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Abstract 

We present a comparison of the performance of two non-local update algorithms for path integral Monte Carlo (PIMC) 
simulations, the multigrid Monte Carlo method and the staging algorithm. Looking at autocorrelation times for the internal 
energy we show that both refined algorithms beat the slowing down which is encountered for standard local update schemes 
in the continuum limit. We investigate the conditions under which the staging algorithm performs optimally and give a brief 
discussion of the mutual merits of the two algorithms. 

1. Introduction 

A well-known problem for path integral Monte 
Carlo simulations [1-4] using standard local update 
schemes such as the Metropolis algorithm is a severe 
slowing down in the continuum limit. By this one 
means that successively generated configurations in 
the Monte Carlo process are highly correlated, a 
phenomenon signalized by large autocorrelation times 
in the simulation. This slowing down problem is 
very similar to the critical slowing down encountered 
in simulations of statistical or lattice field theoretical 
systems near phase transitions of second order [5,6]. 
In both cases it is the diverging spatial correlations 
(in lattice units) which are the physical origin of the 
inefficiency of local update schemes. 

In many of the applications in statistical physics 
and lattice field theory the critical slowing down 
problem can be overcome by the use of multigrid 
techniques [7-13]. These are non-local update 

schemes where updates are performed on a variety of 
length scales in order to sample most efficiently long 
wavelength fluctuations. In a recent Letter [14] we 
have shown that thanks to the generality of their 
definition multigrid techniques can be transferred to 
simulations of Euclidean path integrals. We explic- 
itly demonstrated that also for these systems slowing 
down is almost completely reduced. Another advan- 
tage of their general definition is that multigrid 
techniques can also be combined with reweighting 
schemes such as multicanonical sampling in order to 
further reduce autocorrelation times in the presence 
of tunneling harriers [15,16]. 

For Monte Carlo simulations of path integrals 
another successful non-local update algorithm, which 
is somewhat similar in spirit but which works techni- 
cally in a rather different manner, is known under the 
name of "staging" [17-20]. Although this algorithm 
also significantly reduces the slowing down of simu- 
lations in the continuum limit, to our knowledge no 
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detailed analysis of autocorrelation times for the 
staging algorithm exists in the literature. Also, we 
know of no work which gives a comparison of the 
two algorithms. In this Letter, we intend to fill this 
gap by reporting autocorrelation times for a standard 
energy estimator and two sample potentials, a con- 
vex one and a double well, employing both the 
staging algorithm and the multigrid method. 

2. The algorithms 

In the path integral Monte Carlo approach the 
quantum partition function .2" at inverse temperature 
/3 is approximated as a discretized path integral 
consisting of L "beads"  [21] 

.zL(/3) = [ f i  exp{ i=l (1) 

with an action 

[-;( ) ] L Xi  - -  X i -  I 2 
= + v ( x , )  . ( 2 )  

where V is a potential to be specified below, A 
= 2¢~e, • = / 3 / L ,  x o = x  z, and h = k  B = I .  The 
original partition function .2" is then recovered in the 
continuum limit L ---> ~ with L•  =/3 held fixed. 

The basic idea of the multigrid approach [7-14] is 
to perform non-local updates of the x i by working 
on a set of successively coarser discretizations of the 
time axis ("gr ids")  in order to take into account 
long wavelength fluctuations of the paths more effi- 
ciently. The technical details of this algorithm have 
been described in detail elsewhere, see e.g. Ref. [14]. 
The algorithm requires the definition of a set of 
coarser grids and a prescription to set up coarsened 
actions on these grids. Given the grids and the 
corresponding actions the multigrid algorithm recur- 
sively defines a sequence in which the variables on 
the various grids are updated and interpolated back 
onto the original grid. Two of those sequences which 
have extensively been used and studied are known 
under the name of V-cycle and W-cycle. 

The basic idea of the staging method is to rewrite 
the quantum statistical partition function in such a 
way that a sequence of j adjacent variables can be 
updated independently. Technical details can again 
be found in the literature [17-20]. The algorithm 

implies the random selection of the end points of 
some segment of the path of length j and to perform 
a change of variables which allows an elimination of 
the nearest neighbor coupling stemming from the 
kinetic energy. For the variables of the staging seg- 
ment the partition function hence reduces to a collec- 
tion of independent oscillators moving in an external 
potential which depends on the transformation of the 
variables. The staging variables may then be updated 
using Gaussian random numbers and a Metropolis 
like acceptance rule for the external potential. In 
contrast to the multigrid scheme the staging algo- 
rithm only allows for one single tunable parameter, 
namely the length j of the staging segment. 

3. Results 

As in Ref. [14] we studied two qualitatively dif- 
ferent potential shapes, typical for a wide range of 
physical phenomena. A convex potential (CP), given 
by 

V = 0 . 5  x 2 --[- x 4 , 

is relevant for studying fluctuations around a unique 
minimum, and a double-well potential (DW), given 
by 

V -~" - - 0 . 5 X  2 "+" 0 . 0 4 X  4 ,  

is relevant for studying tunneling phenomena. We 
have simulated the path integral (1), (2) for grids of 
size L = 2 3 =  8 up to 2 l °=  1024, using both the 
multigrid scheme with Metropolis update and the 
staging algorithm. In all our simulations fl was 
equal to 10. 

An observable of central importance is the inter- 
nal energy. For path integral Monte Carlo simula- 
tions two different estimators for this observable are 
well-known [22-24]. Straightforward application of 
the definition of the internal energy 

U L = - 0  In .2"L/0/3 

leads to an estimator 

1 L 
uL = u? + 7 E <V(x/)>; 

z = l  

with 

, x / : >  
g k i n  __ _ _  X i . .  1 . 

2/3 L i= I E 
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We call U L the "kinetic" estimator since it explic- 
itly measures the kinetic part U kin of the energy [22]. 
Another function of the Monte Carlo configurations 
is given by 

1 L 
- -  1 t L E [ x,v (x,) + v(x,)], 

i = 1  

and its expectation value ( . . . )  with respect to (1) 
also estimates the internal energy [23,24]. We call it 
the "vir ia l"  estimator since it can be obtained by 
invoking the virial theorem. As usual expectation 
values are approximated in the simulation by mean 
values of the estimators over the Monte Carlo se- 
quence. For update schemes which reduce slowing 
down in the continuum limit the virial estimator is a 
priori superior in this limit since it has a constant 
variance whereas the variance of the kinetic estima- 
tors grows linearly with L. Clearly, the best estima- 
tor would be some linear combination of the two 
estimators which must take into account the individ- 
ual variances and the covariance of the two estima- 
tors [25,26]. For our comparison of multigrid and 
staging update schemes we will here, however, only 
look at the virial estimator. A careful discussion of 
the problem of optimized energy estimation in path 
integral Monte Carlo simulations is beyond the scope 
of this Letter [26]. 

Since the main focus of this Letter is to present a 
comparison of the performance of the two different 
non-local update schemes we have taken care to 
measure precisely the autocorrelation times obtained 
for the multigrid and staging algorithms. Explicitly, 
the autocorrelation function A(k) of an observable 

is defined by [27] 

A(k) = <~i2 > __ <~,i)2 ' (3) 

where de i stands short for the ith measurement of ~'. 
The autocorrelation time ~'0 then follows from the 
asymptotic behaviour for large k, A(k) ot 
exp(-k /~ 'o) .  The integrated autocorrelation time ~-, 
defined by the area under the autocorrelation func- 
tion of this observable, 

1 
r = - - +  E a ( k ) ,  (4) 

2 k=l 

usually behaves qualitatively as z 0. It can be shown 
to enter in the estimate for the statistical error of 
mean values as 

where tr 2 is the observable's variance and N m the 
number of measurements used to compute the mean 
value ~.  The effective statistics is thus reduced to 
N e f  f = N m / 2 T .  Since A(k) becomes very noisy for 
large k, the upper bound in (4) is usually cut off 
self-consistently at f~- with f - -  6 . . .  8 [16,27]. In our 
analysis we used f =  8, and all error bars for these 
autocorrelation times were obtained by jackkniving 
[28,29] the data with 100 blocks. 

In our simulations we performed N m = 100000 
sweeps after discarding 5 000 sweeps for thermaliza- 
tion. Measurements were taken after each sweep. In 
the case of the multigrid algorithm we understand a 
"sweep"  to mean a complete V- or W-cycle respec- 
tively [14]. Similar to an ordinary Metropolis sweep, 
the computational work of a V-cycle is directly 
proportional to the number of variables L, while it 
grows slightly faster with a factor of L log L for a 
W-cycle on one-dimensional grids. In the case of the 
staging algorithm, a "sweep" means int[L/(j-  1)] 
calls to the staging routine which moves j -  1 adja- 
cent variables at each call. Notice that the above 
definition of a staging sweep in general implies 
updates of less than L variables. We have therefore 
rescaled the measured autocorrelation times by a 
factor {int[ L/ ( j  - 1)]}/[ L/ ( j  - 1)]. 

For the staging algorithm the length j of the 
segment which is to be updated in the staging routine 
is the only parameter which may be tuned in order to 
optimize the performance. A rule of thumb here says 
that it should be set to such a value that the accep- 
tance rate is 40% [20]. For the above definition of a 
staging pass the amount of numerical work to be 
done does not depend significantly on the parameter 
j. The only criterion for the optimal choice of Jopt 
therefore is the integrated autocorrelation time for 
the observable at hand. Fig. la shows the integrated 
autocorrelation times as a function of j for different 
values of L using the virial estimator for the internal 
energy of the convex potential. We notice that there 
certainly is an optimal value Jopt for each L even 
though the minima are quite shallow and autocorrela- 
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tion times do not differ very much for neighbouring 
values of Jopr We also see that the autocorrelation 
times for Jopt stay roughly constant, independent of 
L. It is thus already seen qualitatively that the staging 
algorithm eliminates slowing down completely. 

As discussed above, it is the divergence of the 
correlation length measured in lattice units which is 
the cause of the slowing down problem in the contin- 
uum limit. The staging algorithm overcomes this 
problem by updating a whole segment of the path in 
a completely decorrelating manner. One would hence 
expect that the efficiency of the staging algorithm 
depends on the ratio of the length of the staging 
segment to the correlation length along the path. 
Since the latter scales with L one would therefore 
expect that the optimal choice of j should also scale 
with L. In Fig. lb we have therefore plotted the 
autocorrelation times with a rescaling of the x axis 
to i l L .  Except for small values of L we notice that 
the curves do indeed collapse onto a common master 
curve under such a rescaling. Fig. lb thus shows in 
particular that the optimal value Jopt scales with L. 
This observation shows that the optimal staging pa- 
rameter Jopt can in practice easily be obtained by 
looking at the autocorrelation times for moderately 
coarse discretization. The optimal choices of j can 
then be obtained for any finer discretization by a 
simple rescaling. 

For the virial estimator the rule of 40% accep- 
tance probability turns out not to be too far off the 
mark. For the optimal Jopt we find an acceptance rate 
of roughly 55% independent of the grid size L for 
not too small grids (cf. Table 1). To give a numerical 
example, for the convex potential and a medium 
sized grid of L = 256 the optimal value is Jopt = 44. 
An acceptance of 40% on the other hand would be 
achieved for J40~ = 72. For J40~ we then find an 
integrated autocorrelation time of 2.662(96) which is 
significantly larger than the minimal value of 
2.119(67) (cf. Table 1). We also emphasize that the 
integrated autocorrelation times do depend on the 
observable and on its estimator. Thus the 40% rule 
may be rather misleading for a different observable 
or estimator respectively. In fact, we found that the 
acceptance probabilities in the staging algorithm for 
that Jopt.k which optimizes the autocorrelation times 
for the kinetic estimator is roughly 90% [26]. For our 
comparison with the multigrid update schemes we 

have in any case used the value Jopt which mini- 
mized the integrated autocorrelation time. 

Let us now turn to the comparison of the two 
update schemes. For the multigrid algorithm autocor- 
relation times for the moments ( x " ) ,  n = 1 . . . . .  4 

were already reported in Ref. [14]. Here we look at 
the virial estimator for the internal energy but in 
order to facilitate comparison with our previous re- 
suits we have used the same parameters as in Ref. 
[14] for the multigrid scheme. This means in particu- 
lar that we performed only presweeps and no 
postsweeps [14]. The acceptance rates for the finest 
grid were adjusted to be roughly 50%. Table l lists 
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Fig. I. (a) Integrated autocorrelation times for the virial estimator 
and the convex potential using the staging algorithm for various 
grid sizes L. The x axis is the length of the staging segment. (b) 
The same data as in (a), when plotted versus a rescaled x 
variable, collapse onto a common master curve. 
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for the virial estimator the integrated autocorrelation 
times z for the V-cycle and the W-cycle as well as 
for the staging algorithm with Jopt as discussed 
above. These data are also plotted in Figs. 2a and 2b, 
together with fits to the data according to a power 
law of  the form ~" = a L  z. For the V-cycle these fits 
were done on the basis of  the data for the three 
largest grids, for the W-cycle and the staging algo- 
rithm data for the four largest grids were used for the 
fits. 

Since for a polynomial potential the virial estima- 
tor is a linear combination of the expectation values 
for the moments ( x  n) one would expect that the 
autocorrelation times for the virial estimator would 
not differ too much from the autocorrelation times 
for the moments. A comparison with the data re- 
ported in Ref. [14] shows indeed a qualitative agree- 
ment. The multigrid V-cycle again reduces the L 2 
divergence of  autocorrelation times for standard lo- 
cal updates to a linear dependence with z = 0.959(54) 
with a chi-square per degree of  freedom of 
g 2/d.o.f. = 1.04 for the convex potential (CP), and 
with z = 0.808(42) with a x2/d .o . f ,  of  0.58 for the 
double-well potential (DW). These exponents are 
indeed well comparable to the autocorrelation times 

for the even moment ( x 2 ) which are z -- 0.8356(92) 
(CP) and z = 0,715(27) (DW) [14]. 

Also for the W-cycle the behaviour for the mo- 
ments is qualitatively reproduced by the virial esti- 
mator. For the average path ( x )  slowing down was 
completely eliminated with values of  z consistent 
with 0, while for ( x  2) the exponents were found to 
be z = 0.1043(29) (CP) and z = -0 .015(11)  (DW) 
[14]. For the virial estimator we find again an almost 
complete reduction of  critical slowing down with 
exponents of  z = 0.128(12) with a xE/d.o.f ,  of  0.20 
(CP) and z = 0.0467(86) with a xE/d.o.f ,  of  0.49 
(DW). The W-cycle thus almost completely elimi- 
nates slowing down in the continuum limit with 
absolute values of  ~- close to 0.5 which means 
complete decorrelation in between measurements. 

Figs. 2a and 2b show that the staging algorithm 
also eliminates slowing down albeit with somewhat 
larger absolute values for ~-. Judged from the expo- 
nents z the staging algorithm eliminates slowing 
down with exponents that are in fact perfectly con- 
sistent with 0 well within the statistical error bars. 
Here the fits give z = 0.008(17) with a x2/d .o . f ,  of  
0.86 (CP) and z = -0 .005(20)  with a x2/d .o . f ,  of 
0.33 (DW). 

Table 1 
Integrated autocorrelation times for the virial estimator of U using the staging algorithm (~'s) and the multigrid algorithm with V-cycle (%) 
and W-cycle (~'w). The second and third columns give the optimal segment length and the acceptance rate in percent for the staging 
algorithm 

L Jopt % zs % rw 
convex potential (CP) 

8 2 64 1.545(32) 1.033(16) 
16 2 82 1.518(24) 0.912(14) 
32 4 72 1.850(44) 0.909(18) 
64 10 68 1.959(44) 1.092(22) 

128 24 55 2.012(49) 1.583(31) 
256 44 55 2.11 9(67) 2.701(82) 
512 88 55 2.079(53) 5.07(21) 

1024 176 56 2.048(56) 10.80(94) 

double-well potential (DW) 
8 2 71 1.779(36) 0.752(18) 

16 6 47 2.059(44) 0.746(12) 
32 10 49 2.182(63) 0.784(12) 
64 20 52 2.335(64) 0.945(16) 

128 40 54 2.406(76) 1.338(25) 
256 80 54 2.456(87) 2.297(61 ) 
512 160 54 2.366(64) 3.92(15) 

1024 320 54 2.406(69) 7.1 9(43) 

0.851(16) 
0.692( 12 
0.644(11) 
0.6278(66) 
0.660(14) 
0.7119(93) 
0.781(12) 
0.859(16) 

0.5478(76) 
0.5121(79) 
0.5128(79) 
0.5291(75) 
0.5377(72) 
0.5479(72) 
0.5650(95) 
0.5920(76) 
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Fig. 2. (a) Double logarithmic plot of integrated autocorrelation 
times r versus the grid size L for the virial estimator of the 
convex potential (CP) using the staging (S) algorithm and the 
multigrid V- and W-cycles. The straight lines are fits to the data 
according to ¢ = c~L z, yielding z = 0.008(17) (S), z = 0.959(54) 
(V), and z = 0.128(12) (W). (b) The same plot as in (a) for the 
double-well potential (DW). Here the fits give z =-0.005(20) 
(S), z = 0.808(42) (V), and z = 0.0467(86) (W). 

Regarding the asymptotic behaviour the staging 
algorithm seems to be slightly superior to the W-cycle 
where a small L-dependence cannot be excluded 
from the data. One should also not forget that for 
one-dimensional systems the number of operations 
involved in the W-cycle scales with another log L 
dependence. For practical applications, however, it is 
also important to look at the absolute values of the 
autocorrelation times. These indeed turn out to be 
several times larger for the staging algorithm than 
for the W-cycle for grid sizes up to the largest one of 
L = 1024 considered in our investigations. 

4. Discussion 

Multigrid techniques and the staging algorithm 
provide two different but equally successful path 
integral Monte Carlo methods. An investigation of 
the integrated autocorrelation times for the virial 
estimator of the internal energy shows that both the 
staging algorithm and the multigrid schemes solve 
the slowing down problem of local update schemes 
in the continuum limit. For the staging algorithm this 
was demonstrated for the optimal choice of the 
parameter j which determines the length of the 
staging segment. This optimal choice differs notably 
from the one obtained following the common rule of 
achieving a certain acceptance probability. It scales 
with the number of lattice sites L in the same way as 
does the correlation length along the path measured 
in lattice units. 

A comparison of the two update schemes from a 
practitioner's point of view shows that they both 
have their advantages and drawbacks. The staging 
algorithm completely beats slowing down with expo- 
nents which are even smaller than the ones for the 
multigrid W-cycle even though the absolute autocor- 
relation times are several times larger. One also has 
to take into account the number of operations per 
sweep which for one-dimensional systems grows 
proportional to L log L for the W-cycle. Also in 
more technical respects the staging algorithm is 
somewhat easier to implement for simple systems 
than the recursive multigrid scheme. Even though 
this is obviously hardware and platform dependent, 
one would probably find in most situations similar to 
the one investigated here that the staging algorithm 
will be preferable as far as CPU time is concerned. 
An advantage of the multigrid scheme is the general- 
ity of its definition and the fact that it is mathemati- 
cally well defined and understood. Multigrid schemes 
are therefore quite easily generalizable to higher 
dimensions and quantum chains [25]. 

Another advantage may become crucial for the 
sampling of deep tunneling problems. High tunneling 
barriers typically result in exponentially diverging 
prefactors a in the power-law behaviour r = a L  z. A 

similar problem is well-known in the simulation of 
phase transitions of first order where this problem 
can be overcome by using so-called "multicanoni- 
cal" reweighting techniques [30]. As we have shown 
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elsewhere [4,15,16], the multicanonical method can 
successfully be adapted to deep tunneling problems 
and can furthermore quite generally be combined 
with multigrid update schemes. Using a combination 
of multicanonical reweighting with a multigfid W- 
cycle, we have demonstrated [ 15] that autocorrelation 
times can substantially be reduced even for very high 
tunneling barriers. Given the very good performance 
of the staging algorithm for simple systems it would 
be interesting to work out similar generalizations for 
this update scheme as well. 
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