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Monte Carlo simulations of euclidean path integrals based on local update algorithms are severely hampered by diverging 
autocorrelation times T in the continuum limit. If c denotes the discretization parameter we verify for simulations with the stan- 
dard Metropolis algorithm the theoretically expected behaviour TIC ( I/t)‘. We then demonstrate numerically that this problem 
can be overcome by using mathematically very well-founded multigrid techniques. 

1. Introduction 

In the past few years considerable progress has been 
made in developing efficient update algorithms for 
Monte Carlo simulations in statistical mechanics and 
lattice field theory (for reviews, see ref. [ 1 ] ). These 
improvements all aim at overcoming the well-known 
problem of “critical slowing down” that severely 
hampered simulations based on standard local up- 
date algorithms like, e.g., the Metropolis or the heat- 
bath update. For local algorithms the autocorrela- 
tion time 7. (measuring the number of sweeps 
through the lattice needed to get sufficiently uncor- 
related configurations) grows with the correlation 
length < of the system as 7occrZ, with a dynamical 
critical exponent zx 2, as can be argued in a simple 
random walk picture. At a continuous phase tran- 
sition r tends to infinity, and on lattices with linear 
size L the autocorrelation time behaves as r,,aL”, 
where it is usually assumed that the exponent is the 
same as before. 

of special properties of the model under considera- 
tion and are therefore, if applicable, usually more 
successful, multigrid techniques have the advantage 
of being very general. 

In path integral Monte Carlo (PIMC) simulations 
[7-l 5 ] (for reviews, see ref. [ 161) a problem very 
similar to critical slowing down occurs in the con- 
tinuum limit and for its solution a number of mod- 
ified algorithms have been proposed over the last 
years [ lo- 13 1, Only few investigations, however, are 
devoted to quantitative comparisons of the perform- 
ance of these schemes [ 14,15 ] and, equally impor- 
tant, little is known about their mathematical foun- 
dations. This fact motivated us to test to which extent 
the very well founded new algorithms of statistical 
mechanics and field theory can be transferred to 
PIMC applications. Due to lack of space we shall 
concentrate in this Letter only on the multigrid ap- 
proach. A full account of our investigations will be 
given elsewhere, 

Most of the new algorithms (an exception is over- 
relaxation [2]) overcome this problem by propos- 
ing global update steps which allow to sample the 
phase space more rapidly. Particularly successful are 
cluster algorithms [ 31 and multigrid techniques [4- 
6 1, While the algorithms of the first class make use 

2. Path integral Monte Carlo 

We want to simulate a quantum partition function 
%” at inverse temperature j? expressed as a discretized 
path integral consisting of N= 2 ’ “beads” 
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with an action 

(2) 

where V is a potential to be specified later on, A= 
6, (F=B/N, x0=x),, and h=k,= 1. 

The slowing down problem occurs in the contin- 
uum limit e-+0 with fl fixed, or, equivalently, N-t 03. 

The reason for slowing down in PIMC is easily 
understood. The correlations (XJi+j) only depend 
onSand on the gaps between the energy levels. Hence 
the correlation length 5 only depends on the physical 
parameters at hand, and consequently always di- 
verges linearly with N if measured in units of the lat- 
tice spacing t of the discretized path integral, Thus 
for local algorithms one expects that the autocorre- 
lation time grows as N’ with zx 2. Note that in con- 
trast to the infinite volume limit in statistical me- 
chanics, in PIMC also the action changes its form in 
the limit N-t co which is the distinguishing feature of 
PIMC. As a consequence slowing down occurs in the 
continuum limit for any fixed B and any set of po- 
tential parameters. 

3. Multigrid techniques 

The basic idea of the multigrid approach [ 17 J is 
to perform nonlocal updates by working on a set of 
successively coarser lattices in order to take into ac- 
count long wavelength fluctuations more systemat- 
ically. Because of the idea to do updates on a se- 
quence of coarsened grids the approach has been 
called multigrid Monte Carlo [ 41. Equivalently, 
however, one may also look at the multigrid method 
from a unigrid point of view as a way to systemat- 
ically update long wavelength components on the 
original grid. We will first describe the method from 
this unigrid point of view. 

We define a sequence of update levels n, ,.., 0 by 
the following prescription. On level n, the finest level, 
we would do Monte Carlo updates bead by bead as 
usual. On level n- 1, however, we would move al- 
ways two neighbouring beads at a time. We would 
thus consider moves x2,_, +x2,_, +S, x~~-‘x~~+~ with 
the same displacement 6 and accept (or reject) the 
move only for both sites in conjunction. On level 
n-2 we would move always four beads at a time, 

and so on. Updates on level 0 clearly would just be 
collective moves of the whole chain. 

Having defined these levels it is two main features 
that distinguish the multigrid approach. The first is 
a mere technical one, at least from the unigrid point 
of view which we emphasize here, and concerns the 
question of how the update on the different levels 
can efficiently be implemented. The second and more 
important aspect has to do with the sequence in which 
the various levels are updated. 

Of course it would be possible to program the up- 
dates on the coarsened levels simply in the way we 
have just described them, and in fact we have done 
that to check the more involved multigrid case. The 
multigrid approach, however, allows one to imple- 
ment these updates more efficiently. In order to do 
so we define a sequence of coarsened grids ECk’, 
k=n- 1, . . . . 0 of size 2? On these grids we define 
auxiliary variables x,‘“) which will turn out to be 
nothing else than the combined trial moves. We then 
prescribe an interpolation scheme taking the vari- 
ables from level k- 1 to k. Using the simplest case 
of piecewise constant interpolation we would have 

.!?n= (x,, xi, x2,x2, . . . . X~L-l,X~r-l)=) (3) 

where we have suppressed the superscripts (k- 1). 
Instead of performing the updates on the various 
levels by working on the original variables of the Iin- 
est grid we can now implement the updates on these 
coarser grids with their auxiliary variables. In order 
to do so we define coarsened actions on these grids 
by the following simple prescription 

~(k-‘)(Xlk--l))=~(k)(Xjk)+~Xlk--I)). (4) 

In essence this prescription defines an action on the 
coarse grid So- ’ ) by fixing the variables x,“) of the 
next liner grid .Zck) and calculating the effect of 
moves represented by the variables xl”-‘) added 
onto 3ck) using the interpolation scheme (3). Note 
that by updating the variables of the coarse grids and 
interpolating them back onto the variables of the fine 
grid one performs exactly the above outlined com- 
bined move prescription, The efficiency of this im- 
plementation is enhanced by the fact that in many 
applications the action on level k- 1 has the same 
functional form as the action on level k. In particular 
this is the case for the piecewise constant interpo- 
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lation scheme and for a polynomial potential which 
we shall consider here. 

The second feature of the multigrid approach con- 
cerns the sequence in which the updates on the var- 
ious levels are to be performed. In principle any se- 
quence would be possible. Thus one could do, say, 
ten updates on level n followed by one update on level 
0. Or one could do three updates on level n, followed 
by three updates on level n - 1, followed by three up- 
dates on level II - 2, and so on. Also one could define 
some random sequence of levels. Most of the mul- 
tigrid applications, however, follow a scheme under 
the name of V-cycle or W-cycle, respectively. These 
schemes derive from the following recursive defini- 
tion of the multigrid algorithm. 

Suppose we are updating the variables of grid Eck). 
The multigrid algorithm then consists of (a) nl 
sweeps using any valid local update algorithm. (b) 
If the coarsest level has not yet been reached one 
would fix the configuration for Zck) and calculate the 
actiomfor the next coarser grid E--(k-‘). The variables 
Ztk-‘) could then be updated with this conditional 
action again applying the multigrid algorithm re- 
peatedly yk times starting from an initial contigura- 
tion x!‘+‘) = 0. Otherwise one would simply go on 
with (‘d). (c) After performing the update proce- 
dure on Eck-l) one would then interpolate the vari- 
ables of Zk-‘) back onto the finer grid using the in- 
terpolation scheme defined above, i.e. x$ =x$$ t 
~PX(~-‘), and (d) perform another n2 sweeps on the 
grid Etk) with the local update algorithm. Note that 
at (b) the multigrid algorithm is defined recursively. 
The numbers yI, in this algorithm control the se- 
quence in which the various levels are visited. The 
above mentioned V- and W-cycles correspond to the 
special cases Ykz 1 or yk=2, respectively. These 
names are obvious from a graphical representation 
of the so defined sequence of level #l. 

At this point it should be pointed out that mul- 
tigrid techniques have first been designed to solve 
partial differential equations #2, and that there exists 
an extensive literature dealing with convergence 
properties of multigrid algorithms [ 17,lt 1. The fact 
that there is a close analogy between deterministic 
problems and Monte Carlo simulations allows one to 

#’ See, e.g., ref. [ 171, p. 33. 
“* For a brief historical account, see ref. [ 171, ch. 2.6.5. 

transfer some of the rigorous convergence proofs for 
deterministic algorithms to statements about Monte 
Carlo autocorrelation times [ 41. In particular it has 
been shown that for the W-cycle with piecewise con- 
stant interpolation when applied to quadratic poten- 
tials the autocorrelation times are independent of the 
number of beads N, and hence critical slowing down 
is completely eliminated. To our knowledge there are, 
however, no rigorous statements for non-quadratic 
potentials. In this note we have therefore investi- 
gated this case numerically. 

4. Results 

We simulated the path integral ( I), (2) for the 
two characteristic potential shapes covering a wide 
range of physical phenomena, namely a convex po- 
tential (CP), relevant for studying fluctuations 
around a unique minimum, and a double-well po- 
tential (DW ), exhibiting tunneling phenomena. 
More precisely, we studied the two potentials 
V=0.5x2fx4 (CP) and V= -0.5x2-l-0.04x4 (DW), 
but the qualitative behaviour of our results clearly 
does not depend on the specific form of these 
potentials. 

We simulated the path integral for grids of size 
23= 8 up to 29= 512 sites using either the standard 
local Metropolis algorithm [ 191 (M) or the multi- 
grid algorithm with all yk= 1 (V) or all yk=2 (W). 
In the multigrid case we always had n, = 1, and n2= 0, 
i.e. on each grid we performed one presweep and no 
postsweep. To take full advantage of the features of 
a vector computer we worked with a checkerboard- 
like implementation, The acceptance rates for the 
finest grid were adjusted to be roughly 0.5, we found 
that there was no need to adjust 6 for the coarsened 
grids since the acceptance rates varied only weakly 
over the different levels. In all our simulations /I was 
equal to 10. 

An advantage of the simple one-dimensional one- 
particle system investigated here is that in the con- 
tinuum limit all expectation values converge to val- 
ues which can easily be obtained by other methods 
such as numerical solutions of the Schrodinger equa- 
tion. To check the accuracy of our results we mea- 
sured moments (xf ), q= 1, ..‘, 4, correlations 
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(XJl+j), and the internal energy using the virial es- 
timator E=( fxiV’(xi)+V(xj)) [8,9], and con- 
vinced ourselves that the program reproduces the 
theoretically expected continuum values for large 
grids within the statistical errors. For the convex po- 
tential the continuum energy is 0.80377, in our sim- 
ulations the measured energies are compatible with 
this value for N= 256, the values being 0.8024( 20) 
(M), 0.8011(13) (V), 0.8027(7) (W), and for 
N=512, the values being 0.8004(26) (M), 
0.8042( 18) (V), and 0.8032(7) (W). For the dou- 
ble-well potential we again find the measured ener- 
gies compatible with the continuum energy which is 
- 0.90397, the values being - 0.9032 ( 19) (V), and 
-0.9068(20) (W) for the N=512 grid. These val- 
ues are obtained on the basis of N,,, measurements, 
the values of N,,, being given below; 

Since the main focus of our investigation was to 
test the relative performance of the different algo- 
rithms we have taken care to measure precisely the 
autocorrelation times for the Metropolis and the 
multigrid algorithm. As mentioned above it is the 
lutocorrelation time r. which characterizes the 
(pseudo) dynamics of the slowest mode in the Monte 
Carlo process. Explicitly, the autocorrelation func- 
tion A (k) of an observable 0 is defined by 

A(k)= (04+k)-<4>2 
(c)-(4>2 ’ (5) 

where oj stands short for the ith measurement of 0. 
The autocorrelation time so then follows from the 
asymptotic behaviour for large k, A(k) cc exp( - k/ 
70), In addition each observable 0 is associated with 
its own so-called integrated autocorrelation time r, 
defined by the area under the autocorrelation func- 
tion of this observable, 

(6) 

The integrated autocorrelation time usually behaves 
qualitatively as r. and can be shown to enter in the 
estimate for the statistical error of mean values as 
Aa=fiJm, where a2 is the observable’s var- 
iance and N,,, the number of measurements used to 
compute the mean value 6. The effective statistics 
is thus reduced to N,,=N,/2r. Or, in other words, 
to achieve a given error Ai%, the run-time (i.e. the 
budget) has to be increased by a factor of 27. 
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In our simulation we performed N, “empty” up 
dates in between each measurement thereby adjust- 
ing the autocorrelation time scale so that $=7/N, 
never exceeded a value of 50 successive measure- 
ments. In addition we have always performed 
N,x 5000 updates without measuring in order to 
reach thermal equilibrium starting from an ordered 
configuration Xi G 0. In our log-log plots the error bars 
for r, calculated by the jackknife method [20], are 
smaller than the data symbols. 

In order to get a solid basis for comparisons we 
first looked at the autocorrelation times of the stan- 
dard Metropolis algorithm. Fig. 1 shows our results 
for the moments X= CXi/N and $=1x:/N, both 
for the convex potential (filled symbols) and for the 
double-well potential (open symbols) on the basis of 
N,= 500000 (CP) and N,,,= 100000 (DW) mea- 
surements, respectively. The autocorrelation times 
for the odd moments 71 and for the even moments 
~2 only differ by a constant factor while the N de- 
pendence in both cases clearly shows the expected 
behaviour of tc~ N 2. While in the case of the double- 
well potential the autocorrelation time for x’! is not 
very much increased in comparison with the convex 
case, it is the average position of the path x which 
becomes drastically autocorrelated. Already for the 
N= 128 grid we found an autocorrelation time of 
2.36 (47 ) x 106. Since the NZ behaviour sets in only 
for sufficiently large grids, a tit ~=(YN’ expectedly 
underestimates z to be only 1.855 (55). On the basis 
of this lit we estimate that for our largest grid with 
N= 5 12 one would need at least 2r= 5.2 x 10’ sweeps 
of the primitive Metropolis algorithm in order to ob- 
tain one statistically independent configuration. As 
to the higher moments we found that the autocor- 
relation times for STf are in general only slightly 
smaller than those for 2, and the same is true for 
;;d and 2. Note that to obtain the internal energy 
using the virial estimator (for the quartic potentials 
considered here) only the even moments are needed. 
If, however, one would want to look at the level split- 
ting which is essentially governed by the tunneling 
events one would also have to determine the odd 
moments accurately. 

Let us now look at the results for the multigrid al- 
gorithm. Fig. 2 shows that for the convex potential 
the exponent z can considerably be reduced with the 
multigrid approach. Here again we had N,,,= 500000. 
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Fig. 1. Autocorrelation times for the convex (CP ) ( ( 0 ) X; (I ) x2 ) and the double-well (DW) ( (0 ) Z; ( 0 ) 3 ) potential using the 
standard Metropolisalgorithm. Solid lines are tits r=cuN’withanexponentzof 1.855(55) (0), 2.026(90) (01, 1.989(20) (o), and 
l-990(13) (r)T - 
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Fig. 2. Autocorrelation times for the convex potential using the V- ( ( 0) X; (0) 2 ) and W- ( ( l ) x (I) x2 ) cycle multigrid algorithm, 
Solidlinesarefits~=~NTwithan exponenttof0.8356(92) (O), 0.5835 (48) (0),0.1043(29) (m),and 0.0043(29) (0). 

While for the W-cycle critical slowing down appears dated than the even ones, thus X becomes even less 
to be completely eliminated at least for r:, the crit- autocorrelated than 2. As to the absolute values of 
ical exponent for the V-cycle seems to approach a 
value close to 1. Observe that with the multigrid al- 

r, note the different scale of fig. 2 as compared to fig. 
l. 

gorithm the odd moments are more effectively up- Turning to the double-well potential, the next 
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question is whether topological features of the po- 
tential which would let the system reach different re- 
gions of the configuration space only by tunneling 
would destroy the efficiency of the multigrid algo- 
rithm. As fig. 3 shows, we find that the critical ex- 
ponent z does not depend on the qualitative shape 
of the potential. Critical slowing down is completely 
eliminated for the W-cycle while for the V-cycle we 
obtain again values of z a little less than 1. In this 
case it is the prefactor (Y which separates the odd mo- 
ments from the even ones. For the largest grid we 
found autocorrelation times rz = 3.28 (23) x 1 O4 (V) 
and 269( 17) (W). Thus the multigrid algorithm 
outperforms the primitive Metropolis algorithm by 
a factor of roughly 700 using the V-cycle and by a 
factor of almost lo5 using the W-cycle. 

Since no comparison of algorithms would be com- 
plete without a work estimate we finally remark that 
by counting the necessary operations one expects the 
work required for a full V-cycle to differ from the 
work for a Metropolis sweep by a constant factor, 
while the work required for a W-cycle compared with 
a Metropolis sweep should grow logarithmically with 
N [ 4 1, Both these predictions could be qualitatively 
verified in our simulations. It is therefore ensured 
that the gain in efficiency by the reduction of z is not 

10’ 

loo 

lost by an unlimited growth in computational effort 
for the multigrid cycles. 

5. Concluding remarks 

It has been shown that the multigrid approach to 
path integral Monte Carlo can completely eliminate 
the costly phenomenon of “critical slowing down” 
encountered in approaching the continuum limit of 
the discretized path integral. While in the past a 
number of modifications of the primitive Metropolis 
scheme has already been proposed to reduce slowing 
down by a similar strategy of incorporating nonlocal 
update moves [lo-131 the multigrid approach dif- 
fers by two important features. First, convergence 
properties of the multigrid idea have been exten- 
sively investigated in the mathematical literature in 
the application to deterministic problems, and re- 
cently also in applications to Monte Carlo simula- 
tions. It is therefore a well founded method and its 
convergence properties have in some cases been rig- 
orously demonstrated. The second outstanding fea- 
ture of the multigrid approach is its generality. While 
in this investigation the principal applicability of the 
multigrid method to path integral Monte Carlo has 
been demonstrated in simple test examples, it is con- 
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E 
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n 

q 

n 

Fig. 3. Autocorrelation times for the double-well potential using the V- ( (0) X; (0) 2) and W- ( (0) X; (ml 2 1 CyClC multigrid 
algorithm.Solidlinesarefits~=~Nzwithanexponentzof0.975(37) (0),0.013(43) (*),0.715(27) (O),and -0.015(11) (I). 
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ceivable that it can also be used for more compli- 
cated and realistic path integral systems. An inter- 
esting application would be an investigation of 
quantum chains [ 2 1 ] or quantum crystals [ 221. 
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