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Abstract. We study by Monte Carlo simulations the influence of bond dilution on the three-dimensional
Ising model. This paradigmatic model in its pure version displays a second-order phase transition with a
positive specific heat critical exponent α. According to the Harris criterion disorder should hence lead to
a new fixed point characterized by new critical exponents. We have determined the phase diagram of the
diluted model, starting from the pure model limit down to the neighbourhood of the percolation threshold.
For the estimation of critical exponents, we have first performed a finite-size scaling study, where we
concentrated on three different dilutions to check the stability of the disorder fixed point. We emphasize
in this work the great influence of the cross-over phenomena between the pure, disorder and percolation
fixed points which lead to effective critical exponents dependent on the concentration. In a second set of
simulations, the temperature behaviour of physical quantities has been studied in order to characterize
the disorder fixed point more accurately. In particular this allowed us to estimate ratios of some critical
amplitudes. In accord with previous observations for other models this provides stronger evidence for
the existence of the disorder fixed point since the amplitude ratios are more sensitive to the universality
class than the critical exponents. Moreover, the question of non-self-averaging at the disorder fixed point
is investigated and compared with recent results for the bond-diluted q = 4 Potts model. Overall our
numerical results provide evidence that, as expected on theoretical grounds, the critical behaviour of the
bond-diluted model is indeed governed by the same universality class as the site-diluted model.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
64.60.Fr Equilibrium properties near critical points, critical exponents – 75.10.Hk Classical spin models

1 Introduction

The influence of quenched, random disorder on phase tran-
sitions has been the subject of numerous experimental and
theoretical investigations since more than 20 years [1].
They concern both first- and second-order phase transi-
tions, especially in two dimensions. The qualitative influ-
ence of quenched, short-range correlated [2] random dis-
order at second-order phase transitions is well understood
since Harris [3] proposed a relevance criterion based on
the knowledge of the specific heat critical exponent α of
the pure model: when α is positive, under a coarse grain-
ing, the disordered system should reach a so-called finite-
randomness disorder fixed point characterized by altered
critical exponents, whereas if α is negative, the univer-
sality class of the pure system will persist. In particu-
lar the two-dimensional (2D) Ising model has attracted
great interest in the past years because of its intermediate
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situation (α = 0) which implies a marginal influence of
disorder [4]. From an experimental point of view, a con-
firmation of the Harris criterion was reported in a LEED
investigation of a 2D order-disorder transition [5,6]. In the
case of a first-order phase transition in the pure model,
disorder is expected to soften the transition and, under
some circumstances, may even induce a second-order tran-
sition [7]. For 2D systems, the latter scenario has been
proved by Aizenman and Wehr on rigorous theoretical
grounds [8,9]. To test these theoretical predictions also the
Potts model [10] has been intensively studied in 2D [11]
since it displays the two different regimes: a second-order
phase transition when the number of states per spin q ≤ 4
and a first-order one when q > 4. These results were
obtained by different techniques including Monte Carlo
simulations, transfer matrix calculations, field-theoretic
perturbation theory, and high-temperature series expan-
sions [12–22].

In three dimensions (3D), the disordered Potts model
has of course been studied only later: the case q = 3,
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corresponding to a very weak first-order transition for
the pure model [23], has been investigated numerically
by Ballesteros et al. [24] for site dilution, and the case
q = 4, exhibiting in the pure system a strong first-
order transition [25], has been studied very recently by
us [26–30] for bond dilution via large-scale Monte Carlo
simulations. Only the 3D Ising model with site dilution
has also been extensively studied using Monte Carlo sim-
ulations [31–45], or field theoretic renormalization group
approaches [46–55]. The diluted model can be treated in
the low-dilution regime (concentration of magnetic bonds,
p, close to 1) by analytical perturbative renormalization
group methods [56–60] where a new fixed point indepen-
dent of the dilution has been found, but for stronger dis-
order only Monte Carlo simulations remain valid.

The first numerical studies [32–34] suggested a con-
tinuous variation of the critical exponents along the crit-
ical line but after the works [35–39] it became clear that
the concentration dependent critical exponents found in
Monte Carlo simulations are effective ones, characterizing
the approach to the asymptotic regime. The critical ex-
ponents β and γ associated with the magnetisation and
susceptibility, respectively, were shown by Heuer [38] to
be concentration dependent in the region 0.5 ≤ p < 1.
The conclusion of Heuer was: while a crossover between
the pure and weakly random fixed points accounts for the
behaviour of systems above p � 0.8, in more strongly dis-
ordered systems a more refined analysis is needed. We
should mention here that the meaning of p is not exactly
the same in the papers mentioned above which refer to site
dilution and in our present study in which we are inter-
ested in bond dilution. That is why the numerical values
of p given before for the different regimes cannot directly
be taken over to the bond-dilution case.

Another important question has been investigated by
Wiseman and Domany [43,44]: it concerns the question of
the possible lack of self-averaging which can happen in dis-
ordered systems. For the 3D site-diluted Ising model close
to criticality they explicitly showed that physical quanti-
ties such as the magnetisation or susceptibility are indeed
not self-averaging. Although simulations [44] revealed that
disorder realized in a canonical manner (fixing the frac-
tion p of magnetic sites) leads to different results than
those obtained from disorder realized in a grand-canonical
ensemble (assigning to each site a magnetic moment with
probability p), the renormalization-group approach of ref-
erence [61] shows that the canonical constraint is irrele-
vant, even near the random fixed point, suggesting that
the observed differences are a finite-size effect. The stud-
ies of reference [42] were based on the crucial observa-
tion that it is important to take into account the leading
corrections-to-scaling term in the infinite-volume extrap-
olation of the Monte Carlo data. Thus, the main problem
encountered in these studies of the disordered Ising model
was the question of measuring effective or asymptotic ex-
ponents. Although the change of universality class should
happen theoretically for arbitrarily weak disorder, the new
critical exponents appear only in a small temperature re-
gion around the critical point, whose size is controlled by

the concentration of the non-magnetic compound. Equiv-
alently, in finite-size scaling studies very large lattices are
required to observe the asymptotic behaviour. In fact, the
asymptotic regions cannot always be reached practically
and one therefore often measures only effective exponents.

Another crucial problem of the new critical (effective
or asymptotic) exponents obtained in these studies is that
the ratios β/ν and γ/ν occuring generically in finite-size
scaling analyses are almost identical for the disordered and
pure models. For the pure 3D Ising model, accurate values
are [62]:

ν = 0.6304(13), η = 0.0335(25),

which gives:

β/ν = 0.517(3), γ/ν = 2 − η = 1.966(3),

and α = 0.1103(1) > 0, i.e., disorder should be relevant
according to the Harris criterion.

For the site-diluted model, the asymptotic exponents
given by Ballesteros et al. [42] are:

β/ν = 0.519(3), γ/ν = 1.963(5), ν = 0.6837(53).

Thus, finite-size scaling techniques will only be able
to differentiate between the values of ν at the two fixed
points, but will not be very efficient for distinguishing ra-
tios of critical exponents. Even if β and γ themselves hap-
pen to be quite different, the ratios β/ν and γ/ν are very
close. That is the reason why a study of the temperature
behaviour of the magnetisation and susceptibility will be
very helpful for an independent determination of the ex-
ponents β and γ.

Contrary to previous studies of the disordered Ising
model which were concerned with site dilution, we have
chosen to model the disorder by bond dilution in order
to compare these two kinds of disorder and to verify that
they indeed lead to the same set of new critical expo-
nents, as expected theoretically by universality arguments.
In the following we shall thus consider the bond-diluted
Ising model in 3D whose Hamiltonian with uncorrelated
quenched random interactions can be written (in a Potts
model normalization) as

−βH =
∑
(i,j)

Kijδσi,σj , (1)

where the spins take the values σi = ±1 and the sum
goes over all nearest-neighbour pairs (i, j). The coupling
strengths are allowed to take (grand-canonically) two dif-
ferent values Kij = K ≡ J/kBT and 0 with probabilities p
and 1 − p, respectively,

P [Kij ] =
∏
(i,j)

P (Kij)

=
∏
(i,j)

[pδ(Kij − K) + (1 − p)δ(Kij)], (2)

c = 1−p being the concentration of missing bonds, which
play the role of the non-magnetic impurities.
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The plan of the rest of the paper is as follows: in Sec-
tion 2, we present the phase diagram of the bond-diluted
Ising model. Then, in Section 3, we discuss the averaging
procedure and investigate the question of possible non-
self-averaging of physical quantities. Section 4 is devoted
to the critical behaviour of the disordered model. In the
first part we present our finite-size scaling study of three
particular concentrations p, and the second part deals with
the temperature scaling for the same three dilutions. Fi-
nally, Section 5 contains our conclusions.

2 Phase diagram

In order to determine the phase diagram and the criti-
cal properties at a few selected dilutions we performed in
this study large-scale Monte Carlo simulations on sim-
ple cubic lattices with V = L3 spins (up to L = 96)
and periodic boundary conditions in the three space di-
rections, using the Swendsen-Wang cluster algorithm [63]
for updating the spins. The histogram reweighting tech-
nique [64,65] was employed to extend the results over
a range of K around the simulation point. All physical
quantities are averaged over 2 000−5 000 disorder reali-
sations, indicated by a bar (e.g., m̄ for the magnetisa-
tion). Standard definitions were used, e.g., for a given
disorder realisation, the magnetisation is defined accord-
ing to m = 〈|µ|〉 where 〈. . . 〉 stands for the thermal
average and µ = (N↑ − N↓)/(N↑ + N↓). The suscep-
tibility follows from the fluctuation-dissipation relation,
χ = KV (〈µ2〉 − 〈|µ|〉2). Here, one should notice that a
definition which is usually used in the disordered phase in
Monte Carlo simulations, and which seems to be more
stable, χ = KV 〈µ2〉, should be avoided in quenched
disordered systems. Simulating at a given temperature
above the critical point, one may indeed encounter sam-
ples which have higher effective transition temperatures,
and which thus have non-zero 〈|µ|〉.

The phase diagram was obtained by locating the max-
ima of the average susceptibility χ̄L (a diverging quantity
in the thermodynamic limit) for increasing lattice sizes L
as a function of the coupling strength K, with the dilution
parameter p varying from the neighbourhood of the pure
model (p = 0.95) to the very diluted model (p = 0.36), see
Figure 1.

Below the percolation threshold pc � 0.2488 [66], one
does not expect any finite-temperature phase transition
since without any percolating cluster in the system long-
range order is impossible. The approximate phase dia-
gram [67] as obtained from the susceptibility maxima for
the largest lattice size (L = 20) is shown in Figure 2.
For comparison, we have drawn a simple mean-field (MF)
estimate of the transition point

KMF
c (p) = pKc(1), (3)

where Kc(1) = 0.443 308 8(6) [68] is the accurately known
transition point of the pure model (in the Potts model nor-
malization), and the single-bond effective-medium (EM)
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Fig. 1. Variation of the average magnetic susceptibility χ̄L

versus the coupling strength K = J/kBT for several concen-
trations p = 0.95, 0.90, . . . , 0.36 and L = 10, 12, 14, 16, 18, 20.
For each value of p and each lattice size, the curves are obtained
by standard histogram reweighting of the simulation data at
one value of K.
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Fig. 2. Phase diagram of the 3D bond-diluted Ising model
compared with the mean-field and effective-medium approxi-
mations. The open circle marks the location of the percolation
threshold.

approximation [69]

KEM
c (p) = ln

[
(1 − pc)eKc(1) − (1 − p)

p − pc

]
, (4)

which gives a very good agreement with the simulated
transition line over the full dilution range. We have omit-
ted results from recent high-temperature series expan-
sions [70] since, on the scale of Figure 2, they would just
fall on top of the Monte Carlo data.

To get an accurate determination of Kc(L), we used
the histogram reweighting technique with at least NMCS =
2500 Monte Carlo sweeps and between 2000 and 5000 sam-
ples of disorder. The number of Monte Carlo sweeps is jus-
tified by the increasing behaviour of the energy autocor-
relation time τe as a function of p and L. For each size, we
performed at least 250 independent measurements of the
physical quantities (NMCS > 250 τe). For a second-order
phase transition, the autocorrelation time is expected to
behave as Lz at the critical point where z is the dynam-
ical critical exponent. For the disordered Ising model, we
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Fig. 3. Energy autocorrelation time τe versus the size L of the
system on a log-log scale. The pure case corresponds to p = 1.
The straight lines show fits of the form τe ∝ Lz, yielding the
effective dynamical critical exponents z compiled in Table 1.

Table 1. Effective dynamical critical exponent z as obtained
from linear fits of log τe vs. log L. The simulations are per-
formed at the pseudo-critical couplings Kc(L) (cf. Tab. 2 and
Fig. 10 below). Here we give in the second line only the simu-
lation coupling K for the largest lattice size L = 96.

p 1 0.7 0.55 0.4
K 0.4433 0.6535 0.8649 1.3136
z 0.59 0.41 0.38 0.27

obtained from the least-squares fits shown in Figure 3 the
values of z compiled in Table 1. We see that the critical
slowing-down weakens for the disordered model and that
z becomes effectively smaller when the concentration of
magnetic bonds p decreases. The observed variation of the
dynamical exponent z is probably due to the influence of
the different fixed points encountered (pure, disorder and
percolation), as will be discussed below in more detail for
the static critical exponents.

The largest autocorrelation time observed for the dis-
ordered model was around τe ≈ 9 for p = 0.7 and L = 96.

3 Non-self-averaging

In order to achieve accurate results for quenched, disor-
dered systems in numerical simulations it is important to
obtain an estimate of the required number of disorder re-
alisations. This is particularly important in the vicinity of
a critical point where the correlation length diverges. As
a consequence the (disorder) distributions of physical ob-
servables typically do not become sharper with increasing
system size at a finite-randomness disorder fixed point.
Rather their relative widths stay constant, a phenomenon
called non-self-averaging. In order to investigate the disor-
der averages, we produced Ns different samples and com-
puted the corresponding susceptibilities χj , 1 ≤ j ≤ Ns.
In Figure 4 we compare the distributions for the Ising and
q = 4 Potts models (in the second-order regime [26]). The
figure shows that the dispersion of the values of χ is less
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Fig. 4. Disorder distribution of the susceptibility for the Ising
and q = 4 Potts models with a concentration of magnetic bonds
of 0.55 and 0.56, respectively, and a lattice of size L = 64. The
simulations are made at K = 0.8655 ≈ Kc(L) for the Ising
model and K = 1.12945 ≈ Kc(L) for the Potts model. In the
latter case, the concentration p = 0.56 belongs to the second-
order regime [26]. The running average over the samples χ̄j is
shown by the thick solid line.

important for the disordered Ising model where rare events
correspond to low values of χ. This implies that their con-
tribution to the average is not so crucial as for the Potts
model where a long rare-event tail is found on the large-χ
side. This is the reason why for the Ising model the fluctu-
ations in the average value disappear after a few hundred
realisations and why the disorder averaging procedure is
more efficient than for the Potts model.

To test if self-averaging is valid or not for the dis-
ordered model [43,44], we investigated the variation of
the shape of the probability distributions of the suscep-
tibility when the size is increasing. Dividing the interval
(χmax −χmin) into 100 bins, we computed the probability
for each value of χ to belong to the bin i (1 ≤ i ≤ 100).
The resulting probability distribution P (χi/χ̄) (normal-
ized to unity) is drawn in Figure 5 versus the ratio of
the average susceptibility χi of the bin i and the global
average susceptibility χ̄.

For the three studied dilutions, the shape of the curve
does not become sharper with increasing size and the
general shape remains remarkably independent of the
dilution, a phenomenon which strongly contrasts with
the situation encountered in the case of the q = 4
Potts model [26]. Non self-averaging can be quantita-
tively checked by evaluating the normalized squared width
Rχ(L) = Vχ(L)/χ(L)

2
, where Vχ is the variance of the

susceptibility distribution: Vχ(L) = χ2(L) − χ(L)
2
. The

same quantity is also evaluated for the magnetisation:
Rm(L) = Vm(L)/m(L)

2
. These ratios are shown versus

the inverse lattice size for the three studied concentra-
tions of the disordered Ising model in Figure 6. The fact
that Rm and Rχ approach a constant when L increases
as predicted by Aharony and Harris [71] is the signature
of a non-self-averaging system, in agreement with the re-
sults of Wiseman and Domany [43,44] for the site-diluted
3D Ising model. In fact, our numerical values of Rm are
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Fig. 5. Probability distribution of the susceptibility versus the
ratio of the average value of the susceptibility of bin i and the
global average susceptibility χ̄ for the bond-diluted Ising model
(p = 0.7, 0.55, and 0.4) for L = 40, 64, and 96. The simulations
are performed at Kc(L). The vertical dashed line indicates the
average susceptibility χi/χ̄ = 1.

close to the estimate Rm = 0.055(2) for site dilution re-
ported in reference [44]: when the system size goes to in-
finity, our data are compatible with a convergence towards
Rm = 0.05(1), where the error estimate reflects the uncer-
tainty in the remaining finite-size corrections which ap-
pear to be more pronounced than for site dilution. On the
other hand, our limiting value for Rχ seems at first sight
to be completely off from the estimate Rχ′ = 0.156(4)
given in reference [44]. Upon closer inspection this dis-
crepancy can be traced back to different definitions of the
susceptibility. While Wiseman and Domany worked with
the “high-temperature” expression χ′ = KV 〈µ2〉, we used
the connected correlator χ = KV (〈µ2〉 − 〈|µ|〉2), valid in
both the low- and high-temperature phase. Another differ-
ence is that they evaluated χ′ at the infinite-volume criti-
cal coupling K∞

c while we followed the pseudo-transition
points Kmax(L) defined from the location of the χ max-
ima (see below). In fact, when we evaluate Rχ′ (i.e., with-
out subtraction), we find for p = 0.7 and the largest sizes
(where Kmax(L) ≈ K∞

c ) about 10 times larger values than
shown in Figure 6: Rχ′ = 0.1635, 0.1766, and 0.1630 for
L = 64, 80, and 96. This is in accord with a remark in
reference [44] who noticed also for site dilution that Rχ is
smaller by a factor of 7−10, which would lead to a crass
violation of the leading-order prediction in ε = 4−d for the
“ratio of ratios” Rm/Rχ = 1/4 [71], while working with χ′
they obtained a much closer ratio of Rm/Rχ′ = 0.35(2).
In our p = 0.7 case we get, with Rm = 0.0407, 0.0423,
and Rm = 0.0399 for L = 64, 80, and 96, estimates of
Rm/Rχ′ = 0.2489, 0.2395, and 0.2448, in perhaps sur-
prisingly good agreement with the renormalization group
prediction of 1/4. Of course, given the large corrections
seen otherwise, this agreement may be accidental, but it
is also conceivable that the corrections do indeed partially
cancel in the “ratio of ratios”.
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Fig. 6. Normalized squared width of the magnetisation and
susceptibility distributions versus the inverse of the lattice size
for the three concentrations p = 0.4, 0.55, and 0.7 at the effec-
tive critical coupling Kc(L). The straight lines are linear fits
used as guides to the eye.

Still, the apparent non-universality of Rχ and to a
weaker extent also of Rm (the ratios seem to depend on
the impurity concentration) remains puzzling. It may be
attributed to crossover effects between the pure, disorder
and percolation fixed points which may be more sensitive
for bond dilution than for site dilution. Another possi-
ble reason for quantitative discrepancies might be the fact
that Rm and Rχ were estimated in our study at the tem-
perature corresponding to the maximum of the average
susceptibility for the corresponding lattice size, and not
at the critical point of the infinite system. This may lead
to different scaling limits (similar to the different Binder
parameter scaling limits for pure systems in the vicin-
ity of Tc), albeit causing presumably only rather small
deviations.

4 Critical behaviour

In order to study the critical behaviour of the bond-diluted
Ising model, we have concentrated on the three particular
concentrations p = 0.7, 0.55, and 0.4, for which the simu-
lated lattice sizes go up to L = 96. For interested readers,
the values of the simulation temperatures are reported in
Table 2.

In Figure 7 we show results of typical runs for the
magnetisation (in the insert) and the susceptibility for p =
0.7 at a particular temperature (or coupling) very close
to the size-dependent critical point using the histogram
reweighting technique. From the scaling of the location
and height of the peaks with lattice size of this and similar
quantities we then extracted the critical exponents of the
system.
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Fig. 7. Variation of the magnetic susceptibility and of the
magnetisation (in the insert) versus the coupling strength K =
J/kBT for the bond-diluted Ising model (p = 0.7) and the
lattice sizes compiled in Table 2 going from 10, 12, 14, . . . to
96. For each value of L, the curves are obtained by standard
histogram reweighting of the simulation data at the value of
K given in Table 2.

Table 2. Values of the simulation points K = J/kBT (ex-
tremely close to the susceptibility maxima) for the three mainly
studied dilutions.

L p = 0.70 p = 0.55 p = 0.40
10 0.6560 0.8680 1.3500
12 0.6556 0.8680 1.3210
14 0.6550 0.8675 1.3185
16 0.6546 0.8655 1.3170
18 0.6546 0.8655 1.3175
22 0.6542 0.8655 1.3160
26 0.6541 0.8650 1.3147
30 0.6538 0.8650 1.3144
35 0.6538 0.8650 1.3142
40 0.6538 0.8655 1.3141
50 0.6537 0.8653 1.3142
64 0.6535 0.8655 1.3144
80 0.6535 0.8649 1.3136
96 0.6535 0.8649 1.3136

4.1 Finite-size scaling study

4.1.1 Correlation length exponent

As mentioned in the introduction, the vicinity of the ex-
ponent ratios β/ν and γ/ν for the pure and disordered
universality classes does not allow, by the use of stan-
dard finite-size scaling (FSS) techniques, to discriminate
between the two fixed points from the behaviour of the
magnetisation and the susceptibility, respectively. Only
the critical exponent ν, which can be evaluated from the
asymptotic FSS behaviour of the derivative of the mag-
netisation versus temperature,

d ln m̄/dK ∼ ad ln mL1/ν , (5)

will be useful with this technique. But even for ν, one is
trying to resolve an expected shift from the pure model’s
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1/L

min

1.40

1.45

1.50

1.55
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1.65

(1
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p = 0.95
p = 0.9
p = 0.8
p = 0.75
p = 0.65
p = 0.6
p = 0.45
p = 0.36

Pure

Dis.

Fig. 8. Effective exponents (1/ν)eff as obtained from power-
law fits in the range Lmin −Lmax = 20 as a function of 1/Lmin

for p = 0.95, 0.9, 0.8, 0.75, 0.65, 0.6, 0.45, and 0.36. The
error bars correspond to the standard deviations of the fits.
The arrows indicate the values 1/ν for the pure model [62] and
the site-diluted one [42].
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Fig. 9. Effective exponents (1/ν)eff as obtained similar to Fig-
ure 8 from the behaviour of d ln m̄/dK as a function of 1/Lmin

for p = 0.7, 0.55, and 0.4. Here the upper limit of the fit range
is Lmax = 96.

value by less than 10%. Taking the data evaluated at
Kmax and assuming the leading power-law behaviour (5),
we have extracted by (linear) two-parameter least-squares
fits over successively smaller ranges Lmin − Lmax the
size-dependent effective exponent (1/ν)eff . Using the first
set of data for lattice sizes L = 4, 6, 8, . . . , 20 = Lmax,
the resulting exponents are plotted in a broad range of
concentrations p against 1/Lmin in Figure 8 (Lmin is the
smallest lattice size used in the fits). We see that in the
regime of low dilution (p close to 1), the system is clearly
influenced by the pure fixed point. On the other hand,
when the bond concentration is small, the vicinity of the
percolation fixed point induces a decrease of 1/ν below its
expected disordered value. Indeed, the percolation fixed
point is characterized by 1/ν ≈ 1.12 [66].

As is demonstrated in Figure 9, the same analysis
for the three mainly studied dilutions with considerably
larger lattice sizes going up to L = Lmax = 96 confirms
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Table 3. Critical exponents deduced from the FSS study of
the three dilutions.

p 0.7 0.55 0.4
1/ν 1.52(2) 1.46(2) 1.42(2)
ν 0.660(10) 0.685(10) 0.705(10)
β/ν 0.515(5) 0.513(5) 0.510(5)
γ/ν 1.965(10) 1.977(10) 2.000(10)
2β/ν + γ/ν 2.995(20) 3.003(20) 3.020(20)

the observation of the great influence of both the pure
and percolation fixed points. The left-most data points
in Figure 9 with Lmin = 40 follow from two-parameter
least-squares fits of (d ln m̄/dK)Kmax for our five largest
lattice sizes L = 40, 50, 64, 80, and 96. Since this leaves
only three independent degrees of freedom, moving fur-
ther into the asymptotic large-L regime would be mean-
ingless with the data available to us. The variation of
(1/ν)eff with Lmin clearly indicates deviations of the data
from the asymptotic ansatz (5), rooted in confluent correc-
tions and cross-over terms or both. As will be discussed in
more detail below, we found it impossible, however, to re-
solve these corrections within a non-linear four-parameter
ansatz. Still, some rough estimates of the critical expo-
nent ν can be read off from Figure 9, which are collected
in Table 3. Obviously, it would be very difficult to extract
more precise values from this analysis. At a qualitative
level, however, Figure 9 clearly indicates that the dilu-
tion for which the cross-over influence will be the least is
around p = 0.55 which suggests that the scaling correc-
tions should be rather small for this specific dilution.

4.1.2 Critical couplings

The peak locations of the average susceptibility determine
with a good accuracy the size-dependent (pseudo-) criti-
cal couplings Kc(L), and from an infinite-size extrapola-
tion, Kc(L) = K∞

c +aKL−1/ν , the critical coupling in the
thermodynamic limit can be estimated. Inserting the just
determined estimate of ν, the linear fit shown in Figure 10
for p = 0.7 yields:

K∞
c = 0.6534(1). (6)

The same procedure gives for p = 0.55 and p = 0.4 the
critical couplings K∞

c = 0.8645(2) and K∞
c = 1.3129(3),

respectively.

4.1.3 Susceptibility and magnetisation exponents

As already mentioned, the average magnetisation m̄ and
susceptibility χ̄ are expected to scale at the size-dependent
critical coupling Kc(L) with the lattice size as:

m̄Kmax ∼ amL−β/ν, χ̄max ∼ aχLγ/ν, (7)

where am and aχ are non-universal amplitudes. From
least-squares fits to our extensive Monte Carlo data, we
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Fig. 10. Size-dependent critical coupling Kc(L) versus L−1/ν

for the bond-diluted Ising model with p = 0.7, using our esti-
mate of ν = 0.66(1).
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Fig. 11. Effective ratios (γ/ν)eff and (β/ν)eff as a function of
1/Lmin for p = 0.7, 0.55, and 0.4. The error bars correspond
to the standard deviations of the power-law fits. The arrows
indicate roughly the expected values for both the pure and
disordered model.

computed the effective size-dependent ratios of the criti-
cal exponents (β/ν)eff and (γ/ν)eff which are plotted in
Figure 11 against 1/Lmin for p = 0.7, 0.55, and 0.4, where
Lmin is again the smallest lattice size used in the fits.

Concerning the magnetisation, the effective ratios
clearly converge, when the size increases, towards 0.515(5)
for the three dilutions in agreement with the expected val-
ues of the pure and site-diluted models. For the suscepti-
bility, on the other hand, the behaviour of (γ/ν)eff is more
differentiated depending on the concentration p: the cases
p = 0.7 and 0.55 are compatible with 1.965(10) if we take
into account the error bars, very close to the pure and
site-diluted model values, but the case p = 0.4 displays
a (γ/ν)eff exponent a little bit larger. This discrepancy
is probably due to the influence of the percolation fixed
point whose γ/ν ratio is close to 2.05, according to the
same scenario as for the exponent 1/ν. The critical expo-
nents from the FSS study are summarized in Table 3 for
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Fig. 12. Plot of the χ2-landscape deduced from linear fits of
χ̄max(L) = aχLγ/ν (1 + bχL−ω) in the range 18 ≤ L ≤ 96
for the bond-diluted Ising model with concentration p = 0.7,
exhibiting an absolute minimum at γ/ν = 1.952, ω = 2.24 and
a secondary minimum at γ/ν = 2.112, ω = 0.01. The exponents
are fixed parameters and the amplitudes are free. The cutoff at
χ2 = 300 has been introduced in order to improve the clarity
of the figure.

the three studied dilutions, in good agreement with the
hyperscaling relation d = 2β/ν + γ/ν.

Following the work of Ballesteros et al. [42] which em-
phasized the great influence of corrections-to-scaling to get
an accurate determination of the critical exponents in the
site-diluted Ising model, we tried to estimate them in the
bond-diluted version as well. If we consider an irrelevant
scaling field g with scaling dimension yg = −ω < 0, the
scaling expression of, e.g., the susceptibility is:

χ̄(L−1, t, g) = Lγ/νfχ(Ltν , L−ωg). (8)

At t = 0, around the fixed point value g = 0, this leads to
the standard expression aχLγ/ν[1+bχL−ω+O(L−2ω)]. We
hence tried to fit the susceptibility data using the ansatz:

χ̄max(L) = aχLγ/ν(1 + bχL−ω). (9)

We systematically varied the exponent ratio γ/ν and
the corrections-to-scaling exponent ω and determined the
minimum of χ2/d.o.f by performing linear fits in the range
18 ≤ L ≤ 96 to fix the amplitudes aχ and bχ. The resulting
χ2-landscape for p = 0.7 is shown in Figure 12, where the
base plane was restricted to the range 1.8 ≤ γ/ν ≤ 2.2
and 0 ≤ ω ≤ 4. The absolute minimum was found at
γ/ν = 1.952, ω = 2.24, and a second, less pronounced
minimum at γ/ν = 2.112, ω = 0.01. The results for the
magnetisation respectively its logaritmic derivative and
the other dilutions p = 0.55 and 0.4 look qualitatively
similar.

The figure may again be interpreted in favor of a com-
petition between the two fixed points: the first one is char-
acterized by a valley in the ω-direction, with an absolute
minimum for a large value of ω, i.e., small corrections-to-
scaling since these corrections scale as L−ω. Then, this
fixed point should be the disordered one and the second

the percolation fixed point for which γ/ν � 2.05 and
β/ν � 0.48 [66]. But the accurate determination of the
corrections-to-scaling exponent ω is very difficult because
it strongly depends on the quantity considered (χ̄max,
m̄Kmax or (d ln m̄/dK)Kmax) and on the sizes included in
the fits. Indeed, the valley in the ω direction does not dis-
play any deep minimum and the absolute minimum ob-
served does not seem to be relevant concerning the value
of ω. We are thus not able to extract a numerical value of
the corrections-to-scaling exponent, in contrast to previ-
ous claims that ω ≈ 0.4 [42,48,49].

4.2 Temperature scaling

The temperature behaviour of the susceptibility and mag-
netisation should allow to avoid the previous difficulties
generated by the vicinity of the ratios of the critical ex-
ponents. The critical exponents are indeed the following:

pure Ising model: β = 0.3258(14), γ = 1.2396(13) [62],
site-diluted model: β = 0.3546(28), γ = 1.342(10) [42].

As a function of the reduced temperature t = (Kc−K)
(t < 0 in the low-temperature (LT) phase and t > 0 in
the high-temperature (HT) phase) and the system size L,
the magnetisation and the susceptibility are expected to
scale as:

m̄(t, L) ∼ |t|βf±(L1/ν |t|), (10)

χ̄(t, L) ∼ |t|−γg±(L1/ν |t|), (11)

where f± and g± are scaling functions of the variable
x = L1/ν |t| and the subscript ± stands for the HT/LT
phases. Then we can define temperature dependent effec-
tive critical exponents

βeff(|t|) = d ln m̄/d ln |t|, (12)
γeff(|t|) = −d ln χ̄/d ln |t|, (13)

which should converge towards the asymptotic critical ex-
ponents β and γ when L → ∞ and |t| → 0. The results
for p = 0.7 are shown in Figures 13 and 14.

The effective exponents βeff(|t|) evolve as a function
of |t| between a maximum value and 0 in the two |t| di-
rections: when |t| is large (K far from Kc), the system
is outside the critical region and the description with the
critical exponents is no more valid whereas when |t| → 0,
the correlation length becomes of the same order as the
linear size of the system and the finite-size effects become
very strong. Nevertheless, just before the curves bend
down, for the largest lattice sizes we can read off that
βeff(|t|) ≈ 0.34−0.36. In the case of the susceptibility, for
the greatest sizes, γeff(|t|) is stable around 1.34 when |t|
is not too small, i.e., when the finite-size effects are not
too strong. The plot of γeff(|t|) vs. the rescaled variable
L1/ν|t| shows that the critical power-law behaviour holds
in different temperature ranges for the different sizes stud-
ied. As expected, the size effects are more sensitive when
the lattice size is small and the critical behaviour is better
described when the size increases.
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Fig. 13. Variation of the temperature dependent effective crit-
ical exponent βeff(|t|) = d ln m̄/d ln |t| (in the low-temperature
phase) as a function of the reduced temperature |t| (top) and
L1/ν |t| (bottom) for the bond-diluted Ising model with p = 0.7
and several lattice sizes L. The data points are directly ob-
tained from Monte Carlo data (no histogram reweighting). The
magnetisation vs. the coupling strength K = J/kBT in the or-
dered phase K > K∞

c is shown in the upper part.

A more quantitative analysis is possible for the con-
centrations p = 0.55 and 0.7 for which the most accurate
temperature simulations have been done. From the tem-
perature behaviour of the susceptibility, we have directly
extracted the power-law exponent γ from error weighted
least-squares fits by choosing the temperature range that
gives the smallest χ2/d.o.f for several system sizes. The
results are given in Table 4. We see that all estimates are
consistent with γ ≈ 1.34 − 1.36, which is clearly different
from the pure model’s exponent of γ ≈ 1.24. In particular
we do not observe in this analysis any pronounced differ-
ences between the two dilutions. For p = 0.4, our main
dilution closest to the percolation threshold, the number
of accurate temperature points is unfortunately not large
enough to allow for reliable fits.

From the previous expressions of the magnetisation
and susceptibility as a function of the reduced temper-
ature and size, following a procedure proposed by Binder
and Landau [72] a long time ago, it is instructive to plot
the scaling functions f±(x) and g±(x). For finite size and
|t| 
= 0, the scaling functions may be Taylor expanded in
powers of the inverse scaling variable x−1 = (L1/ν |t|)−1,
for example in the case of the susceptibility χ̄±(t, L) =
|t|−γ [g±(∞)+x−1g′±(∞)+O(x−2)], where the amplitude
g±(∞) is usually denoted by Γ±. Multiplying by L−γ/ν

leads to

χ̄±L−γ/ν = g̃±(x) = Γ±x−γ + O(x−γ−1), (14)

where g̃±(x) = x−γg±(x). The case of the magnetisation
is slightly different, since the magnetisation is asymptot-
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Fig. 14. Variation of the temperature dependent effective criti-
cal exponent γeff(|t|) = −d ln χ̄/d ln |t| (in the low-temperature
phase) as a function of the reduced temperature |t| (top) and
L1/ν |t| (bottom) for the bond-diluted Ising model with p = 0.7
and several lattice sizes L. The horizontal dashed lines indicate
the pure and site-diluted values of γ. The susceptibity vs. the
coupling strength K = J/kBT in the ordered phase is shown
in the upper part.

Table 4. Critical exponent γ deduced from log-log fits of the
susceptibility vs. the reduced temperature |t| in the ordered
phase for the concentrations p = 0.55 and 0.7.

p = 0.55 L 40 22
# points 7 12
χ2/d.o.f 0.07 1.6
γ 1.36(3) 1.36(2)

p = 0.7 L 40 35 22 18
# points 10 8 9 8
χ2/d.o.f 8.37 0.01 0.08 0.81
γ 1.32(1) 1.34(5) 1.40(4) 1.34(5)

ically vanishing in the high-temperature phase, and thus
m̄±(t, L) = |t|β [f±(∞) + x−1f ′

±(∞) + O(x−2)] or

m̄±Lβ/ν = f̃±(x) = xβ

{
0 + B′

+x−1 + O(x−2)

B− + B′
−x−1 + O(x−2)

(15)

which should give universal curves for the different sizes
and temperatures.

The curves in the ordered phase shown in Figure 15
are obviously universal master curves whose slopes, in
a log-log plot, give the critical exponents β � 0.355
and γ � 1.34. Indeed, when |t| → 0 but with L still
larger than the correlation length ξ, one should recover
the critical behaviour given by f̃−(x) ∼ xβ and g̃−(x) ∼
x−γ . The same procedure applied to the two other bond
concentrations p = 0.55 and 0.4 gives analogous re-
sults and confirms the universal values of the disordered
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Fig. 16. Log-log plot of the scaling functions m̄Lβ/ν (top)
and χ̄L−γ/ν (bottom) against L1/ν |t| in the disordered phase
(K < K∞

c ) for the three dilutions. The lines show the power-
law behaviours with the exponents β − 1 � −0.645 and −γ �
−1.34 which characterize the disorder fixed point.

critical exponents β and γ, independent of the concentra-
tion as is illustrated in Figure 15.

In the disordered phase K < K∞
c , t > 0 the previ-

ous scaling assumptions for m̄ and χ̄ lead to universal
functions whose slopes on a logarithmic scale are equal to
β − 1 � −0.645 and −γ � −1.34, see Figure 16.

0 10 20

L
1/ν

|t|

0

0.5

1

χ|
t|γ

0

0.2

0.4

χ|
t|γ

0

0.05

0.1

χ|
t|γ

L = 10
L = 14
L = 18
L = 22
L = 30
L = 35
L = 40

p = 0.7

p = 0.55

p = 0.4

Fig. 17. Log-log plot of the scaling functions χ̄|t|γ against
L1/ν |t| for the three dilutions. The shaded horizontal stripes
indicate the critical amplitudes Γ+ and Γ−(< Γ+), respectively.

Some combinations of critical amplitudes are also uni-
versal and thus characterize the critical point. In fact, crit-
ical amplitude ratios are often more sensitive to the uni-
versality class than the critical exponents themselves [73].
Among such ratios, Γ+/Γ− is directly accessible through
our results. An example is illustrated in Figure 17, where
the scaling function of equation (11) is plotted against
the scaling variable x. The values of the amplitudes which
describe the approach to criticality from above and from
below, Γ+ and Γ−, respectively, are shown in shaded hor-
izontal stripes. The ratios

Γ+/Γ− = 1.62 ± 0.10 (p = 0.7), (16)
Γ+/Γ− = 1.50 ± 0.10 (p = 0.55), (17)
Γ+/Γ− = 1.48 ± 0.20 (p = 0.4) (18)

follow. The values obtained for the three dilutions are con-
sistent within error bars but they unfortunately appear
to be in contradiction with a field-theoretic approach of
Bervillier and Shpot [60], who predicted a ratio equal to
Γ+/Γ− = 3.05(32). This is nevertheless not a crucially
conflicting result, since susceptibility amplitudes of course
depend on the definition used to compute the susceptibil-
ities. At any rate, our estimates (16–18) for the disor-
dered Ising model are clearly different from those for the
pure model where Γ+/Γ− obtained with field-theoretic
and high-temperature series expansion techniques varies
between 4.70 and 4.95 [74], and a recent high-precision
Monte Carlo study [75] concluded that Γ+/Γ− = 4.75(3).

5 Conclusions

In this paper, we have reported an intensive Monte Carlo
study of the physical properties of the 3D disordered bond-
diluted Ising model. As the critical exponents of the pure
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and disordered models are very close, the numerical pro-
cedure has to be carefully chosen, especially the thermal
averaging and the average over the disorder realisations.
We have determined numerically the phase diagram of the
disordered model, in very good agreement with a single-
bond effective-medium approximation.

The non-self-averaging at criticality, as discussed by
Aharony and Harris, is confirmed here. At a quantitative
level, the discrepancy between the numerical values of the
normalized squared width of the susceptibility Rχ(L) in
this work and that in reference [44] definitely comes from
the difference in the definition of χ. Although in our case
Rχ(L) and to a lesser extent also Rm(L) do not seem to
approach a unique constant independent of the disorder
concentration when the system size L increases, we cannot
exclude a unique limiting value when cross-over effects are
properly taken into account. This possibility is corrobo-
rated by our finite-size scaling study of critical exponents.
A comparison of the underlying disorder distributions for
the bond-diluted Ising and q = 4 Potts models shows that
the weight of rare events plays a much more crucial role
for the critical properties of the latter model.

The main emphasis was on investigations of the crit-
ical behaviour of the disordered model based on a finite-
size scaling study and on a complementary study of the
temperature scaling behaviour. In the first case, we have
shown the great influence of the cross-over phenomena
between the pure, disorder and percolation fixed points
which lead to the measurement of effective critical expo-
nents dependent on the concentration of magnetic bonds.
The temperature study, on the other hand, turned out to
be much better behaved and allowed us to confirm the
unique values of the critical exponents, independent of
the concentration and in agreement with the site-diluted
values, thus providing strong numerical evidence for the
theoretically predicted universal behaviour of the two dis-
order distributions. These results are summarized in Ta-
ble 5. A scaling study of the average of the maxima of
the susceptibilities χj for each sample instead of the max-
imum of the average susceptibility would have been an
interesting alternative. However, it is technically more
complicated because from sample to sample the position
of the maximum of the susceptibility varies and may be
far from the simulation temperature making histogram
reweighting unreliable. There should even appear samples
with large bond-density fluctuations where unconnected
or weakly connected clusters of bonds coexist. Such spe-
cial configurations may display a double-peaked (or more
complicated) susceptibility curve resulting from the inde-
pendence of these uncorrelated clusters.

Finally, we should remark that even though this work
required a really huge amount of effort and CPU time, for
some reasons that we are unable to identify, the accuracy
of our results is not as good as in the work of Ballesteros
et al. [24] for site-dilution. For example we were not able
to conclude for a reliable estimate of the corrections-to-
scaling exponent ω as they did. Nevertheless it is worth
noticing that the temperature scaling is quite satisfying
and led to the measurement of the susceptibility amplitude

Table 5. Critical exponents and critical amplitude ratio of the
susceptibility for the different fixed points.

fixed point ν β γ
pure 0.6304(13) 0.3258(14) 1.2396(13)
percolation 0.89 0.40 1.82
site-diluted 0.6837(53) 0.3546(28) 1.342(10)
bond-diluted 0.68(2) 0.35(1) 1.34(1)
fixed point β/ν γ/ν Γ+/Γ−
pure 0.517(3) 1.966(6) 4.75(3)
percolation 0.45 2.05
site-diluted 0.519(3) 1.963(5)
bond-diluted 0.515(5) 1.97(2) 1.50(20)

ratio Γ+/Γ−, a universal combination which was still un-
known numerically, and which complements an estimate
of other universal combinations of amplitudes reported re-
cently in references [45,76]. As anticipated from a previous
analysis for disordered systems, our estimates for the am-
plitude ratio Γ+/Γ− are clearly different from the pure
model and thus yield the cleanest signal for a unique dis-
order fixed point.
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and No. h0611 of LRZ, München. W.J. also acknowledges par-
tial support by the EU-Network HPRN-CT-1999-000161 “Dis-
crete Random Geometries: From Solid State Physics to Quan-
tum Gravity” and the German-Israel Foundation (GIF) under
grant No. I-653-181.14/1999.

References

1. J.L. Cardy, Scaling and Renormalization in Statistical
Physics (Cambridge University Press, Cambridge, 1996),
Chap. 8

2. In this paper, we do not discuss the case of long-range cor-
related disorder (e.g., the McCoy-Wu model or quantum
chains) which may lead to an infinite-randomness disorder
fixed point under renormalization (see, e.g., R. Sknepnek
and T. Vojta, e-print cond-mat/0311394 and references
therein)

3. A.B. Harris, J. Phys. C 7, 1671 (1974)
4. B.N. Shalaev, Phys. Rep. 237, 129 (1994)

5. L. Schwenger, K. Budde, C. Voges, H. Pfnür, Phys. Rev.
Lett. 73, 296 (1994)

6. C. Voges, H. Pfnür, Phys. Rev. B 57, 3345 (1998)
7. Y. Imry, M. Wortis, Phys. Rev. B 19, 3580 (1979)

8. M. Aizenman, J. Wehr, Phys. Rev. Lett. 62, 2503 (1989)

9. K. Hui, A.N. Berker, Phys. Rev. Lett. 62, 2507 (1989)
10. F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982)



474 The European Physical Journal B

11. B. Berche, C. Chatelain, Order, Disorder, and Criticality,
edited by Yu. Holovatch (World Scientific, Singapore,
2004), p. 147, e-print cond-mat/0207421

12. A.W.W. Ludwig, Nucl. Phys. B 285 [FS19], 97 (1987)
13. S. Chen, A.M. Ferrenberg, D.P. Landau, Phys. Rev. Lett.

169, 1213 (1992); S. Chen, A.M. Ferrenberg, D.P. Landau,
Phys. Rev. E 52, 1377 (1995)

14. Vl. Dotsenko, M. Picco, P. Pujol, Nucl. Phys. B 455 [FS],
701 (1995)

15. G. Jug, B.N. Shalaev, Phys. Rev. B 54, 3442 (1996)
16. J.L. Cardy, J.L. Jacobsen, Phys. Rev. Lett. 79, 4063 (1997)
17. M. Picco, Phys. Rev. Lett. 79, 2998 (1997)
18. J.L. Jacobsen, J.L. Cardy, Nucl. Phys. B 515, 701 (1998)
19. C. Chatelain, B. Berche, Phys. Rev. Lett. 80, 1670 (1998)
20. A. Roder, J. Adler, W. Janke, Phys. Rev. Lett. 80, 4697

(1998); A. Roder, J. Adler, W. Janke, Physica A 265, 28
(1999)

21. T. Olson, A.P. Young, Phys. Rev. B 60, 3428 (1999)
22. C. Chatelain, B. Berche, Nucl. Phys. B 572, 626 (2000)
23. W. Janke, R. Villanova, Nucl. Phys. B 489, 679 (1997)
24. H.G. Ballesteros, L.A. Fernández, V. Mart́ın-Mayor, A.
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