 (BOA) and are, therefore,
easier to find, we always used a low-energy reference MSS
obtained by a quench in the space of MSSs. We then used
a combination of flat-histogram techniques to measure the
distribution of MSSs g(dH) as a function of dH. A variant
of the Wang-Landau method [13] was applied in order to
get a good estimate

g1(dH) ≈ c1g(dH), (5)

2 We define the basin of attraction of an MSS as the set of all
combined states that belong to this MSS.
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Fig. 1. Logarithmic distribution of MSSs as function of dH
for a single disorder realization with N = 64 spins.

where c1 is an unknown normalization constant. The
inverse of g1 was then used as the weight function for
multicanoncial sampling [14,15] that was terminated after
completing between 10 and 200 round trips depending on
size and dimensionality, i.e., the system was required to
travel between 10 and 200 times from dH = 0 to dH = N
and back. In this process, a histogram

H(d) =

tmax∑
t=1

δd,dH({s}t) (6)

was recorded, with {s}t being the sequence of MSSs gen-
erated by the simulation. As the next step, an improved
estimate for the distribution

g2(dH) = c2H(dH)g1(dH) (7)

was obtained and used for the further analysis. For an indi-
vidual disorder realization in four dimensions with L = 6
the result is displayed in Figure 1.

Because g2 is a function of dH, the normalization is triv-
ial since {sref} is the only MSS with dH = 0, {−sref} the
only one with dH = N and, therefore, we know that g(0) =
g(N) = 1. Since we use Monte Carlo simulations we can-
not expect perfect agreement for both values. Instead, one
obtains differences that depend on the number of com-
pleted round trips. We use the arithmetic average of both
values for normalization,

g2(dH) =
2

H(0)g1(0) +H(N)g1(N)
H(dH)g1(dH), (8)

which fixes the constant c2 in (7). The total number of
MSSs is obtained by summation,

NS =

N∑
dH=0

g2(dH). (9)

For instance, the system for which the distribution of
MSSs is displayed in Figure 1 possesses about NS ≈
2× 10117 MSSs.

For all combinations of dimensionality and system size
1000 disorder realizations were generated. During the sim-
ulation we also recorded the moments of energy as a
function of the Hamming distance,

ηl(d) =

tmax∑
t=1
H({s}t)lδd,dH({s}t)

H(d)
. (10)

The values can be recombined to form the moments of the
unbiased distribution of MSSs:

〈El〉 =

N∑
dH=0

g(dH)ηl(dH)

N∑
dH=0

g(dH)

(11)

for each individual disorder realization.
Sampling the space of MSSs one has to be cautious.

During test runs for D = 3 we obtained different results
(e.g., for average energy) depending on whether straight-
forward unbiased (simple) sampling or the weighted
ensemble described above was used. This means that in
combination with at least one of the two ensembles the
algorithm is unable to equilibrate. This effect is most likely
caused by the different sizes of the BOAs which are much
larger if the respective MSS is of low energy. Since for unbi-
ased sampling all individual MSSs are assigned the same
weight, the probability to occupy a particular combined
state {{s}, {ξ}} within a BOA is inversely proportional
to the size of that BOA. Combined states in large BOAs
are, therefore, suppressed and such BOAs might become
barriers preventing equilibration. Using a quenched refer-
ence MSS and a flat distribution of dH as in our weighted
ensemble improves the performance in comparison to sim-
ple sampling since it increases the weight of some large
BOAs.

In reference [8] we measured the distribution of MSSs as
a function of energy for D = 3 and where able to directly
verify the accuracy of our results for N = 43. We then
found that the distributions we obtained depend – when
properly rescaled – very little on the size of the system. We
see this as evidence that the algorithm is working correctly
also for larger sizes. A failure to properly sample the state
of MSSs should become more severe with increasing N and
an agreement like the one observed would be very unlikely.
As we will discuss below values for the average energy
obtained in this work agree very well with our older data.
Hence, even though we are using a different ensemble, we
are confident that the results presented here for D = 3 are
valid.

In addition to the tests provided in reference [8] we
investigated a spin chain (D = 1) with N = 100. In the
spin chain weak bonds, i.e., bonds with an absolute value
|Ji,i+1| smaller than those of their neighbors |Ji−1,i| and
|Ji+1,i+2|, act as the degrees of freedom since only they
can be broken within an MSS. While periodic boundaries
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Fig. 2. The binary logarithm of the measured number of
MSSs for 1000 disorder realizations of a spin chain (D = 1)
with L = 100. Exact values are integers.

remove one of these degrees, there is a twofold degeneracy
of each bond configuration due to the trivial symmetry
{s} ↔ {−s} such that the total number of MSSs is given
by two to the power of the number of weak bonds. On the
one hand this means that for any given disorder realization
log2NS is an integer while on the other hand for the dis-
order average one obtains [log2NS] = N/3. Accordingly,
we find that for this system the numerically determined
values of the binary logarithm of NS shown in Figure 2 are
very close to integer values and [log2N

I
S ]/N = 0.3326(7)

or [lnN I
S ]/N = 0.2305(5).

We draw further confidence in our method for D = 2 by
comparing with the analytic approximation by Waclaw
and Burda [5] that will be discussed below. Unfortu-
nately, we have no means to independently test our results
for D = 4, 5, 6. In the unlikely event that relevant parts
of the space of MSSs are not sampled, using the tech-
nique described above, one would obtain an estimate
for the number NS of MSSs that is too small. That
means that our values can at the very least serve as
lower bounds.

4 Results and discussion

We show the results for the distribution of the normal-
ized logarithmic number of states N−1 lnNs in Table 2.
As expected we observe that the mean number of MSSs
grows exponentially with system size. Only relatively
small finite-size effects occur as indicated by the flatness
of the curves shown in Figure 3. There, we have also dis-
played the values of Table 1 that are predicted by the
approximation of Bray and Moore [3]. Since the latter
is an expansion from the SK model in 1/z = 1/2D, the
deviations should decrease with increasing D. It seems,
however, that this behavior does not clearly manifest itself
for D ≤ 6. In order to make the scaling of the width of
the distributions more apparent the standard deviations
divided by

√
N are shown in Figure 4.

Table 2. Properties of the distribution of N−1 lnNS for
different dimensions D and system sizes N = LD. Errors
indicate one standard deviation.

D L [lnNS]/N σlnNS/N SlnNS KlnNS

2

8 0.2145(3) 0.0102(2) −0.18(8) 2.94(15)
16 0.2151(2) 0.0049(1) −0.04(8) 3.05(15)
24 0.2150(1) 0.00339(7) 0.08(8) 3.07(15)
32 0.21529(7) 0.00250(6) 0.04(8) 2.76(15)

3

4 0.2102(2) 0.0061(1) 0.05(8) 2.93(15)
6 0.2105(1) 0.00315(7) −0.10(8) 3.15(15)
8 0.21064(7) 0.00214(5) −0.03(8) 3.02(15)
10 0.21060(5) 0.00152(3) 0.05(8) 2.93(15)

4

3 0.2070(1) 0.0046(1) 0.13(8) 3.18(15)
4 0.20800(6) 0.00204(5) −0.01(8) 3.04(15)
5 0.20809(4) 0.00127(3) −0.03(8) 2.87(15)
6 0.20811(3) 0.00093(2) −0.07(8) 3.23(15)

5
3 0.20582(7) 0.00215(5) −0.11(8) 3.10(15)
4 0.20646(3) 0.00092(2) 0.03(8) 2.92(15)

6 3 0.20489(3) 0.00108(2) −0.04(8) 2.70(15)

Fig. 3. Sample averages of the normalized logarithmic num-
ber of MSSs. The dashed lines from top to bottom indicate
the values from the approximation of Bray and Moore for
D = 2, . . . , 6 and their exact value for the SK model in the
thermodynamic limit. Other lines are guide for the eye.

The higher-order characteristics skewness and kurtosis
are defined as

SO =
µ3

µ
3/2
2

(12)

and

KO =
µ4

µ2
2

, (13)

with the central moments

µl =
〈
(O − 〈O〉)l

〉
. (14)

For the distribution of the logarithm of the number
of states these values are also provided in Table 2.
The statistical errors of both quantities depend solely
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Fig. 4. Standard deviation of the logarithmic number of MSSs
devided by

√
N . Lines are guide for the eye.

on the number of samples M which is identical for
all cases (see above). For a Gaussian distribution, the
skewness vanishes, SGauss = 0, and the kurtosis becomes
KGauss = 3. We hence find that our results are consistent
with Gaussian distributions for all data sets. The mean
values [lnNS]/N in Table 2 can not directly be compared
with the approximations from reference [5]. There, the log-
arithm of the disorder average was taken while so far we
have considered the average of the logarithm. If we pre-
sume that lnNS is indeed normally distributed, it follows
that

ln[NS] = [lnNS] +
1

2
σ2
lnNS

(15)

and two ways of estimating ln[NS] are available. The dis-
order average [NS] can be taken directly from data or
equation (15) can be applied to the values in Table 2.
The respective values are shown in Table 3. Both tech-
niques provide results that agree within statistical errors,
which provides additional evidence that the distributions
of lnNS and NS are normal and log-normal, respectively.
Comparing with the results from reference [5] we find
small but systematic deviations. For D = 2 and D = 3 our
values for the largest system considered slightly exceed
the values presented there: d ln[N II

S ]/dN = 0.21808(2)
and d ln[N III

S ]/dN = 0.21125(1). Since our values tend
to increase with system size, it is unlikely that the
smaller values from the analytical approximation will be
approached in the limit of large N . We point out again
that while it is theoretically possible that our results
underestimate the exact value, it is hard to see how our
estimates could be too large.

As mentioned above the moments of energy of the MSSs
〈El〉 were calculated for every disorder realization. In this
context 〈. . . 〉 stands for an unweighted average over all
MSSs, i.e., the energies of all MSSs (and only of MSSs)
contribute with equal weight. Formally this corresponds to
infinite temperature in the ensemble of MSSs. Here, cen-
tral moments and cumulants characterize the distribution

Table 3. Estimates for ln[NS]/N allowing comparisons
with the values 0.21808(2) for D = 2 and 0.21125(1) for
D = 3 from reference [5].

D L
[lnNS]+

1
2
σ2
lnNS

N
ln[NS]
N

2

8 0.2179(4) 0.2177(3)
16 0.2182(3) 0.2181(2)
24 0.2184(2) 0.2185(3)
32 0.2185(2) 0.2182(2)

3

4 0.2114(2) 0.2114(2)
6 0.2116(1) 0.2115(1)
8 0.2118(1) 0.21179(9)

10 0.21176(8) 0.21178(9)

4

3 0.2078(2) 0.2078(2)
4 0.20853(9) 0.20853(7)
5 0.20860(6) 0.20859(5)
6 0.20866(5) 0.20866(4)

5
3 0.20638(9) 0.20637(7)
4 0.20689(5) 0.20689(4)

6 3 0.20531(5) 0.20530(4)

of the energies of MSSs for individual disorder realizations
and now become subject to disorder averages themselves.

It is convenient to use the rescaled energy

ε =
E

N
√
z
, (16)

where z = 2D is the number of nearest neighbors of a spin.
Bray and Moore [3] have shown that for the SK model in
the limit of large N the average value is 〈ε〉 = −0.50605. In
our recent study [8] we sampled the distribution of MSSs
as a function of energy for a simple-cubic lattice directly
and found that it is approximated by

ΩIII(εN
√
z) ∝ e−N(a(ε−ε0)2+b(ε−ε0)3+c(ε−ε0)4), (17)

with a = 4.142, b = 1.07, c = 13.73, and ε0 = −0.4978.
For large enough N this implies [〈ε〉] ≈ ε0 and

√
[σ2
ε ] ≈√

1
2aN = 0.3474√

N
. The results from the present work, shown

in Table 4, agree very well. We find that the mean ener-
gies converge very well for D = 2, 3, 4 and that the scaling
of the standard deviations with increasing system size
is also very regular as can be seen in Figure 5. The
standard deviations for the three-dimensional system are
also in particularly good agreement with the expected
value. Using mean values and standard deviations we can
attempt to approximate the density of MSSs as a function
of energy analogously to equation (17) for D = 2, 4, 5, 6:

ΩII(εN
√
z) ∝ e−5.13N(ε+0.4951)2 , (18)

ΩIV (εN
√
z) ∝ e−3.82N(ε+0.4997)2 , (19)

ΩV (εN
√
z) ∝ e−3.68N(ε+0.501)2 , (20)

ΩV I(εN
√
z) ∝ e−3.58N(ε+0.502)2 . (21)

Comparison of our mean energies [〈ε〉] to the values
derived from the approximation in reference [3] listed

https://epjb.epj.org/
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Table 4. Sample average of the properties of the dis-
tribution of ε = E/(N

√
2D) for different dimensions D

and system sizes LD. Displayed errors result from the
averaging process.

D L [〈ε〉]
√

[σ2
ε ] [Sε] [Kε]

2

8 −0.497(1) 0.0392(1) 0.008(3) 3.02(4)
16 −0.4951(5) 0.01951(3) 0.0023(9) 2.98(2)
24 −0.4954(3) 0.01300(1) 0.0014(7) 2.96(4)
32 −0.4951(2) 0.009753(8) −0.006(10) 2.8(1)

3

4 −0.4982(8) 0.0436(1) −0.044(4) 3.02(3)
6 −0.4976(4) 0.02361(3) −0.026(1) 2.99(2)
8 −0.4977(3) 0.01533(2) −0.012(1) 3.04(3)

10 −0.4976(2) 0.01098(1) −0.011(2) 3.02(8)

4

3 −0.5022(7) 0.03984(8) −0.054(3) 3.00(2)
4 −0.4997(4) 0.02263(2) −0.0357(8) 3.00(1)
5 −0.4998(2) 0.014475(9) −0.0244(9) 3.07(3)
6 −0.4997(2) 0.010054(7) −0.018(2) 2.9(1)

5
3 −0.5021(3) 0.02360(2) −0.0414(8) 2.99(1)
4 −0.5010(2) 0.01152(1) −0.028(3) 2.92(6)

6 3 −0.5023(2) 0.01384(1) −0.033(3) 3.10(9)

Fig. 5. Square root of the disorder average of the rescaled
squared standard deviation of ε. The dashed line indicates the
value for D = 3 that result from equation (17). Other lines are
guide for the eye.

in Table 1 we observe a curious offset: For dimensions
D = 3, 4, 5, 6 the former roughly agree with the latter for
dimensions D = 2, 3, 4, 5. We see no reason to assume
that this is anything but coincidental, though it should
be noted that (D + 1)−1 ≈ D−1 with corrections only
of order D−2. The behavior of the higher-order cumu-
lants is not so clear due to the larger errors. For D = 3
assuming (17) to be valid we expect the skewness to van-
ish like [Sε] ∝ N−1/2 and the kurtosis to approach the
limit according to [Kε] − 3 ∝ N−1. The scaling behav-
ior of [Sε] is displayed in Figure 6 together with fits of

the functional form f(N) = α/
√
N . The systems are still

comparatively small and the data are not precise enough
to be certain, but we can state that they are consistent
with the expected behavior.

Fig. 6. Disorder average of the skewness of ε. Straight lines
are fits of the expected N−1/2 behavior.

S

Fig. 7. Scatter plot of samples on a cubic lattice with L = 10.
Little to no correlation exists between the number of MSSs and
their average energy.

Finally one might ask the question whether the number
of MSSs and their average energies are correlated. This
might be expected since both quantities depend on the
amount of frustration in the system. However, as can be
inspected in Figure 7, we find that there is almost no
relation between the two.

5 Conclusion

We have for the second time employed an algorithm that
is designed to perform biased or unbiased random walks in
the space of metastable states of the Edwards-Anderson
model. Previously, we opted for a more traditional ensem-
ble with the energy as the control parameter [8]. While
this allows us to measure the unnormalized distribu-
tion of states as function of E, the total number of
metastable states is only indirectly accessible and only
for small systems. In this study we used a complemen-
tary approach. By biasing the ensemble in dependence of

https://epjb.epj.org/
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the Hamming distance to a reference state, the walker
encounters fewer barriers, an easy way of normalization is
at hand, and the number of states can reliably be deter-
mined not just in two and three, but also in four, five, and
six dimensions.

By analyzing cumulants of the distribution we find that
for all dimensions and system sizes the logarithmic num-
ber of metastable states seems to be normally distributed.
Comparing the number of metastable states with the val-
ues obtained from the expansion done by Bray and Moore
[3] and those derived in an analytical approximation by
Waclaw and Burda [5] which are not consistent, we found
that our results systematically deviate from both. Except
for D = 2 where we find less metastable states than pre-
dicted by Bray and Moore [3] our values for [NS] are above
the predictions, although the deviations to [5] are almost
insignificant. This is important because even if we assume
that the algorithm is unable to find all relevant states
the method would merely underestimate the number of
metastable states such that the difference between the true
values and the predictions becomes even greater. Due to
the monotonic increase as function of system size in our
data, we also deem it unlikely that this is a finite-size effect
and that the analytical approximations will be realized in
the thermodynamic limit.

Disorder averages of mean values and standard devia-
tion of the energy of metastable states in three dimensions
agree remarkably well with our previous results [8]. We
find that disorder averages of skewness and kurtosis
approach zero and three, respectively, so that we may con-
clude that also the energies of the unbiased metastable
states are close to normally distributed.

As a future project it would be interesting to modify
the bond disorder and study the transition from the spin
glass to a ferromagnet.
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