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Abstract. We study statistical properties of a zero-range process (ZRP) on random networks. We derive
an analytic expression for the distribution of particles (also called node occupation distribution) in the
steady state of the ZRP in the ensemble of uncorrelated random graphs. We analyze the dependence of this
distribution on the node-degree distribution. In particular, we show that when the degree distribution is
tuned properly, one can obtain scale-free fluctuations in the distribution of particles. Such fluctuations lead
to a power law in the distribution of particles, just like in the ZRP with the hopping rate u(m) = 1 + b/m
on homogeneous graphs.

PACS. 89.75.-k Complex systems – 05.20.-y Classical statistical mechanics – 05.70.Fh Phase transitions:
general studies

1 Introduction

Many statistical systems are defined on random networks
or random lattices. Usually, this means that one considers
a system on a lattice with some irregularities, or even on
a purely random network, but instead of looking at what
happens on a single network, one performs an annealed av-
erage over a statistical ensemble of networks that is over a
collection of random graphs with some statistical weights.

The question of how averaging over the disorder influ-
ences the statistical properties of the system has been pre-
viously addressed in the context of two-dimensional sta-
tistical models. It was shown that additional degrees of
freedom related to fluctuations of the geometry can lead
to quite distinct behavior, in comparison to analogous sys-
tems defined on a fixed lattice. For example, critical prop-
erties of the two-dimensional Ising model on a fixed lattice
are described by Onsager exponents [1] while on a ran-
dom lattice, represented as a sum over planar networks,
by “dressed” KPZ-DDK ones [2,3]. A similar change of
critical exponents is observed for other models.

In this paper we address the same problem but for
a statistical system on complex random networks. As a
particularly simple but interesting example we consider
a zero-range process (ZRP), which has been thoroughly
studied on fixed networks [4–10]. The particular feature
of this out-of-equilibrium model is that under certain con-
ditions particles tend to condense on a single node. Here
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we analyze the influence of the averaging over random net-
works on the distribution of particles in the steady state.
We shall discuss an ensemble of networks with given prob-
ability distribution of degrees. To make things as simple
as possible we shall restrict the discussion to uncorrelated
networks with independent node degrees.

The paper is organized as follows. In the next section
we shall recall the definition of the ZRP on a network and
introduce quantities describing the steady state of this
model. Then we shall consider the free ZRP process being
a particular class of ZRP, in which the hopping rates do
not depend on the distribution of particles but only on the
connectivity of the network. For this case we will present
in Sections 3 and 4 an exact solution to the problem of how
the distribution of particles averaged over nodes depends
on the node-degree distribution and how to choose the
latter one to obtain a scale-free distribution of particles.
In the following Section 5 we will discuss finite-size effects
observed in the distribution of particles for some models of
random networks like Erdös-Rényi graphs. We will finish
in Section 6 with some concluding remarks.

2 Model description

Consider the ZRP on a connected simple graph with N
nodes and a sequence k = {k1, . . . , kN} of node degrees.
The state of the ZRP is given by the distribution of par-
ticles m = {m1, . . . , mN} on nodes of the network, where
mi ≥ 0 is the number of particles at node i. The total
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number of particles M = m1 + . . .+mN is conserved dur-
ing the process. A particle can hop from node i to one
of its neighbors with rate u(mi)/ki. The function u(m),
called hopping rate, depends only on the number of parti-
cles at the departure node i. The factor 1/ki takes care of
distributing the outflow of particles equally between the
neighbors. The hopping rates u(m) are non-negative and
identical for all nodes.

The ZRP is known to have a unique steady state [11].
Static properties of this state are described by a parti-
tion function Z(N, M, k) depending only on the degree
sequence k:

Z(N, M, k) =
M∑

m1,...,mN=0

δm1+...+mN ,M

N∏

i=1

p(mi)kmi

i ,

(1)
with statistical weights p(m) defined as

p(m) =
m∏

n=1

1
u(n)

, p(0) = 1. (2)

We will refer to Z(N, M, k) as to a microcanonical parti-
tion function. The main quantity describing the system is
the distribution of particles π(m), averaged over all con-
figurations m with the weight given by the partition func-
tion (1) and over all nodes:

π(m, k) =
1
N

∑

i

〈δm,mi〉, (3)

where the argument k means that it is calculated for
a single network with a given sequence of degrees. It is
also called node occupation distribution. It can be calcu-
lated [10] as follows:

π(m, k) =
1
N

N∑

i=1

Zi(N − 1, M − m, k′)
Z(N, M, k)

km
i p(m), (4)

where Zi is the partition function for a graph with
N−1 nodes and degrees k′ = {k1, . . . , ki−1, ki+1, . . . , kN}.
Equation (4) holds for any connected graph with a given
degree sequence.

Suppose now that we are interested in the behavior
of the ZRP on a random network. In this case we have
to take the average over networks. Denote by P (k) ≡
P (k1, . . . , kN ) the probability of choosing a network with
the degree sequence k1, . . . , kN . We can now define a
canonical partition function as the average over all degree
sequences:

Z(N, M) =
∑

k1,...,kN

P (k)Z(N, M, k). (5)

In general, P (k) may have a complicated form. We
shall restrict our attention to uncorrelated networks
[12,13] for which P (k) is a product measure: P (k) =
Π(k1) · · ·Π(kN ). This means that node degrees are inde-
pendent of each other and that the observed degree distri-

bution is Π(k).1 The canonical partition function assumes
then a simple, symmetric form:

Z(N, M) =
∑

m1,...,mN

δm1+...+mN ,M

N∏

i=1

p̂(mi), (6)

where

p̂(m) = p(m)
∞∑

k=1

Π(k)km (7)

is an effective weight for a node occupied by m particles.
As we see, the effective weight p̂(m) is calculated from the
node degree distribution Π(k) and the occupation weight
p(m). The effective partition function Z(N, M) in equa-
tion (6) has the form of a partition function of the balls-
in-boxes model with identical weights, which has been
thoroughly studied [14–16]. Z(N, M) is invariant with re-
spect to any permutation σ of node occupation numbers
mi → mσ(i).

3 Free ZRP

In this section we shall consider a particular example of a
ZRP for which the hopping rate u(m) = 1 is independent
of m. We shall call it free ZRP (FZRP). In this case, also
the occupation weight (2) is constant, p(m) = 1, and the
canonical partition function (6) reduces to

Z(N, M) =
∑

m1,...,mN

δm1+...+mN ,M

N∏

i=1

μ(mi), (8)

where

μ(m) =
∞∑

k=1

Π(k)km (9)

is the mth moment of the node-degree distribution. The
probability that a node is occupied by m particles is now:

π(m) =
Z(N − 1, M − m)

Z(N, M)
μ(m), (10)

just as it was in the balls-in-boxes model [14].
For further convenience, let us introduce a generating

function for the moments μ(m):

M(z) =
∑

m

μ(m)
zm

m!
, (11)

which encodes the same information as Π(k). Indeed, in-
serting equation (9) into the last equation we see that
it can be interpreted as a Fourier series with coefficients
given by the node-degree distribution,

M(−iz) =
∑

k

Π(k)e−ikz . (12)

1 We neglect the fact that the total number of links is often
fixed, which leads to an additional Kronecker delta constraint
δ2L,k1+...+kN . This constraint can be usually neglected in the
thermodynamic limit.
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From the generating function one can formally reconstruct
the moments,

μ(m) =
m!
2πi

∮
M(z)z−m−1dz, (13)

as well as the degree distribution,

Π(k) =
1
2π

∫ π

−π

dz eizkM(−iz). (14)

The partition function (8) is well defined if all moments
of the distribution Π(k) are finite. Usually, we are inter-
ested in the behavior of the system in the thermodynamic
limit N → ∞. We can distinguish two cases: (a) the limit-
ing distribution Π(k) for N → ∞ has all moments finite,
as for instance for Erdös-Rényi (ER) graphs, where it is
Poissonian, (b) higher moments of the limiting distribu-
tion Π(k) diverge for N → ∞ as it happens for scale-
free graphs [17]. For (a), the large-N limit presents no
difficulty, while for (b) it has to be taken very carefully
since it depends on the details of how the ensemble is
defined. Moreover, in case (a) one can show that for ran-
dom graphs2 the probability of any sequence of degrees
k factorizes in the limit N → ∞ [17]. This factoriza-
tion often breaks down for (b). One observes particularly
strong deviations from the factorization for Π(k) ∼ k−γ

with 2 < γ ≤ 3 where finite-size effects are especially
strong [12,18,19]. Below we shall discuss only the case (a)
which is free of these problems.

4 Power-law distribution of particles

We have shown in the previous section that averaging over
fluctuating geometries leads to an effective model with the
partition function (8) and weights μ(m) being the mo-
ments of the node-degree distribution. This model has an
interesting critical behavior for weights which fall off like
μ(m) ∼ m−b. For example [20], for

μ(m) ∝ Γ (m + 1)/Γ (m + b + 1) ∼ m−b, (15)

one observes a condensation of particles when the density
of particles ρ = M/N is larger than a critical density ρc =
1/(b−2). In the thermodynamic limit, at the critical point
ρ = ρc, fluctuations of the number of particles become
scale-free and π(m) = μ(m) displays a power law. Below
ρc it has an exponential cut-off:

π(m) = μ(m) exp(A − Bm), (16)

where the constants A and B are chosen so that
the normalization

∑
m π(m) = 1 and the density of parti-

cles
∑

m mπ(m) = ρ are fixed. Above ρc, the distribution
π(m) is approximately given by μ(m) but with an addi-
tional peak centered around m∗ ≈ M − ρcN .

2 By a random graph we understand here a graph being max-
imally random among all graphs with a given sequence of de-
grees.

One now can ask whether the weights (15) can be ob-
tained in our FZRP by tuning the node-degree distribu-
tion of the underlying network. Before we proceed, it is
important to notice that the model given by the partition
function (8) is invariant with respect to the rescaling:

μ(m) → Nφmμ(m). (17)

Indeed, the partition function (8) changes only by a factor:
Z(N, M) → NNφMZ(N, M), which is constant for given
N and M , while physical quantities stay intact because the
normalization factor cancels out. Thus, we expect that if
the moments are given by

μ(m) = N Γ (m + 1)
Γ (m + 1 + b)

φm, (18)

then the degree distribution of node occupation numbers
at the critical density should be given by

π(m) ∝ Γ (m + 1)
Γ (m + b + 1)

∼ m−b. (19)

The question we face now is whether there is a node-
degree distribution Π(k) which has moments given by
equation (18). First of all, we observe that the parameter
φ in equation (18) plays the role of a scale parameter of
the distribution Π(k) as follows from the definition of the
moments (9): under the rescaling k → k/φ the moments
change as μ(m) → μ(m)φm. We will use the freedom of
choosing the parameter φ to fix the average degree k̄ and
thus also the number of links L = k̄N/2. The parameter
N has to be chosen in such a way that Π(k) takes the
proper normalization of a probability.

The integral in equation (14) is hard to calculate and
cannot be easily expressed in terms of elementary func-
tions. However, if we assume φ � 1, then the function
M(−iz) goes to zero sufficiently fast when z → ±∞ and
thus we can extend the limits of integration to ±∞. In
this case the integral can be done analytically. Equa-
tion (14) becomes a Fourier transform of the function
M(−iz) which is a special case of the Mittag-Leffler func-
tions having a known form of an infinite series expansion
(see e.g. [21]). Changing variables k → xφ we obtain

Π(xφ) =
N

2πφ

∫ ∞

−∞
dz eizx

∞∑

m=0

(−iz)m

Γ (m + 1 + b)
. (20)

According to equation (B21) of reference [21], the above
integral yields

N
φ

∞∑

m=0

(−x)m

m!Γ (b − m)
, (21)

and hence

Π(k) =
N
φ

∞∑

m=0

(−k/φ)m

m!Γ (b − m)
= (φ − k)b−1 N

Γ (b)φb
. (22)

In Figure 1 we compare Π(k) computed numerically using
the integral (14) with the original limit ±π, and calculated
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Fig. 1. Π(k) calculated from the exact formula (14) (points)
and approximated one (Eq. (22), thick line), for N = 2π and
b = 3. Squares: φ = 6, circles: φ = 30. The approximate solu-
tion diverges for x = k/φ > 1 and has to be cut. For 0 < x ≤ 1
the approximation is the better, the larger is φ.

by means of equation (22). Because the probability Π(k)
must be non-negative, the above solution is physical only
for k ≤ φ and we have to set Π(k) = 0 for k > φ. We see
that the integer part of φ can be interpreted as the maxi-
mal degree which can exist in the network. The existence
of the upper cut-off in the node-degree distribution is not
only a property of the approximate solution. Also when
one uses the exact relation (14) to calculate the degree
distribution Π(k) for the moments of the form (15), one
obtains negative values of Π(k) for k > φ, so again one has
to cut off the solution and set Π(k) to zero for k > φ. If one
now calculates moments for the distribution (22) with the
cut-off directly from the definition (9), one will see that
they deviate slightly from those given by equation (18).
However, the deviation decreases when φ increases and
finally becomes negligible for sufficiently large φ. In Fig-
ure 2 we plot the moments μ(m) from equation (18) and
those calculated from equation (9), for various φ. As φ
increases, the curves tend asymptotically to a power law.

The parameter φ is related to the average degree as
k̄ =

∑φ
k=1 Π(k)k. For large φ, the relation between φ and

k̄ is almost linear:

k̄ =
∑φ

k=1(k − φ)b−1k
∑φ

k=1(k − φ)b−1
≈

∫ φ

0 (φ − k)kb−1dk
∫ φ

0
kb−1dk

=
φ

b + 1
.

(23)
This implies that in order to obtain the power-law distri-
bution (19) for N → ∞, the value of k̄ should increase
to infinity. For sparse networks k̄ would be finite. We see
thus that the price to pay for having a scale-free distri-
bution of particles is to make networks denser when their
size increases.

The normalization factor N must be chosen
so that the degree distribution is normalized to unity:∑φ

k=1 Π(k) = 1. For example, for b = 2, 3, 4 we obtain
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Fig. 2. Desired (dashed line) versus real distribution of par-
ticles μ(m) for networks with finite average degree k̄ (solid
lines), obtained from equations (22) and (9) for b = 3. Lines
from left to right: φ = 5, 10, 20, 40, 80 which corresponds to
k̄ = 1.67, 2.89, 5.4, 10.4, 20.4 from equation (28). These plots
approximate also π(m) at the critical point. The parameter φ
grows almost linearly with k̄.

the following degree distributions Π(k) for 0 < k ≤ φ:

b = 2 :
2(φ − k)
φ(φ − 1)

, (24)

b = 3 :
(φ − k)2

φ(φ − 1)(2φ − 1)
, (25)

b = 4 :
4(φ − k)3

φ2(φ − 1)2
, (26)

and zero for both k = 0 and k > φ, with φ given by the
following formulas for b = 2, 3:

φ = 3k̄ − 1, (27)

φ =
(
−1 + 4k̄ +

√
1 − 16k̄ + 16k̄2

)
/2, (28)

and by the solution of a cubic equation for b = 4:

(1 + φ)(3φ2 − 2)
15φ(φ − 1)

= k̄. (29)

How does it come about that the power laws are observed
in the distribution of particles π(m) when one averages it
over networks while they are not seen in π(m)’s for indi-
vidual nodes, for any single network in the ensemble? The
answer is that the effective distribution π(m) averaged
over networks is a subtle result of a well-tuned superposi-
tion of many exponential distributions: for a node with de-
gree k, the distribution of particles is π(m) ∝ (k/kmax)m,
where kmax is the maximal degree in the network [9]. On
the node with maximal degree, however, there is a conden-
sation just as for scale-free networks [8], but it disappears
in the thermodynamic limit. This happens because the
critical density for the condensation becomes larger than
ρ = 1/(b − 2) which we assumed to hold in our system,
and the system is always in the fluid phase.
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Fig. 3. The particle distribution π(m) for ER graphs with
N = 400 nodes and k̄ = 8, obtained from MC simulations with
M = 300 particles and averaged over n = 200 graphs (points)
and calculated from equation (9) by using a cut Poissonian
degree distribution as described in the main text (solid line).

5 Other random graphs

In the previous section we found a node degree distri-
bution for the ensemble of random, uncorrelated net-
works for which the corresponding FZRP has a power-
law particle distribution π(m). What happens with FZRP
on generic random networks? Can the particle distribu-
tion be scale free? Let us begin with what happens in
the limit N → ∞. Consider some typical examples of
graphs like random trees [22] or ER graphs for which
the limiting shapes of the degree distribution are known:
Π(k) = e−1/(k − 1)! and Π(k) = e−k̄k̄k/k!, respectively.
So we can calculate the corresponding critical distribu-
tion π(m). In the first case, the generating function has
a closed form M(z) = exp(z + ez), as follows from equa-
tion (11), and we can deduce the coefficients μ(m) from
the inverse Laplace transform (13). Using the saddle-point
method and integrating around z0 ≈ log(m/ logm) we can
find the asymptotic behavior for large m:

log μ(m) = m(log m − log log m) + O(m). (30)

We see that μ(m) grows over-exponentially for large m.
This means that in the thermodynamic limit the conden-
sation always happens, regardless of the density of parti-
cles. The distribution π(m) in the bulk falls faster than
any power law. Similarly, one can estimate that for ran-
dom ER graphs M(z) ∝ exp(k̄ez)−1 and the leading term
in log μ(m) is also m log m. So again it is clear that in the
limit M → ∞ one cannot obtain a power-law distribution
of particles.

Surprisingly, in Monte Carlo (MC) simulations of the
FZRP on ER graphs one observes distributions π(m)
which very much resemble those with power-law tails, see
Figure 3. The data points were obtained by simulating the
FZRP as described in reference [9] for M = 300 particles
and averaging over n = 200 graphs of size N = 400 and
k̄ = 8. The same effect appears on random trees. This

quasi-power law can be, however, explained by finite-size
effects. In order to mimic these effects in our analytic cal-
culations let us assume that Π(k) is Poissonian but has
a cutoff at some kmax. The position of the cut-off is esti-
mated from the condition that the number of nodes with
degree kmax obtained in n samples of the ER graph should
be of order one: NnΠ(kmax) ≈ 1, which gives kmax ≈ 22.
Since Π(k) falls off rapidly, this is a good estimate. Next,
for the distribution with the cut-off kmax we calculate the
moments from equation (9) and we get rid of the lead-
ing exponential behavior of μ(m), using the freedom (17),
by multiplying them by a factor exp(−mB) with B ap-
propriately chosen. This gives us the distribution of par-
ticles π(m). As we can see in Figure 3 we obtain almost
a straight line in the log-log plot which agrees well with
the result of MC simulations. The discussion from the be-
ginning of this section tells us, however, that this quasi-
power-law behavior is only a finite-size effect which will
disappear in the limit N → ∞.

6 Conclusion

We analytically investigated the influence of annealed av-
eraging over random networks on the statistical proper-
ties of ZRP. In particular, we calculated how the parti-
cle distribution depends on the node-degree distribution.
We showed that by tuning the node-degree distribution
we can make the corresponding zero-range process critical
and having a power-law distribution of particles.

We also checked that for random graphs with a trun-
cated Poissonian degree distribution the corresponding
particle distribution π(m) behaves effectively as a power
law in a wide range of m. Generally, such truncated de-
gree distributions occur in considerations of finite-size net-
works and as we see they usually make the corresponding
particle distribution looking like a power law in a certain
range. In other words, a superficial power law observed
in the empirical data for π(m) for typical ensembles of
networks can be attributed to the finiteness of the system
and the cut-off for the maximal observed degree.

We believe it is the first step towards the analysis of
more complex systems, where the topology and the dy-
namics of the system are coupled to each other and in-
fluence mutually. An example of this type of interactions
was discussed in the context of 2d statistical systems on
random lattices (2d gravity), where a back-reaction of the
system on the lattice was observed [2,3,23], which mani-
fested as a change of fractal properties of the underlying
geometry when the system became critical. It would be
very interesting to see such an adaptation mechanism also
for random complex networks.

We thank the EC-RTN Network “ENRAGE” under grant
No. MRTN-CT-2004-005616 and the Alexander von Humboldt
Foundation for support. Z.B. acknowledges support from a
Marie Curie Actions Transfer of Knowledge project “COCOS”,
Grant No. MTKD-CT-2004-517186 and a Polish Ministry of
Science and Information Society Technologies Grant 1P03B-
04029 (2005–2008). B.W. thanks the DAAD for support.



570 The European Physical Journal B

References

1. L. Onsager, Phys. Rev. 65, 117 (1944)
2. V. Kazakov, Phys. Lett. A 119, 140 (1987); D. Boulatov,

V. Kazakov, Phys. Lett. B 186, 379 (1987)
3. V. Knizhnik, A. Polyakov, A. Zamolodchikov, Mod. Phys.

Lett. A 3, 819 (1988); F. David, Mod. Phys. Lett. A 3,
1651 (1988); F. David, J. Distler, H. Kawai, Nucl. Phys. B
321, 509 (1989)

4. M.R. Evans, S.N. Majumdar, R.K.P. Zia, J. Phys. A:
Math. Gen. 39, 4859 (2006)

5. A.G. Angel, T. Hanney, M.R. Evans, Phys. Rev. E 73,
016105 (2006)

6. J.D. Noh, Phys. Rev. E 72, 056123 (2005)
7. J.D. Noh, J. Korean Phys. Soc. 50, 327 (2007)
8. J.D. Noh, G.M. Shim, H. Lee, Phys. Rev. Lett. 94, 198701

(2005)
9. L. Bogacz, Z. Burda, W. Janke, B. Waclaw, in Noise and

Stochastics in Complex Systems and Finance, edited by
J. Kertész, S. Bornholdt, R.N. Mantegna, Proceedings of
SPIE, Vol. 6601, 66010V (2007)

10. B. Waclaw, L. Bogacz, Z. Burda, W. Janke, Phys. Rev. E
76, 046114 (2007)

11. M.R. Evans, T. Hanney, J. Phys. A: Math. Gen. 38, R195
(2005)

12. Z. Burda, A. Krzywicki, Phys. Rev. E 67, 046118 (2003)
13. L. Bogacz, Z. Burda, B. Waclaw, Physica A 366, 587

(2006)
14. Z. Burda, P. Bialas, D. Johnston, Nucl. Phys. B 493, 505

(1997)
15. P. Bialas, Z. Burda, Phys. Lett. B 384, 75 (1996)
16. Z. Burda, P. Bialas, D. Johnston, Nucl. Phys. B 542, 413

(1999)
17. S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Nucl.

Phys. B 666, 396 (2003)
18. M. Boguna, R. Pastor-Satorras, A. Vespignani, Eur. Phys.

J. B 38, 205 (2004)
19. B. Waclaw, Ph.D. thesis, arXiv:0704.3702
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