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Abstract. Recent emerging interest in experiments of single-polymer dynamics urge computational physi-
cists to revive their understandings, particularly in the nonequilibrium context. Here we briefly discuss
the currently evolving approaches of investigating the evolution dynamics of homopolymer collapse using
computer simulations. Primary focus of these approaches is to understand various dynamical scaling laws
related to coarsening and aging during the collapse in space dimension d = 3, using tools popular in
nonequilibrium coarsening dynamics of particle or spin systems. In addition to providing an overview of
those results, we also present new preliminary data for d = 2.

1 Introduction

Understanding various scaling laws governing a phase
transition has been one of the primary research topics over
the last fifty years, be it from an equilibrium perspective
or at the nonequilibrium front [1–4]. Also for polymers, the
equilibrium aspects of phase transitions have been stud-
ied extensively [5–8]. Polymers in general represent a large
class of macromolecules be they chemically synthesized or
naturally occurring. A range of fundamentally important
biomolecules, e.g., proteins and DNA, fall under the broad
canopy of polymers. Most of these polymeric systems
exhibit some form of conformational phase transitions
depending on certain external conditions, viz., the collapse
transition in homopolymers. Upon changing the solvent
condition from good (where monomer-solvent interaction
is dominating). to poor (where monomer-monomer inter-
action is stronger), a homopolymer undergoes a collapse
transition from its extended coil state to a compact glob-
ule [9,10]. This transition belongs to a class of phase
transitions that can be understood by investigating var-
ious associated scaling laws [5–8]. From a general point
of view, the understanding of the collapse transition in
homopolymers can be extended to investigate other con-
formational transitions experienced by different types of
macromolecules, e.g., in a protein the collapse of the back-
bone may occur simultaneously or precede its folding to a
native state [11–15].

Due to certain technical difficulties such as prepar-
ing a super-dilute solution or finding a long enough
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polymer with negligible polydispersity, the experimen-
tal realization of the collapse transition was rare in the
past [10,16]. Since the introduction of technical equipment
like small angle X-ray scattering, single molecule fluores-
cence, dynamic light scattering, dielectric spectroscopy,
etc., monitoring the behaviour of a single macromolecule
has become feasible [17–19]. On the other hand, theo-
retically the scaling laws related to the static and the
equilibrium dynamic aspects of the transition are well
understood since a long time [5–8].

In contrast to the equilibrium literature, however, in the
nonequilibrium aspects, i.e., for the kinetics of the collapse
transition, there is no unanimous theoretical understand-
ing even though quite a few analytical and computational
studies have been conducted [20–35]. The aforesaid exper-
imental developments to track single polymers and the
lack of understanding of the nonequilibrium dynamics
of polymers motivated us to perform a series of works
on the kinetics of polymer collapse [36–41]. There our
novel approach of understanding the collapse by using its
analogy with usual coarsening phenomena of particle and
spin systems provided intriguing new insights, as will be
discussed subsequently.

Most of the studies on collapse kinetics in the past
dealt with the understanding of the relaxation time, i.e.,
the time a system requires to attain its new equilibrium
state once its current state is perturbed by a sudden
change of the environmental conditions, e.g., the temper-
ature. In the context of polymer collapse, the relaxation
time is referred to as the collapse time τc, which mea-
sures the time a polymer that is initially in an extended
state needs to reach its collapsed globular phase. Obvi-
ously, τc depends on the degree of polymerization or chain
length N of the polymer (the number of repeating units
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or monomers in the chain), which can be described by the
scaling relation

τc ∼ Nz, (1)

where z is the corresponding dynamical exponent. The
above relation is reminiscent of the scaling one observes
for dynamic critical phenomena [42]. The other impor-
tant aspect of the kinetics is the growth of clusters of
monomers that are formed during the collapse [21,31]. The
cluster growth has recently been understood by us using
the phenomenological similarities of collapse with coarsen-
ing phenomena in general [36,39,40]. Moreover, along the
same line one can also find evidence of aging and related
scaling laws [37–40] that was mostly ignored in the past.

In this Colloquium, we intend to give a brief review
of the results available on collapse kinetics based on
the above mentioned three topics: relaxation, coarsen-
ing, and aging. It is organized in the following way. We
will begin with an overview of the phenomenological the-
ories of collapse dynamics followed by an overview of
the previous simulation results in Section 2. Afterwards,
in Section 3, we will discuss our recent developments
concerning the understanding of relaxation time, cluster
growth and aging for the kinetics of the collapse transi-
tion in a homopolymer. Then we will present in Section 4
some preliminary results on the special case of polymer
collapse kinetics in space dimension d = 2. In Section 5,
finally, we wrap up with a discussion and an outlook to
future research in this direction.

2 Overview of previous studies on collapse
dynamics

The first work on the collapse dynamics dates back to 1985
when de Gennes proposed the phenomenological sausage
model [20]. It states that the collapse of a homopolymer
proceeds via the formation of a sausage-like intermediate
structure which eventually minimizes its surface energy
through hydrodynamic dissipation and finally forms a
compact globule having a spherical shape. Guided by this
picture, in the next decade there was a series of numerical
works by Dawson and co-workers considering both lat-
tice and off-lattice models [21–26]. However, the sequence
of events obtained in their simulations differs substan-
tially from the sausage model. Later in 2000, Halperin and
Goldbart (HG) came up with their pearl-necklace picture
of the collapse [29], consistent not only with the obser-
vations of Dawson and co-workers but also with all the
later simulation results. According to HG the collapse of
a polymer upon quenching from an extended coil state
into the globular phase occurs in three different stages: (i)
initial stage of formation of many small nascent clusters of
monomers out of the density fluctuations along the chain,
(ii) growth and coarsening of the clusters by withdraw-
ing monomers from the bridges connecting the clusters
until they coalesce with each other to form bigger clusters
and eventually ending up with a single cluster, and (iii)
the final stage of rearrangements of the monomers within
the single cluster to form a compact globule. Even before

the pearl-necklace picture of collapse by HG, Klushin [28]
independently proposed a phenomenology for the same
picture based on similar coarsening of local clusters. It
differs from the HG one as it does not consider the initial
stage of formation of the local ordering or small nascent
clusters. However, almost all the simulation results so far
have shown evidence for the initial stage of nascent cluster
formation.

In addition to the above description, HG also provided
time scales for each of these stages which scale with the
number of monomers as N0, N1/5 and N6/5, respectively.
Quite obviously this scaling of the collapse time is depen-
dent on the underlying dynamics of the system, i.e., on the
consideration of hydrodynamic effects. Klushin derived
that the collapse time τc scales as τc ∼ N1.6 in absence
of hydrodynamics whereas the collapse is much faster in
presence of hydrodynamics with the scaling τc ∼ N0.93

[28]. Similar conclusions were drawn in other theoretical
and simulation studies as well. In the following Section 2.1
we discuss some of these numerical results on the scaling
of the collapse time.

2.1 Earlier results on scaling of collapse time

As mentioned the dynamical exponent z in equation (1)
depends on the intrinsic dynamics of the system. It is
thus important to notice the method and even the type
of model one uses for the computer simulations. The
available results can be divided into three categories: (i)
Monte Carlo (MC) and Langevin simulations with implicit
solvent effect, (ii) molecular dynamics (MD) simulations
with implicit solvent effect, and (iii) MD simulations with
explicit solvent effect. Results from MC and Langevin
simulations do not incorporate hydrodynamics and hence
only mimic diffusive dynamics. On the other hand, MD
simulations with implicit solvent, depending on the nature
of the thermostat used for controlling the temperature,
can be with or without hydrodynamic effects. At this
point we caution the reader that there is a subtle dif-
ference between solvent effects and hydrodynamic effects.
Thus doing MD simulations with explicit solvent does
not necessarily mean that the hydrodynamic modes are
actively taken into account. Rather this depends on how
one treats the momenta of the solvent particles in the sim-
ulation, e.g., it depends on the choice of thermostat used
[43]. This gets not only reflected in the nonequilibrium
relaxation times like the collapse time τc but also in the
equilibrium autocorrelation time τ . The few existing stud-
ies on polymer collapse using MD simulations that account
for solvent effects by considering explicit solvent beads,
thus, can also be classified on the basis of consideration of
hydrodynamic effects. Since there is no available appro-
priate theory for the nonequilibrium relaxation time, the
trend is to compare the scaling of the collapse time with
the available theories of equilibrium polymer dynamics.
In absence of hydrodynamic effects the dynamics is com-
pared with Rouse scaling that states that in equilibrium
the diffusion coefficient D scales with the chain length N
as D ∼ N−1, which implies that the relaxation time scales
as τ ∼ N2 [44]. On the other hand, in presence of hydrody-
namics when the polymer moves as a whole due to the flow
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Table 1. Summary of simulation results for the scaling of the collapse time τc with the length of the polymer N as
described in equation (1).

Authors Model Method Explicit Solvent Hydrodynamics z

Byrne et al. (1995) [21] Off-lattice Langevin No No 3/2
Kuznetsov et al. (1995) [23] Lattice MC simulations No No 2
Kuznetsov et al. (1996) [24] GSC equations Numerically No No 2
Kuznetsov et al. (1996) [24] GSC equations Numerically No Yes 3/2
Kikuchi et al. (2005) [33] Off-lattice MD simulations Yes No 1.89(9)
Kikuchi et al. (2005) [33] Off-lattice MD simulations Yes Yes 1.40(8)
Pham et al. (2008) [34] Off-lattice BD simulations No No 1.35(1)
Pham et al. (2008) [34] Off-lattice BD simulations No Yes 1.01(1)
Guo et al. (2011) [35] Off-lattice DPD simulations Yes Yes 0.98(9)
Majumder et al. (2017) [39] Off-lattice MC simulations No No 1.79(6)
Christiansen et al. (2017) [40] Lattice MC simulations No No 1.61(5)

MC: Monte Carlo, MD: molecular dynamics, BD: Brownian dynamics, DPD: dissipative particle dynamics.

field, the corresponding scaling laws are D ∼ N−0.588 and
τ ∼ N1.76, known as the Zimm scaling [45]. Both Rouse
and Zimm scalings have been verified in a number of com-
putational studies as well as in experiments. However, we
stress that the nonequilibrium relaxation time, e.g., the
collapse time τc does not necessary follow the same scaling
as the equilibrium autocorrelation time τ [46,47].

In Table 1 we have summarized some of the relevant
results on the scaling of the collapse time that one can
find in the literature. In the early days the simulations
were done mostly by using methods that do not incor-
porate hydrodynamics, e.g., numerical solution of the
Gaussian-self consistent (GSC) equations, MC simula-
tions and Langevin simulations. They considered models
which could be either on-lattice (interacting self-avoiding
walks) or off-lattice (with Lennard-Jones kind of inter-
action). The GSC approach and MC simulations (in a
lattice model) provided z that matches with the Rouse
scaling in equilibrium [23,24]. Langevin simulations of an
off-lattice model yielded z ≈ 3/2 [21] which was the value
later obtained in a theory by Abrams et al. [31]. Kikuchi
et al. [30] went a step further by doing MD simulations of
an off-lattice model with explicit solvent which also allows
one to tune the hydrodynamic interactions. In absence of
hydrodynamics they obtained values of z ≈ 1.9 close to the
Rouse value of 2 [33]. On the other hand, in presence of
hydrodynamics the dynamics is much faster with z ≈ 1.4
[33]. This is more or less in agreement with GSC results
obtained considering hydrodynamic interaction [24]. Later
more simulations on polymer collapse with explicit solvent
were performed. In this regard, relatively recent Brownian
dynamics (BD) simulations with explicit solvent (hydro-
dynamic interaction preserved) by Pham et al. provided
even faster dynamics with z ≈ 1 [34]. There exist even
newer results from dissipative-particle dynamics (DPD)
simulation that also reports z ≈ 1 [35]. Note that these
results do not well compare with the Zimm scaling applica-
ble to equilibrium dynamics in presence of hydrodynamics.
The bottom line from this literature survey is that no
consensus has been achieved for the value of z. In our
recent results on collapse dynamics from MC simulations
a consistent value of z was obtained between an off-lattice
model and a lattice model with z ≈ 1.7 [39,40].

2.2 Earlier results on cluster growth

As discussed above most of the previous studies on
kinetics of the collapse transition focused on understand-
ing the scaling of the collapse time. However, going by
the phenomenological picture described by HG, as also
observed in most of the available simulation results, the
second stage of the collapse, i.e., the coalescence of the
“pearl-like” clusters to form bigger clusters and thereby
eventually a single globule bears resemblance to usual
coarsening of particle or spin systems. The nonequilibrium
phenomenon of coarsening in particle or spin systems is
well understood [4,48] with current focus shifting towards
more challenging scenarios like fluid mixtures [49,50]. Fun-
damentally, too, it is still developing as for example in
computationally expensive long-range systems [51–53].

In usual coarsening phenomena, e.g., in ordering of
ferromagnets after quenching from the high-temperature
disordered phase to a temperature below the critical point,
the nonequilibrium pathway is described by a growing
length scale, i.e., average linear size of the domains `(t)
as [4,48]

`(t) ∼ tα. (2)

The value of the growth exponent α depends on the con-
cerned system as well as the conservation of the order
parameter during the entire process. For example, in solid
binary mixtures where the dynamics is conserved, α = 1/3
which is the Lifshitz-Slyozov (LS) growth exponent [54],
whereas for a ferromagnetic ordering where the order
parameter is not conserved, α = 1/2 which is referred to as
the Lifshitz-Cahn-Allen (LCA) growth [55]. On the other
hand, in fluids where in simulations one must incorporate
hydrodynamics, three different regimes are observed; the
early-time diffusive growth where α = 1/3 as in solids; the
intermediate viscous hydrodynamic growth with α = 1
[56]; and at a very late stage the inertial growth with
α = 2/3 [57].

In the context of polymer collapse, the concerned grow-
ing length scale could be the linear size (or radius) of the
clusters. However, in all the previous works it was cho-
sen to be the average mass Cs(t), or average number of
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monomers present in a cluster. In spatial dimension d, it
is related to the linear size of the cluster as Cs(t) ∼ `(t)d.
Thus in analogy with the power-law scaling (2) of the
length scale during coarsening, the corresponding scaling
of the cluster growth can then be written as

Cs(t) ∼ tαc , (3)

where αc = dα is the corresponding growth exponent.
Like the dynamical exponent z, the growth exponent αc
is also dependent on the intrinsic dynamics of the sys-
tem. Previous studies based on MC simulations of a lattice
polymer model reported αc = 1/2 [23] and Langevin simu-
lations of an off-lattice model reported αc = 2/3 [21], both
being much smaller than αc = 1 as observed for coarsening
with only diffusive dynamics. BD simulations with explicit
solvent also provided αc ≈ 2/3 in absence of hydrodynam-
ics. Like in coarsening of fluids, the dynamics of cluster
growth during collapse, too, gets faster when hydrody-
namic effects are present. For instance, BD and DPD
simulations with incorporation of hydrodynamic effects
yield αc ≈ 1 [34,35]. Surprisingly, our recent result on an
off-lattice model via MC simulations also showed αc ≈ 1
[39]. This will be discussed in Section 3.4.

2.3 Earlier results on aging during collapse

Apart from the scaling of the growth of the average
domain size during a coarsening process there is another
important aspect, namely, aging [58,59]. The fact that a
younger system relaxes faster than an older one forms the
foundation of aging in general. This is also an essential
concept from the point of view of glassy dynamics [60,61].
Generally, aging is probed by the autocorrelation function
of a local observable Oi given as

C(t, tw) = 〈Oi(t)Oi(tw)〉 − 〈Oi(t)〉〈Oi(tw)〉, (4)

with t and tw < t being the observation and the wait-
ing time, respectively. The 〈. . . 〉 denotes averaging over
several randomly chosen realizations of the initial config-
uration and independent time evolutions. The observable
Oi is generally chosen in such a way that it clearly reflects
the changes happening during the concerned nonequilib-
rium process, e.g., the time- and space-dependent order
parameter during ferromagnetic ordering.

There are three necessary conditions for aging: (i)
absence of time-translation invariance in C(t, tw), (ii) slow
relaxation, i.e., the relaxation times obtained from the
decay of C(t, tw) should increase as function of tw, and
(iii) the observation of dynamical scaling of the form

C(t, tw) ∼ x−λc ; xc = `/`w (5)

where ` and `w are the characteristic length scales at
time t and tw, respectively, and λ is the corresponding
autocorrelation exponent. For the choice xc = t/tw, the
corresponding autocorrelation exponent is αλ where the
growth exponent α relates ` and t [see Eq. (2)]. Fisher and
Huse (FH) in their study of ordering spin glasses proposed

a bound on λ which only depends on the dimension d as
[62]

d

2
≤ λ ≤ d. (6)

Later this bound was found to be obeyed in the ferromag-
netic ordering as well [63–65]. An even stricter and more
general bound was later proposed by Yeung et al. [66]
that also includes the case of conserved order-parameter
dynamics.

In the context of polymer collapse, although analo-
gous to coarsening phenomena in general, this particular
aspect of aging has received very rare attention [67,68].
There, like in other soft-matter systems [69–71] the results
indicated presence of subaging, i.e., evidence for scaling
similar to equation (5) but as a function of xc = t/tµw
with µ < 1. Afterwards, there were no attempts to quan-
tify this scaling with respect to the ratio of the growing
length scale. In our approach, both with off-lattice and
lattice models we showed that simple aging scaling as in
equation (5) with respect to the ratio of the cluster sizes
can be observed [37–40]. Thus to quantify the aging scal-
ing, by choosing xc = Cs(t)/Cs(tw) one has to transform
equation (5) to

C(t, tw) ∼
[
Cs(t)

Cs(tw)

]−λc

(7)

where λc is the associated autocorrelation exponent which
is related to the traditional exponent λ via the relation
λc = λ/d.

3 Recent Monte Carlo results in d = 3

In this section we will review the very recent developments
by us concerning the kinetics of homopolymer collapse
from all above mentioned three perspectives. We will com-
pare the results from an off-lattice model (OLM) and
a lattice model (LM), focusing in this section on d = 3
dimensions. New results for the special case of d = 2 will
be presented in the next section to check the validity of
the observations in general. Before moving on to a dis-
cussion of our findings next we first briefly describe the
different models and methodologies used in our studies.

3.1 Models and methods

For OLM, we consider a flexible bead-spring model where
the connectivity between two successive monomers or
beads is maintained via the standard finitely extensible
non-linear elastic (FENE) potential

EFENE(rii+1) = −K
2
R2 ln

[
1−

(
rii+1 − r0

R

)2
]
. (8)

We chose the force constant of the spring K = 40, the
mean bond length r0 = 0.7 and the maximum allowed
deviation from the mean position R = 0.3 [72]. Monomers
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were considered to be spherical beads with diameter
σ = r0/2

1/6. The nonbonded interaction between the
monomers is given by

Enb(rij) = ELJ (min[rij , rc])− ELJ(rc), (9)

where

ELJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(10)

is the standard Lennard-Jones (LJ) potential. Here ε (= 1)
is the interaction strength and rc = 2.5σ the cut-off radius.

For LM, we consider a variant of the interactive self-
avoiding walk on a simple-cubic lattice, where each lattice
site can be occupied by a single monomer. The Hamilto-
nian is given by

H = −1

2

∑
i6=j,j±1

w(rij), where w(rij) =

{
J rij = 1

0 else
.

(11)
Here rij is the distance between two nonbonded monomers
i and j, w(rij) is an interaction parameter that considers
only nearest neighbours, and J (= 1) is the interaction
strength. We allowed a fluctuation in the bond length by
considering diagonal bonds, i.e., the possible bond lengths
are 1,

√
2 and

√
3. The model has been independently

studied for equilibrium properties [73,74]. It has certain
similarities with the bond-fluctuation model [75]. For a
comparison between them, please see reference [76].

The dynamics in the models can be introduced via
Markov chain MC simulations [46,77], however, with the
restriction of allowing only local moves. For OLM the
local moves correspond to shifts of a randomly selected
monomer to a new position randomly chosen within
[−σ/10 : σ/10] of its current position. For LM, too, the
move set consists of just shifting a randomly chosen
monomer to another lattice site such that the bond con-
nectivity constraint is maintained. These moves are then
accepted or rejected following the Metropolis algorithm
with Boltzmann criterion [46,77]. The time scale of the
simulations is one MC sweep (MCS) which consists of N
(where N is the number of monomers in the chain) such
attempted moves.

The collapse transition temperature is Tθ(N → ∞)
≈ 2.65 ε/kB and ≈ 4.0 J/kB for OLM and LM, respec-
tively [39,40]. In all the subsequent discussion, the unit
of temperature will always be ε/kB or J/kB with the
Boltzmann constant kB being set to unity. Following the
standard protocol of nonequilibrium studies we first pre-
pared initial conformations of the polymers at high tem-
perature Th ≈ 1.5Tθ that mimics an extended coil phase.
Then this high-temperature conformation was quenched
to a temperature Tq < Tθ. Since LM is computationally
less expensive than OLM, the chain length of polymer
used for LM is longer than what is used for OLM. Note
that except for the evolution snapshots, for both mod-
els, all the results presented were obtained after averaging
over more than 300 independent runs. For each such run,
the starting conformation is an extended coil which were

obtained independently of each other by generating self-
avoiding walks using different random seeds and then
equilibrating them at the high temperature Th.

3.2 Phenomenological picture of the collapse

As mentioned before even though the sausage picture
of de Gennes [20] is the pioneer in describing the phe-
nomenology of the collapse dynamics, all simulation stud-
ies provided evidence in support of the pearl-necklace
picture of HG [29]. In our simulations, too, both with
OLM and LM, we observed intermediates that support the
pearl-necklace phenomenology. Typical snapshots which
we obtained from our simulations are shown in Figure 1.
The sequence of events happening during the collapse is
captured by these snapshots. At initial time the poly-
mer is in an extended state with fluctuations of the local
monomer density along the chain. Soon there appear a
number of local clusters of monomers which then start
to grow by withdrawing monomers from the rest of the
chain. This gives rise to the formation of the so called
pearl-necklace. Once the tension in the chain is at maxi-
mum, two successive clusters along the chain coalesce with
each other to grow in size. This process goes on until
a single cluster or globule is formed. The final stage of
the collapse is the rearrangement of the monomers within
the single cluster to form a compact globule. This last
stage, however, is difficult to disentangle from the previous
stages.

The first two stages of formation and growth of clus-
ters during the collapse of a polymer as demonstrated in
Figure 1 are clearly reminiscent of usual coarsening phe-
nomena in particle or spin systems. As already mentioned
traditionally for studying coarsening one starts with an
initial state where the distribution of particles or spins
is homogeneous, e.g., homogeneous fluid or paramagnet
above the critical temperature. Similarly to study the col-
lapse kinetics one starts with a polymer in the extended
coil phase which is analogous to the homogeneous phase in
particle or spin systems. Usual coarsening sets in when the
initial homogeneous configuration is suddenly cooled down
to a temperature below the critical temperature where
the equilibrium state is an ordered state, e.g., condensed
droplet in fluid background or ferromagnet. Similarly, for
a polymer, the collapse occurs when the temperature is
suddenly brought down below the corresponding collapse
transition temperature. There the equilibrium collapsed
phase is analogous to the droplet phase in fluids.

Now coarsening refers to the process via which the ini-
tial homogeneous system evolves while approaching the
ordered phase. This happens via the formation and sub-
sequent growth of domains of like particles or spins. This
is illustrated in the upper panel of Figure 2 where we
show the time evolution of the droplet formation in a
fluid starting from a homogeneous phase via MC sim-
ulations of the Ising lattice gas. At early times many
small domains or droplets are formed which then coarsen
to form bigger droplets and eventually giving rise to a
single domain or droplet. A similar sequence of events
is observed during collapse of a polymer as shown once
again in the lower panel of Figure 2 which explains the
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Fig. 1. Time-evolution snapshots during collapse of a homopolymer showing pearl-necklace formation, following a quench from
an extended coil phase to a temperature, Tq = 1 for OLM and Tq = 2.5 for LM, in the globular phase. The chain lengths N
used are 724 and 4096 for OLM and LM, respectively. Taken from reference [41].

Fig. 2. Illustration of the similarities between the collapse kinetics and the usual coarsening of a particle system. The upper panel
shows evolution snapshots for the droplet formation in a particle system using the Ising lattice gas in two spatial dimensions.
The lower panel shows the evolution of a homopolymer obtained from simulation of the OLM.
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phenomenological analogy of collapse with usual coarsen-
ing phenomena. Coarsening from a theoretical point of
view is understood as a scaling phenomenon which means
that certain morphology-characterizing functions of the
system at different times can be scaled onto each other
using corresponding scaling functions [4,48]. This scaling
in turn also implies that there must be scaling of the time-
dependent length scale, too, which in most of the cases
shows a power-law scaling like in equation (2). Based on
this understanding in general and the above mentioned
analogy we will discuss in the remaining part of this
section how to investigate the presence of nonequilibrium
scaling laws in the dynamics of collapse of a homopolymer.

3.3 Relaxation behaviour of the collapse

In all earlier studies, the straightforward way to quantify
the kinetics was to monitor the time evolution of the over-
all size of the polymer, i.e., the squared radius of gyration
given as

R2
g =

1

N

N∑
i=1

(ri − rcm)2 (12)

where rcm is the center of mass of the polymer. In the
coiled state (above Tθ), R

2
g ∼ N2νF with νF = 3/5, in the

Flory mean-field approximation, whereas in the globular
state (below Tθ), R

2
g ∼ N2/d is much smaller [78]. Such

decay of R2
g with time is shown in Figure 3a for both

OLM and LM. Although in some of the earlier studies a
power-law decay of R2

g is suggested, in most cases or at
least in the present cases that does not work. Rather, the
decay can be well described by the form

R2
g(t) = b0 + b1 exp

[
−
(
t

τf

)β]
, (13)

where b0 corresponds to the saturated value of R2
g(t) in the

collapsed state, b1 is associated with the value at t = 0,
and β and τf are fitting parameters. For details about
fitting the data with the form (13), see references [39]
and [40] for OLM and LM, respectively. An illustration of
how appropriately this form works is shown in Figure 3a.
There the respective solid lines are fits to the form (13).
While the above form does not provide any detail about
the specificity of the collapse process, it gives a measure of
the collapse time τc via τf . However, to avoid the unreli-
able extraction of the collapse time from such a fitting, one
could alternatively use a rather direct way of estimating
τ50 which corresponds to the time when R2

g(t) has decayed

to half of its total decay, i.e.,
[
R2
g(0)−R2

g(∞)
]
/2. Data

for both models as shown in Figure 3b reflect a power-law
scaling, to be quantified with the form

τc = BNz + τ0, (14)

where B is a nontrivial constant that depends on the
quench temperature Tq, z is the corresponding dynamical

Fig. 3. (a) Time dependence of the squared radius of gyra-
tion, R2

g(t), for both OLM (Tq = 1.0) and LM (Tq = 2.5).
The solid lines are fits to the data using the form described
by equation (13) with β = 1.18 and 1.15 for OLM and LM,
respectively. (b) Scaling of the collapse time, τ50, with respect
to N . The solid lines are fits to the form (14). The dashed line
is a fit of the OLM data for N ≥ 128, to the form (14) by fixing
z = 1. Adapted from reference [41].

exponent, and the offset τ0 comes from finite-size correc-
tions. For LM a fitting (shown by the corresponding solid
line) with the form (14) provides z = 1.61(5) and is almost
insensitive to the chosen range. However, for OLM the fit-
ting is sensitive to the chosen range. While using the whole
range of data provides z = 1.80(6) (shown by the corre-
sponding solid line), fitting only the data for N ≥ 128
yields z = 1.20(9). In this regard, a linear fit [fixing z = 1
in (14)], shown by the dashed line, also works quite well.
For a comparison of the values of z obtained by us with
the ones obtained by others, see Table 1.

3.4 Coarsening during collapse

Having the phenomenological analogy between collapse of
a polymer and usual coarsening of particle and spin sys-
tems established, in this subsection we present the scaling
of the cluster growth during the collapse under the light
of well established protocols of the coarsening in particle
or spin systems.
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3.4.1 Scaling of morphology-characterizing functions

Coarsening in general is a dynamical scaling phenomenon,
where certain structural quantities that quantify the
morphology of the system, e.g., two-point equal-time
correlation functions and structure factors show scaling
behaviour with time [4,48]. This means that the structure
factors at different times can be collapsed onto the same
master curve by using the relevant length scales, i.e., clus-
ter size or domain size at those times. This fact is used
to extract the relevant time-dependent length scale that
governs the kinetics of coarsening. For example one uses
the first moment of the structure factor at a particular
time to have a measure of the length scale or the average
domain size during coarsening. However, to understand
the kinetics of cluster growth during the collapse of a
polymer traditionally the average number of monomers
present in a cluster is used as the relevant length scale
Cs(t). For studying the OLM we used this definition to
calculate Cs(t), details of which can be found in reference
[39] and later will also be discussed in Section 4.1 for the
d = 2 case. The validity of this definition as the relevant
length scale can be verified by looking at the expected
scaling of the cluster-size distribution P (Cd, t), i.e., the
probability to find a cluster of size Cd among all the clus-
ters at time t. Using this distribution we calculate the
average cluster size as Cs(t) = 〈Cd〉. The corresponding
scaling behaviour is given as

P (Cd, t) ≡ Cs(t)−1P̃ [Cd/Cs(t)], (15)

where P̃ is the scaling or master function. This means that
when Cs(t)P (Cd, t) at different times are plotted against
Cd/Cs(t) they should fall on top of each other. This veri-
fication is presented in Figure 4 where in the main frame
we show plots of the (unscaled) distributions P (Cd, t) at
different times, and in the inset the corresponding scaling
plot using the form (15). Coincidentally, here, the tail of
the distribution shows an exponential decay as observed
in coarsening of particle [79] and spin systems [80,81].

On the other hand, for a lattice model, one can use
the advantage of having the monomers placed on lattice
points. There a two-point equal-time correlation function
can be defined as

C(r, t) = 〈ρ(0, t)ρ(r, t)〉 (16)

with

ρi(r, t) =
1

mr

∑
j,rij=r

θ(rj , t) (17)

where the characteristic function θ is unity if there is a
monomer at position rj or zero otherwise. mr denotes the
number of possible lattice points at distance r from an
arbitrary point of the lattice. Plots for such correlation
functions at different times during the collapse of a poly-
mer using LM are shown in the main frame of Figure 5.
Slower decay of C(r, t) as time increases suggests the pres-
ence of a growing length scale. Thus following the trend
in usual coarsening studies one can extract an average

Fig. 4. Normalized distribution of the cluster sizes at three
different times during the coarsening stage of the collapse at
Tq = 1 for a polymer with N = 724 modeled by OLM. The
inset demonstrates the scaling behaviour of the collapse phe-
nomenon via the semi-log plot of the corresponding scaling
of the distribution functions. The solid line shows consistency
of the data with an exponential tail. Taken from reference
[39]. (@ Royal Society of Chemistry, 2017. This figure is sub-
ject to copyright protection and is not covered by a Creative
Commons license.)

Fig. 5. Morphology characterizing two-point equal-time corre-
lation function C(r, t) at different times, showing the presence
of a growing length scale during collapse of a polymer obtained
via simulation of LM with Tq = 2.5 and N = 4096. The inset
shows the presence of scaling in the process via a plot of the
same data as a function of r/`(t) where `(t) is the characteristic
length scale calculated using (18) with h = 0.1. Adapted from
reference [40]. (@ AIP, 2017. This figure is subject to copyright
protection and is not covered by a Creative Commons license.)

length scale `(t) that characterizes the clustering during
the collapse, via the criterion

C (r = `(t), t) = h, (18)

https://epjb.epj.org/
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where h denotes an arbitrary but reasonably chosen value
from the decay of C(r, t). Calculation of `(t) in the above
manner automatically suggests to look for the dynamical
scaling of the form

C(r, t) ≡ C̃ (r/`(t)) , (19)

where C̃ is the scaling function. Such a scaling behaviour
is nicely demonstrated in the inset of Figure 5, where we
show the corresponding data presented in the main frame
as function of r/`(t). Note that here `(t) gives the linear
size of the ordering clusters. Thus in order to compare
`(t) of LM with the cluster size Cs(t) obtained for OLM
one must use the relation `(t)d ≡ Cs(t). For a check of the
validity of this relation, see reference [40].

3.4.2 Cluster growth

Once it is established that the coarsening stage of polymer
collapse is indeed a scaling phenomenon, the next inter-
est goes towards checking the associated growth laws. In
Figure 6a, we show the time dependence of Cs(t) for OLM
and LM. To make the data from both models visible on
the same scale there the y-axis is scaled by the correspond-
ing chain length N of the polymer. Note that saturation
of the data for LM at a value less than unity is due to the
fact that there we have calculated the average cluster size
Cs(t) from the decay of the correlation function C(r, t)
as described in the previous subsection. This gives a pro-
portionate measure of the average number of monomers
present in the clusters and thus the data saturate to a
value less than unity.

In coarsening kinetics of binary mixtures such time
dependence of the relevant length scale can be described
correctly when one considers an off-set in the scaling
ansatz [80,82–84]. Similarly, it was later proved to be
appropriate for the cluster growth during the collapse of a
polymer [36,39]. Following this one writes down the scaling
ansatz as

Cs(t) = C0 +Atαc , (20)

where C0 corresponds to the cluster size after crossing
over from the initial cluster formation stage, and A is
a temperature-dependent amplitude. The solid lines in
Figure 6a are fits to the form (20) yielding αc = 0.98(4)
and 0.62(5) for OLM and LM, respectively.

One can verify the robustness of the growth by studying
the dependence of cluster growth on the quench temper-
ature Tq. For this one uses data at different Tq and can
perform a scaling analysis based on nonequilibrium finite-
size scaling (FSS) arguments [39]. The nonequilibrium
FSS analysis was constructed based on FSS analyses in
the context of equilibrium critical phenomena [85,86]. An
account of the FSS formulation in the present context can
be found in reference [39]. In brief, one introduces in the
growth ansatz (20) a scaling function Y (yp) as

Cs(t)− C0 = (Cmax − C0)Y (yp), (21)

Fig. 6. (a) Plots of the average cluster size Cs(t)/N , as func-
tion of time for the systems presented in Figure 1. To make
both the data visible on the same plot, we divide the time
axis by a factor m to obtain tp = t/m, where m = 1× 106 and
3.5× 106 for OLM and LM, respectively. The solid lines are fits
to the form (20) with αc = 0.98 for OLM and αc = 0.62 for
LM. The plots in (b) and (c) demonstrate the scaling exercise
for OLM with αc = 1.0 and LM with αc = 0.62, respectively,
showing that data for Cs(t) at different quench temperatures
Tq can be collapsed onto a master curve using a nonuniversal
metric factor in the scaling variable. The solid lines repre-
sent the corresponding Y (yp) ∼ y−αc

p behaviour. Adapted from
reference [41].

which implies

Y (yp) =
Cs(t)− C0

Cmax − C0
, (22)

where Cmax ∼ N is the maximum cluster size a finite sys-
tem can attain. In order to account for the temperature-
dependent amplitude A(Tq), one uses the scaling variable

yp = fs
(N − C0)1/αc

t− t0
(23)

https://epjb.epj.org/
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where

fs =

[
A(Tq,0)

A(Tq)

]1/αc

. (24)

The metric factor fs is introduced for adjusting the
nonuniversal amplitudes A(Tq) at different Tq. Here, in
addition to C0 one also uses the crossover time t0 from
the initial cluster formation stage. A discussion of the esti-
mation of C0 and t0 can be found in references [39,40].
While performing the exercise we tune the parameters αc
and fs to obtain a data collapse along with the Y (yp)
∼ y−αc

p behaviour in the finite-size unaffected region. In
Figures 6b and 6c, we demonstrate such scaling exercises
with αc = 1.0 and 0.62 for OLM and LM, respectively.
For fs, we use the reference temperature Tq,0 = 1.0 and
2.0 for OLM and LM, respectively. The collapse of data
for different Tq and consistency with the corresponding
y−αc
p behaviour in both plots suggest that the growth is

indeed quite robust and can be described by a single uni-
versal FSS function with nonuniversal metric factor fs in
the scaling variable. However, αc in OLM is larger than for
LM, a fact in concurrence with the values of z estimated
previously, and thus to some extent providing support to
the heuristic relation z ∼ 1/αc. The use of a nonuniver-
sal metric factor in order to find a universal FSS function
was first introduced in the context of equilibrium criti-
cal phenomena using different lattice types [87,88]. After
adapting this concept to nonequilibrium FSS of polymer
kinetics in references [39,40] as explained above, it was
recently also transferred to spin systems where its useful-
ness has been demonstrated in a coarsening study of the
Potts model with conserved dynamics [81].

3.5 Aging and related scaling

Apart from the scaling of the growing length scale or the
cluster size that deals only with equal-time quantities,
coarsening processes are associated with the aging phe-
nomenon as well. Thus along the same line, in order to
check aging during collapse of a polymer one can calcu-
late the two-time correlation or autocorrelation function
described in equation (4). However, unlike for spin sys-
tems here the choice of the observable Oi is not trivial.
Nevertheless, for OLM we identified the observable Oi as
a variable based on the cluster identification method. We
assign Oi = ±1 depending on whether the monomer is
inside (+1) or outside (−1) a cluster. It is apparent that
our cluster identification method is based on the local den-
sity around a monomer along the chain. Thus C(t, tw)
calculated using this framework gives an analogue of the
usual density-density autocorrelation function in particle
systems. On the other hand for LM, we assign Oi = ±1 by
checking the radius r at which the local density, given by
ρi(r, t) [see Eqs. (16) and (17)], first falls below a threshold

of 0.1. If this radius is smaller than
√

3 we assign Oi = 1,
marking a high local density, otherwise we chose Oi = −1
to mark a low local density. For details see references [39]
and [40] for OLM and LM, respectively.

Fig. 7. Demonstration of aging phenomenon during collapse
of a polymer for (a) OLM (N = 724, Tq = 1.0) and (b)
LM (N = 8192, Tq = 1.5). The main frames show plots of
the autocorrelation functions calculated using (4) at different
waiting times tw, as mentioned there. The insets show the cor-
responding scaling plots with respect to the scaling variable
xc = Cs(t)/Cs(tw), in accordance with (7). The solid lines
depict the consistency of the data with a power law having
an exponent λc = 1.25. The plots in (a) and (b) are adapted
from references [39] and [40], respectively. (Panels (a) and (b)
are subject to copyright protection and are not covered by a
Creative Commons license.)

In the main frames of Figures 7a and 7b we show plots
of the autocorrelation function C(t, tw) against the trans-
lated time t − tw for (a) OLM and (b) LM. Data from
both the cases clearly show breaking of time-translation
invariance, one of the necessary conditions for aging. It is
also evident that as tw increases, the curves decay more
slowly, an indication of slow relaxation behaviour fulfill-
ing the second necessary condition for aging. As a check
of the final condition for aging, i.e., dynamical scaling, in
principle one could study the scaling with respect to the
scaled time t/tw. Although such an exercise provides a
reasonable collapse of data for OLM, data for LM do not
show scaling with respect to t/tw. In this regard, one could
look for special aging behaviour that can be achieved by
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considering [58]

C(t, tw) ≡ G
(
h(t)

h(tw)

)
, (25)

with the scaling variable

h(t) = exp

(
t1−µ − 1

1− µ

)
. (26)

Here, G is the scaling function and µ is a nontrivial
exponent. Special aging with 0 < µ < 1 is referred to
as subaging and has been observed mostly in soft-matter
systems [69–71], in spin glasses [89–91], and recently in
long-range interacting systems [92]. The µ > 1 case is
referred to as superaging and was claimed to be observed
in site-diluted Ising ferromagnets. However, Kurchan’s
lemma [93] rules out the presence of apparent superaging
[94]. This was further consolidated via numerical evidence
in reference [95]. There it has been argued that the true
scaling is observed in terms of the ratio of growing length
scales at the corresponding times, i.e., `(t)/`(tw). In the
case of polymer collapse with LM, too, one apparently
observes special scaling of the form (25) with µ < 1, i.e.,
subaging in this case. However, following the argument
of Park and Pleimling [95], one gets also here the sim-
ple scaling behaviour with respect to the scaling variable
xc = Cs(t)/Cs(tw), thus ruling out the presence of sub-
aging. Such scaling plots of the autocorrelation data both
for OLM and LM are shown in the insets of Figure 7. In
both cases the data seem to follow the power-law scaling
with a decay exponent λc ≈ 1.25.

Relying on the fact that the calculation of C(t, tw) is
based on the cluster identification criterion, i.e., by calcu-
lating the local monomer densities around each monomer
along the polymer chain, it gives an analogue to the usual
density-density autocorrelation function as used in glassy
systems. Keeping in mind the corresponding argument for
the bounds on the respective autocorrelation exponent
for spin-glass and ferromagnetic ordering, one can thus
assume [37] C(t, tw) ∼ 〈ρ(t)ρ(tw)〉 where ρ is the average
local density of monomers. Now let us consider a set of Cs
monomers at t (�tw) and assume that at tw the polymer
is more or less in an extended coil state where the squared
radius of gyration scales as R2

g ∼ N2νF . Using Cs ≡ N in
this case one can write

ρ(tw) ∼ Cs/Rgd ∼ C−(νF d−1)s . (27)

The above fact can be verified from Figures 8a and 8b
for OLM and LM, respectively, where we plot the aver-
age geometrical (Euclidean) distance Re (∼ Rg) between
the monomers i and j placed at a distance |i − j| along
the contour of the chain at different times during the col-
lapse. For both cases, the data at early times show that
the behaviour is consistent with an extended coil gov-
erned by the Flory exponent νF = 3/5. This consolidates
the foundation of the relation (27) provided tw is at early
times.

Fig. 8. Geometrical distance between monomers i and j which
are at a distance |i − j| along the contour of the chain for a
polymer using (a) OLM and (b) LM, at different times men-
tioned. The respective chain lengths are N = 724 and 2048
and the quench temperatures are Tq = 1.0 and 2.5. The solid
line shows the expected behaviour for an extended coil and
the dashed line shows the behaviour in the collapsed phase.
The plot in (a) is taken from reference [39]. (Panel (a) is sub-
ject to copyright protection and is not covered by a Creative
Commons license.)

Now at the observation time t there are two possibilities.
Firstly, if t is late enough, then we expect that all the
monomers will be inside a single cluster which gives Rg ∼
C

1/d
s so that ρ(t) = 1. Thus considering the maximum

overlap between ρ(t) and ρ(tw) we get

C(t, tw) ∼ C−(νF d−1)s . (28)

This gives the lower bound. Secondly, with the assumption
that the polymer is in an extended coil state even at time
t, then ρ(t) = ρ(tw) holds and we obtain

C(t, tw) ∼ C−2(νF d−1)s , (29)

providing the upper bound for the autocorrelation expo-
nent λc. Thus by combining (28) and (29) we arrive at the
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bounds [37]

(νF d− 1) ≤ λc ≤ 2(νF d− 1). (30)

Putting νF = 3/5 in (30) one would get 4/5 ≤ λc ≤ 8/5.
Further, inserting the more precise numerical estimate in
d = 3 as [96,97] νF = 0.587 597, we get

0.762 791 ≤ λc ≤ 1.525 582. (31)

The validity of this bound can also be readily verified
from the consistency of our data in the insets of Figure 7
with the solid lines having a power-law decay with expo-
nent 1.25. We make the choice of tw in all the plots so
that the assumption that at time tw the polymer is in an
extended coil state is valid. This choice can also be appre-
ciated from the plots in Figures 8a and 8b for OLM and
LM, respectively. There it is evident that the extended
coil behaviour (Re ∼ |i − j|3/5) at early times is gradu-
ally changing to the behaviour expected for the collapsed
phase (Re ∼ |i− j|1/d with d = 3) at late times. The lit-
tle off behaviour of the data for higher tw in the inset of
Figure 7 is indeed due to the fact that at those times the
formation of stable clusters has already initiated to change
the extended coil behaviour of the chain. Confirmation of
the value of λc via FSS can also be done as presented in
references [37,40].

To confirm the robustness of the above bound and the
value of λc, we plot C(t, tw) from different temperatures
Tq in Figure 9a for OLM and Figure 9b for LM. Mere
plotting of those data yields curves that are parallel to
each other due to different amplitudes. However, if one
uses a multiplier f on the y-axis to adjust those differ-
ent amplitudes for different Tq one obtains curves that
fall on top of each other as shown. The values of f used
for different Tq are mentioned in the tables within the
plots. Note that this non-trivial factor f is similar to the
nonuniversal metric factor fs used for the cluster growth
in the previous subsection. The solid lines in both the
cases show the consistency of the data with the scaling
form (7) with λc = 1.25. To further check the univer-
sality of the exponent λc we now compare the results
from aging scaling obtained for the polymer collapse using
the two polymer models. For that we plot in Figure 9c
the data for different Tq coming from both models on
the same graph. Here again, we have used the multiplier
f for the data collapse. Collapse of data irrespective of
the model and the temperatures Tq onto a master-curve
behaviour and their consistency with the power-law scal-
ing (7) having λc = 1.25 (shown by the solid line), speaks
for the universal nature of aging scaling during collapse of
a polymer.

4 Results for the case of OLM in d = 2

In this section we present some preliminary results for the
kinetics of polymer collapse in d = 2 dimensions using only
OLM as defined by equations (8), (9), and (10). Experi-
ments on polymer dynamics are often set up by using an
attractive surface which effectively confines the polymer to

Fig. 9. Plots demonstrating that aging scaling of the auto-
correlation function C(t, tw) at different Tq for (a) OLM and
(b) LM can be described by a single master curve when plot-
ted as a function of xc = Cs(t)/Cs(tw). The solid lines there
again correspond to (7) with λc = 1.25. For OLM, the used
data are at tw = 5 × 103, 104 and 3 × 104, respectively, for
Tq = 0.6, 1.0 and 1.5. For LM, data for all temperatures are
at tw ≈ 103. Note that here we have simply multiplied the y-
axis by a factor f to make the data fall onto the same master
curve. (c) Illustration of the universal nature of aging scaling
in the two models. Here the used data are at tw = 104 and 103

for OLM and LM, respectively. In all the plots N = 724 and
4096 for OLM and LM, respectively. The plot in (a) is taken
from reference [39], and (b) and (c) are adapted from references
[40,41]. (This figure is subject to copyright protection and is
not covered by a Creative Commons license.)
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Fig. 10. Plot showing the time evolution of a polymer in d = 2 using OLM after being quenched from a high-temperature
extended coil phase to a temperature Tq = 1.0 where the equilibrium phase is globular. The times are mentioned in there and
the used chain length is N = 512.

move in two-dimensional space. Thus understanding the
scenario in pure d = 2 dimensions provides some impres-
sion about such quasi-two-dimensional geometry [5,98].
From a technical point of view, simple Metropolis simula-
tions of a polymer in d = 2 are much more time consuming
than in d = 3. This is due to the absence of one degree
of freedom which makes the collapse of the polymer dif-
ficult via local moves and thereby increasing the intrinsic
time scale of collapse. In fact even in equilibrium there
are very few studies [99–102] and in particular we did
not find any study that gives an idea about the collapse
transition temperature. Since for the study of the kinetics
the actual value of the transition temperature is not cru-
cial we performed a few equilibrium simulations in d = 2
covering a wide range of temperatures and found that
at Tq = 1.0 the polymer is in the collapsed phase for a
chain length of N = 512, while it remains in an extended
coil state at Th = 10.0. So for this work we have used a
polymer of length N = 512 and prepared an initial config-
uration at Th = 10.0 before quenching it to a temperature
Tq = 1.0. All the other specifications for the simulation
method remain the same as we discussed it for OLM in
Section 3.1, apart from confining the displacement moves
to only d = 2 dimensions.

In Figure 10 we show the time evolutions during the
collapse of the d = 2 polymer at Tq = 1.0. The sequence
of events portrayed by the snapshots shows formation
of local ordering as observed for d = 3, although the
formation of a “pearl-necklace” is not so evident. By
comparing with the snapshots presented for d = 3 in

Fig. 11. Time dependence of the average squared radius of
gyration R2

g during collapse of a polymer in d = 2. The system
size and the quench temperature are the same as in Figure 10.
The continuous line is a fit to the data using equation (13).

Figures 1 and 2, it is apparent that the initial process of
local cluster formation is much slower in d = 2. However,
once the local clusters have been formed (as shown in
the snapshot at t = 106 MCS) the time evolution shows
coarsening of these clusters to finally form a single cluster
or globule. Thus the overall phenomenology seems to be
in line with the d = 3 case.
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Following what has been done for the d = 3 case, at
first we look at the time dependence of the overall size of
the polymer by monitoring the squared radius of gyra-
tion R2

g. In Figure 11 we show the corresponding plot

of R2
g (calculated as an average over 300 different initial

realizations). Like in the d = 3 case, the decay of R2
g can

be described quite well via the empirical relation men-
tioned in equation (13). The best fit obtained is plotted
as a continuous line in the plot. The obtained value of the
non-trivial parameter β in this fitting is ≈ 0.89, which is
compatible with the d = 3 case [39]. Still, the dependence
of β on the chain length N would be worth investigating
and will be presented elsewhere. Along the same line an
understanding of the scaling of the collapse time with the
chain length will be interesting to compare with the d = 3
case. As this Colloquium is focused more on the cluster
coarsening and aging during the collapse, here, we abstain
ourselves from presenting results concerning the scaling of
the collapse time.

4.1 Cluster coarsening in d = 2

As can be seen from the snapshots in Figure 10, during
the course of the collapse, like in d = 3, also for d = 2 one
notices formation of local clusters which via coalescence
with each other merge into bigger clusters and eventually
form a single cluster or globule. We measure the average
cluster size in the following way. First we calculate the
total numbers of monomers in the nearest vicinity of the
ith monomer as

ni =
N∑
j=1

Θ(rc − rij), (32)

where rc is the cutoff distance used in the nonbonded
energy (9) and Θ is the Heaviside step function. If ni ≥
nmin, where nmin is a tunable lower cutoff, this is inter-
preted as signal for a cluster around the ith monomer
that contains at least those ni closeby monomers. Note
that by construction we treat agglomerates of less than
nmin monomers as random fluctuation or noise and do not
classify them as a cluster. By performing this construction
for all N monomers, one obtains the number of monomers
that are inside a cluster. This number, however, would
greatly overestimate the total number of clusters since
neighbouring monomers typically signal one and the same
cluster. We remove this overcounting by considering the
associated Venn diagram, that is for each monomer with
ni ≥ nmin we associate a set Ai containing the ni neigh-
bouring monomers satisfying the Θ-constraint in (32) and
then check the intersection of different sets Ai and Aj .
If the intersection is the empty set, the clusters associ-
ated with monomers i and j are different, otherwise the
ith and jth monomers belong to the same cluster formed
by the union of Ai and Aj (and hence consisting of more
than max{ni, nj} monomers). The resulting set Ai ∪ Aj
obtained this way could again be intersecting with another
set which can be tackled in the same way. Thus we do this
exercise repeatedly until we get a number of discrete sets
that correspond to the discrete clusters.

Fig. 12. (a) Plot of the average number of clusters of
monomers nc as a function of time during collapse of a poly-
mer with chain length N = 512 modeled via OLM in d = 2 at
Tq = 1.0. Results for different choices of nmin are shown demon-
strating the late-time consistency of the data with each other.
(b) Illustration of the scaling of the cluster growth during col-
lapse via a plot of the average cluster size Cs as a function of
time. Here we have used nmin = 12. The dashed and the solid
lines correspond to different power-law behaviours observed at
early and late times, respectively.

In this way the actual number nc(t) of discrete clus-
ters k = 1, . . . , nc(t) can be identified and the number of
monomers mk within each cluster determined. Finally the
average cluster size follows as

Cs(t) =
1

nc(t)

nc(t)∑
k=1

mk. (33)

Note that in this calculation we do not vary the cutoff
radius rc and fix it to the same value (rc = 2.5σ) as we
have used for our simulations. Hence, the obtained values
of nc(t) and Cs(t) depend only on one nontrivial parame-
ter, namely nmin. Figure 12a shows how the above cluster
identification depends on different choices for nmin during
the collapse of a polymer having length N = 512. There
we have plotted the average number of clusters as a func-
tion of time for different nmin. One can notice for choices
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Fig. 13. Demonstration of the breakdown of time-translation
invariance by plotting the autocorrelation function C(t, tw) as
a function of the translated time t − tw, during collapse of a
polymer in d = 2 modeled by the OLM. The chain length and
Tq are the same as in Figure 12. The chosen values of the
waiting times tw are mentioned within the graph.

of nmin ≥ 10 the late-time behaviours are more or less
indistinguishable. However, the initial structure formation
stage is well covered by the choice nmin = 12. Thus we
consider nmin = 12 as the optimal value to identify and
calculate the average cluster size.

In Figure 12b we show the time dependence of the aver-
age cluster size. One can clearly see the presence of two
distinct phases. The early-time phase corresponds to the
stage of stable cluster formation (≤106 MCS) and the later
phase is the coarsening phase. The early-time data are
consistent with a behaviour Cs(t) ∼ t1/4 which is slower
than the corresponding behaviour in d = 3 (see Fig. 8(b)
in Ref. [39]). At late times, on the other hand, the data
can be described by a Cs(t) ∼ t behaviour consistent with
a d = 3 polymer using OLM. However, we caution the
reader that one must be careful before interpreting the lin-
ear behaviour. In this regard, we believe that a proper FSS
analysis as done for the d = 3 case is required to confirm it,
for which one needs data from different system sizes. This
analysis is in progress and will be presented elsewhere.

4.2 Aging in d = 2

We now move on to present some preliminary results on
the aging dynamics during polymer collapse in d = 2 using
the OLM. Like in the d = 3 case here also, we probe aging
via calculation of the autocorrelation function described in
(4) by using the same criterion for Oi as used in d = 3 for
the OLM. To check the presence of aging we first confirm
the absence of time-translation invariance. This is demon-
strated in Figure 13 for the same system as presented for
the cluster growth in Figure 12. The plot shows the auto-
correlation function C(t, tw) as a function of the translated
time t− tw for four different values of tw as mentioned in
the figure. The absence of time-translation invariance is
evident from the non-collapsing behaviour of the data.

Fig. 14. Illustration of the presence of dynamical scaling of
the autocorrelation function shown in Figure 13, plotted here
on a double-log scale as a function of the scaling variable xc =
Cs(t)/Cs(tw). The solid line shows the consistency of the data
with a power-law decay having an exponent λc = 1.0.

Along with that one can also notice that the larger tw
the slower the autocorrelation decays which confirms the
second criterion of aging, i.e., slow dynamics. The last
criterion for aging is the presence of dynamical scaling. In
the present case of polymer collapse in d = 2, unlike in the
d = 3 case with OLM, we do not observe any data collapse
with respect to the scaling variable xc = t/tw. This, on the
other hand, is similar to the results obtained for the LM in
d = 3. However, to limit ourselves here rather than going
for an analysis based on subaging scaling we immediately
look for the scaling with respect to xc = Cs(t)/Cs(tw)
and indeed find a reasonable collapse of data implying
the presence of simple aging behaviour. This is demon-
strated in Figure 14 where we plot C(t, tw) as a function
of xc = Cs(t)/Cs(tw) for four different choices of tw.

The other important aspect of aging is to quantify the
autocorrelation exponent λc for which an idea can be
obtained from the double-log plot in Figure 14. There for
intermediate values of xc, the collapsed data show almost
a linear behaviour implying a power-law scaling. The solid
line corresponds to the power-law decay in equation (7)
with an exponent λc = 1 that is consistent with the data.
For a better quantification of λc one would need to do a
FSS analysis by using data from a few larger chain lengths.
From the general bound given in equation (30), one can
read off the corresponding bound in d = 2,

0.5 ≤ λc ≤ 1.0, (34)

where we have used the fact that in d = 2, the Flory
exponent is exactly νF = 0.75 [78,98]. The consistency
of our data in Figure 14 with the autocorrelation expo-
nent λc = 1 implies that in d = 2 the bound is marginally
obeyed. However, to have an appropriate verification of
the bound one needs to have a more reliable estimate of
λc as already mentioned.
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5 Conclusion and outlook

We have presented an overview of results existing in
the literature regarding the collapse dynamics of a
homopolymer in d = 3 dimensions. Although research in
this direction started long back with the proposition of the
sausage model of collapse by de Gennes, after a series of
works by Dawson and co-workers [21–26] and a few other
[27–33], it eventually faded away. Particularly, in experi-
ments it was difficult to monitor a single polymer to verify
the phenomenological theories developed around collapse
dynamics. Recently, motivated by the successful experi-
mental development for monitoring single polymers and
polymers in very dilute solutions, we have provided some
new insights in the collapse dynamics of polymers via com-
puter simulations. In this regard, we borrowed tools and
understanding from the general nonequilibrium process of
coarsening in particle and spin systems. This allowed us
to explore different nonequilibrium scaling laws that could
be associated with kinetics of the collapse transition of
polymers.

When speaking of scaling laws concerning collapse
dynamics of a polymer the first thing one looks for is
the scaling of the overall collapse time τc with the chain
length N (which was also the main focus of the studies
in the past). From a survey of the available results in this
direction it is clear that for power-law scaling of the form
τc ∼ Nz, the value of the dynamical exponent z obtained
depends on the intrinsic dynamics used in the simulations.
Especially one has to be careful about presence of hydro-
dynamics while quoting the value of z. However, in our
work with an off-lattice model via Monte Carlo dynam-
ics for large N , we obtained a value of z that is close
to the one obtained from molecular dynamics simulations
with preservation of hydrodynamic effects. This raises the
question of to what extent hydrodynamic interactions are
important during collapse. A proper answer to this could
be obtained via systematic studies of polymer models with
explicit solvent [34,103,104]. For the latter there also exist
few studies; however, with no consensus about the value of
z. In the context of doing simulations with explicit solvent
it would also be interesting to see the effect of the viscos-
ity of the solvent particles on the dynamics. Building of
such a framework is possible with an approach based on
the dissipative particle dynamics [105–108]. Recently, we
have taken up this task by using an alternative approach
to dissipative particle dynamics [109,110]. In this context,
we have successfully constructed the set up and tested that
it reproduces the correct dynamics in equilibrium taking
consideration of the hydrodynamic interactions appropri-
ately [111]. To add more to this understanding recently we
have also considered the task of doing all-atom molecular
dynamics simulations with explicit solvent [112]. There
the focus is on understanding the collapse of a polypep-
tide in water with the aim to get new insights to the
overall folding process of a protein which contains these
polypeptides as backbone.

Coming back to the scaling laws during collapse our
approach of understanding the collapse in analogy with
usual coarsening phenomena allows us to explore the clus-
ter kinetics appropriately. Our findings from studies using

both off-lattice and lattice models show that the average
cluster size Cs(t) during the collapse grows in a power-
law fashion as Cs(t) ∼ tαc . However, the growth exponent
αc is not universal with αc ≈ 1 for the off-lattice model
and αc ≈ 0.62 for the lattice model. For quantification of
this growth exponent one must be careful about the initial
cluster formation stage which sets a high off-set while fit-
ting the data to a simple power law. In this regard, we have
introduced a nonequilibrium finite-size scaling analysis
which helps to estimate the value of αc unambiguously.

Along with the growth kinetics where one deals with
single-time quantities, it is also important to have under-
standing of the multiple-time quantities which provide
information about the aging during such nonequilib-
rium processes. In analogy with the two-time density or
order-parameter autocorrelation function used in usual
coarsening of particle or spins systems, we have shown
how one can construct autocorrelation functions to study
aging during collapse of a polymer. Depending on the
nature of the model (whether off-lattice or lattice) the
chosen observable to calculate the autocorrelation may
vary; however, qualitatively they should give the same
information. Our results indeed support our choice of the
respective observables and provide evidence of aging and
corresponding dynamical scaling of the form C(t, tw) ∼
[Cs(t)/Cs(tw)]

−λc . Unlike the growth exponent, the auto-
correlation exponent was found to be λc = 1.25 irrespec-
tive of the nature of the model, implying that the aging
behaviour is rather universal. In this regard, it is worth
mentioning that even choosing two different bond crite-
ria for the lattice model (one with the diagonal bonds
and the other without it [40]) yielded cluster growth
exponents that are different, however, the autocorrelation
exponent λc still remains universal with a value of 1.25. To
check the robustness of this universality, a study of other
polymer models both off-lattice and lattice, along with
different methods of simulations as mentioned previously
is required.

In addition to the review of the existing results we
have also presented preliminary results in the context of
polymer collapse in d = 2 dimensions. To understand a
two-dimensional system is not only of fundamental inter-
est [113], but could be of relevance in the context of
polymers confined to an attractive surface. Indeed there
are experiments of synthetic polymers on two-dimensional
gold or silver surfaces [114,115]. Our results on the kinetics
of polymer collapse in d = 2 show that the phenomenology
associated with this process can still be described by the
“pearl-necklace” picture of Halperin and Goldbart, albeit
the identification of the small pearl-like clusters which
coarsen to form the final globule is not as distinct as in
the d = 3 case. Via an extension of the d = 3 method-
ologies to d = 2 , we observe that the cluster formation
stage in d = 2 is rather slow. However, the late-time coars-
ening of the clusters follows the same power-law scaling
Cs(t) ∼ tαc with αc ≈ 1. We also have presented results
for the aging dynamics in this regard as well. There the
autocorrelation function shows the same kind of power-law
scaling as in d = 3 with a corresponding exponent λc ≈ 1.
A more detailed study not only with the off-lattice model
but also with the lattice model is in progress.
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Finally, we feel that this novel approach of under-
standing the collapse dynamics of polymers from the
perspective of usual coarsening studies of particle and
spin systems shall serve as a general platform which
could be used to analyze the nonequilibrium evolution of
macromolecules in general across any conformational tran-
sition. Of course, due to their distinct features, for each
class of this transition the associated techniques shall be
modified accordingly. One has to choose the appropriate
properties of the system and find out the best quantities
that describe the corresponding transition appropriately
in nonequilibrium. For example, one can look at the helix-
coil transition of macromolecules as well [116,117]. There
certainly the average cluster size would not work as a suit-
able quantity to monitor the kinetics. Rather one may
define some local helical order parameter and look at the
corresponding time dependence.
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