
Computer Physics Communications 256 (2020) 107414

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Accelerating polymer simulation bymeans of tree data-structures and
a parsimoniousMetropolis algorithm✩

Stefan Schnabel ∗, Wolfhard Janke
Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany

a r t i c l e i n f o

Article history:
Received 20 March 2020
Received in revised form 15 May 2020
Accepted 25 May 2020
Available online 30 May 2020

Keywords:
Self-avoiding walk
Polymer
Monte Carlo
Metropolis
05.10.Ln
05.40.Fb

a b s t r a c t

We show how a Monte Carlo method for generating self-avoiding walks on lattice geometries which
employs a binary-tree data-structure can be adapted for hard-sphere polymers with continuous
degrees of freedom. Data suggests that the time per Monte Carlo move scales logarithmically with
polymer size. Next we generalize the method to Lennard-Jones polymers with untruncated monomer–
monomer interaction. To this end we propose a variant of the Metropolis algorithm and demonstrate
that in combination with the tree data-structure logarithmic scaling can be preserved. We further
show how the replica-exchange method can be adapted for the same purpose.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The simplest model for a polymer chain realizing nothing but
its linear geometry is provided by a random walk, e.g., a random
path on a periodic lattice. While these objects can be treated very
easily with analytical methods, they do not possess an abundance
of realistic features and real polymers behave similarly to random
walks only at the Θ-point. If, as a step towards more realistic
representations, excluded volume interaction is to be included,
the simplest model is the self-avoiding walk. It is similar to
the random walk, but any lattice site may only be visited once.
Different parts of the polymer are not allowed to occupy the
same space. Now the problem becomes more difficult and since
in three dimensions the Flory exponent – signifying the scaling
behavior of geometric quantities such as the end-to-end distance
or the radius of gyration – as well as corrections to scaling are
not exactly known, numerical methods are applied.

Ideally, in order to determine expectation values of observ-
ables of interest, one would like to sum over all possible walks
and algorithms that can efficiently generate them are, therefore,
strongly desired. While simple recursive methods on the simple-
cubic lattice require days to generate all walks up to 20 steps,
much more sophisticated techniques have been applied in order
to enumerate walks of 36 steps [1]. Monte Carlo (MC) computer
simulation methods introduce a statistical uncertainty, but are
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able to investigate much larger systems and until not too long
ago N ≈ 105 was the state of the art. Recently, however, Clisby
introduced an ingenious technique [2–4] for the investigation
of self-avoiding walks by means of a binary-tree representation
simulating walks of length N ≈ 3 × 107. One of the technique’s
main features is a variable resolution; if possible large parts of
the walk are treated as single units that are only ‘zoomed-into’ if
the situation at hand demands it. So far this technique has only
been applied to walks on lattices. In the first part of this study
we describe how it can be adapted to investigate more realis-
tic off-lattice hard-sphere polymers with continuous degrees of
freedom.

To make the self-avoiding walk model for polymers more
realistic the interaction with a solvent has to be included. This is
often done implicitly by the introduction of an attractive term in
the Hamiltonian. The transition from a bad solvent with the poly-
mer in a collapsed, globular state towards a good solvent with
configurations resembling swollen coils then corresponds to a
change from low temperature where the interaction has a strong
influence to high temperature where it is rather unimportant.
On lattices, this attractive interaction can simply be a constant
negative energy contribution for monomer–monomer contacts.
Studies of such models, e.g., [5–7], have confirmed predictions
about the general nature of the collapse transition. However,
details like the form of corrections to scaling still remain unclear.
While it is expected that the investigation of larger systems will
provide further insight, it is also conceivable that off-lattice mod-
els with an underlying continuous and isotropic geometry might
reach the asymptotic regime already for smaller sizes. There,
the most commonly used potential is the 12-6 Lennard-Jones
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potential, where both the repulsive and the attractive component
are polynomial with exponents 12 and 6, respectively. Since this
potential exerts forces at all distances the recalculation of the
energy of the polymer after a modification of the configuration
is of complexity O(N2). In order to achieve better performance
the interaction is often truncated ensuring that beyond a certain
distance the forces become zero. We show how this can be
avoided by combining the tree-like data structure with a novel
implementation of the Metropolis algorithm that does not rely
on the exact knowledge of the change of energy.

In this paper we discuss in Section 2 the models under con-
sideration. We then introduce a variant of the Metropolis algo-
rithm in Section 3 which permits the simulation of large poly-
mers with untruncated interactions and explore in Section 4 the
mathematical properties of the transformations that are used
to affect conformational updates. In Section 5 our version of
Clisby’s binary-tree technique is described, its power is demon-
strated in Section 6 by an application to hard-sphere polymers.
This is followed by the application of the generalized method
to Lennard-Jones polymers both with untruncated and truncated
interactions in Section 7. There we also briefly discuss how the
replica-exchange method can benefit from the same ideas. Our
conclusions are presented in Section 8. Finally, in the Appendix
we describe a procedure for different types of conformational
updates.

2. Models

2.1. Hard-sphere polymer

We first consider a freely-jointed chain with the excluded vol-
ume interaction modeled by hard spheres. This is the continuum
model that most closely resembles the self-avoiding walk on a
lattice.

If the chain is allowed free movement then the first monomer
x1 can be placed at an arbitrary point and positions of monomers
x2, . . . , xN are given by

xk = x1 +

k−1∑
i=1

bi, (1)

where the bond vectors have a constant length |bi| = b and the
distance between any two monomers has a lower bound to satisfy
the constraint

|xk − xl| ≥ D · b. (2)

Here, D is the diameter of the hard spheres measured in units
of b. All values from D = 0 (the ideal chain) to D = 1 (tangent
hard-sphere or pearl-necklace model) are possible.

2.2. Lennard-Jones polymer

For the second model we abandon the hard spheres in favor
of a 12-6 Lennard-Jones interaction

U(r) = 4ϵ
[(σ

r

)12
−

(σ

r

)6
]

(3)

acting between all pairs of monomers. The attractive force models
implicit hydrophobic interactions such that low (high) temper-
atures with dense (extended) configurations correspond to bad
(good) solvent. For the simulations presented in this paper we
chose the bead diameter σ = b/21/6 such that U(r) is minimal
for rmin = b. The complete Hamiltonian reads

H =

N−1∑
i=1

N∑
j=i+1

U(xi − xj) (4)

and its calculation requires1 (N − 1)(N − 2)/2 evaluations of
U . Therefore, H is of quadratic complexity: H ∈ O(N2). Using
standard techniques this limits the size of the systems that can be
treated. For instance, the most recent study we found [8] reached
N = 217. Therefore, such models are rarely investigated. Instead,
the problem is typically avoided by a shift towards slightly dif-
ferent models. These use truncated potentials that do not create
forces beyond a certain cut-off distance rc which typically equals
a few multiples of σ . However, as we will show it is possible to
achieve fast simulation with the full potential.

Note that for both models we have N monomers connected
by N − 1 bonds as opposed to the notation of N steps and N + 1
occupied sites that is often used in the context of random walks.

3. A parsimonious Metropolis algorithm

Since the dawn of the information age the Metropolis algo-
rithm [9] has been the workhorse of computational statistical
physics. Detailed balance,

P(µ)W (µ, ν) = P(ν)W (ν, µ), (5)

provides a solution to the Master equation. Here, µ, ν are states
of the system, P occupation probabilities, and W (µ, ν) is the
probability to occupy ν in the next step if µ is occupied now. To
be precise, the probability for a transition between two states in a
Monte Carlo simulation is often the product of the probability of
such an update being proposed and of it being accepted. Usually
the probabilities for proposals are symmetric such that

P(µ)Waccept(µ, ν) = P(ν)Waccept(ν, µ), (6)

which in turn is solved by

Waccept(µ, ν) = min
(
1,

P(ν)
P(µ)

)
. (7)

If a canonical distribution at the inverse temperature β = (kBT )−1

with P(µ) ∝ exp (−βE(µ)) is aimed at, this becomes

Waccept(µ, ν) = min
(
1, e−β∆E) , (8)

with ∆E = E(ν) − E(µ). The usual procedure is to calculate
∆E, determine this probability, and to draw a uniformly dis-
tributed random number ξ ∈ [0, 1). The update is accepted if
ξ < Waccept(µ, ν). We intend to reverse this sequence. The last
condition is equivalent to

ξ < e−β∆E (9)

and consequently to

−
ln ξ

β
> ∆E, (10)

assuming that β > 0. Hence, it is possible to draw ξ first and
then to estimate ∆E with increasing precision until it can be
decided whether (10) is fulfilled or violated. In cases where such
an estimate can be done with less computational effort than
a complete calculation, the simulation should run faster than
with the standard technique, while with both methods the same
updates are accepted or rejected and the trajectories through the
configuration space are, therefore, identical.

Albeit being potentially extremely beneficial, such an ap-
proach has – at least to our knowledge – not been pursued in
the past. This may be due to two reasons. On the one hand it
is only relevant for Hamiltonians with long-range interactions
which severely limits the number of candidate systems. On the

1 Since the bond length is fixed, contributions of adjacent monomers are
constant.



S. Schnabel and W. Janke / Computer Physics Communications 256 (2020) 107414 3

other hand, the state of the system must be represented in the
computer in such a way that estimates of the interaction of large
parts of the system can be done very fast which requires the use
of suitable data structures.

4. Monte Carlo update moves as transformations

During the simulation we modify the polymer configuration
using two well established update moves. For the hard-sphere
polymer the pivot move [10] is sufficient while the simulation of
the Lennard-Jones polymer greatly benefits from the application
of a single-bond-rotation update [11]. As long as one is not inter-
ested in dense configurations, more sophisticated strategies are
not needed [12]. For both moves we choose a k ∈ {1, . . . ,N − 1}
and a random axis through xk perpendicular to bk = xk+1 − xk.
The rotation angle is drawn such that as a result the new position
x′

k+1 is at a random position on the sphere of radius b = |bk|
around xk. For the pivot update we apply the rotation that is
given by this axis and the angle to all monomers xk+1, . . . , xN . For
the single-bond-rotation xk+1 is modified in the same way, but
all bonds bi with i ̸= k are kept unchanged such that x′

i|i>k+1=

xi+x′

k+1−xk+1. In both cases N−k monomer positions are altered
such that k(N − k) − 1 monomer–monomer distances change
(while the distance between xk and xk+1 remains b). Therefore,
basic implementations that recalculate all new distances are of
complexity O(N2). More advanced techniques that search only in
the neighborhood of the monomers and that, therefore, only work
for short-range interactions are able to reduce this to O(N).

In general the rotation of a monomer position x around an axis
that passes through the point xp is given by

x′
= R(x − xp) + xp = Rx − Rxp + xp, (11)

where R is the rotation matrix. Hence

x′
= Rx + c, (12)

with

c = xp − Rxp. (13)

It is easy to see that reflections on arbitrary planes as well as
simple shifts by some vector can also be expressed in this form.

Applying two transformations consecutively,

x′′
= R2x′

+ c2, (14)
= R2 (R1x + c1) + c2, (15)
= (R2R1) x + (R2c1 + c2) , (16)

we obtain the same structure as in (12) which means that it is
easily possible to ‘multiply’ two transformations before applying
them to the monomer:

T1 ≡ {R1, c1}, T2 ≡ {R2, c2}, (17)
T1 • x := R1x + c1, (18)
T2 • (T1 • x) = (T2 ◦ T1) • x, (19)

with

T2 ◦ T1 := {R2R1,R2c1 + c2}. (20)

It is also easy to see that this operation is associative

(T3 ◦ T2) ◦ T1 = T3 ◦ (T2 ◦ T1). (21)

For the notation used in this paper rotations are realized
as matrices. However, we found that an implementation using
quaternions is faster. For large chains (N ≥ 216) for which the
overhead from other aspects of the algorithm is negligible that
speed-up is about 20% independently of D.

Fig. 1. Left: A sub-tree with three monomers represented by the leaf-nodes
k, k + 1, and k + 2 and two internal nodes. Right: The contained geometric
information: Monomer positions xk, xk+1, xk+2 and sphere parameters yA, rA and
yB, rB .

5. Polymer configurations as binary trees

A few years ago Clisby [2,3] has introduced the binary tree as
a fundamental data structure for the simulation of self-avoiding
walks on lattices and has achieved most impressive results.
Strongly inspired by his ground-breaking work we adapt this
approach for off-lattice polymers.

All data is organized in a binary tree where the leaves repre-
sent individual monomers and any internal node, i.e., each node
that is not a leaf, provides a coarse-grained representation of its
children: Each node contains among other data the parameters
for a sphere that comprises all monomers in the sub-tree to which
it is root (Fig. 1). Such a representation serves two purposes. On
the one hand it allows one to ensure that distinct parts of the
polymer represented by different nodes do not overlap, since a
sufficient (although not necessary) condition is that the respec-
tive spheres do not intersect. On the other hand modifications to
the polymer can be applied at a level of low resolution to nodes
high in the tree while the application to the more numerous
smaller nodes below is postponed. The goal is to aggregate multi-
ple modifications at high levels such that their later applications
at low levels can be done collectively in a more efficient manner.
To that end each internal node is able to store a transformation
of the shape defined in (17) that applies to all nodes in its sub-
tree, i.e., the nodes constituting its collective offspring, except the
node itself. Consider for instance the tree in Fig. 2(a). Although
the monomer position stored in the lower left node is x1, the
actual position of the first monomer is given by TA • (TB • x1),
and the position of the center of sphere that belongs to node B is
actually TA•yB. Only when a need to access a certain position in a
node arises the respective transformations in the ‘ancestor’-nodes
are applied. This is either done separately outside the tree or by
pushing down transformations as depicted in Fig. 2(b,c).

Let us summarize which data has to be stored in a single node:

• links relevant for the geometry of the tree, i.e., links to the
parent-node and the two children,

• parameters for a sphere that contains all monomers in the
sub-tree to which the node is root,

• the data for a transformation that is to be applied to all
nodes in the node’s sub-tree, but not to the node itself,

• additional information, e.g., index of the node or size of the
sub-tree.

Since the underlying data structure is a binary tree it is natural
although not required to chose system sizes that are powers of
two.
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Fig. 2. (a) A binary tree for a polymer with four monomers with transformations
in the internal nodes. (b) The tree in (a) with the transformation TA pushed
down. (c) The tree in (a) with the transformation TC pushed down. Here, I
stands for the identity or absence of a transformation.

Fig. 3. Tree-rotations are used to move nodes up or down. Only the nodes B
and D are affected.

6. Simulating hard-sphere polymers

In order to perform an update of the polymer it is convenient
to rearrange the tree. Consider Fig. 3, where versions of a section

Fig. 4. The binary tree during an update.

of a tree are displayed. Transitions between them are called tree-
rotations. With respect to the parts of the polymer they contain,
during these operations only the nodes B and D are altered:
Node B has the children A and D while node B′ links to A and
C, while the children of D are C and E as opposed to B′ and
E for D′. This means that during such an operation one has to
recalculate the spheres in the nodes B′ and D′ if going from
left-to-right in Fig. 3 or in D and B when moving right-to-left.
First, however, it is important to take care of potentially stored
transformations. The easiest way to do this is to push down the
transformations in B and D (B′ and D′) such that both nodes
do not hold a transformation when the actual tree-rotation is
performed. Note that the horizontal order of the nodes is not
affected. From left-to-right the nodes read A,B,C,D,E or A,B′,C,D′,E.
Furthermore, each internal node, i.e., each node that does not
represent a single monomer, is in such a horizontal order always
placed between the same two leaves (monomers) while there is
exactly one internal node between any two adjacent leaves. This
is exploited when an update is to be performed. Assume that the
following update of the polymer configuration is proposed2

x′

i =

{
xi if i ≤ k
TU • xi else.

(22)

One can then identify the internal node that is (in horizontal
order) positioned between the leaves corresponding to xk and
xk+1 and use tree-rotations to move up this node until it becomes
the root-node, i.e., the node on top without a parent. Since the
horizontal order is preserved and the root node is between xk and
xk+1, it is clear that the leaves x1, . . . , xk are now in the left part,
i.e., the sub-tree to which the left child of the root-node is root,
and the leaves xk+1, . . . , xN are in the right part. This situation
is depicted in Fig. 4. Once the tree is in this shape, one can test
whether the original left part overlaps with the transformed right
part. If the spheres of the children of the root node do not overlap,
which is the case if the distance between their midpoints is larger
than the sum of the radii,

|yl − TU • yr | > rl + rr , (23)

then there can be no overlap of any two individual monomers.
Otherwise the resolution on one side has to be increased by

2 In practice it is, of course, more efficient to modify the left part (i =

1, . . . , k − 1) if k < N/2. This is part of our implementation, but omitted here
in favor of a simpler description.
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stepping down one level in the tree. One has to either test that

|yll − TU • yr | > rll + rr
and |ylr − TU • yr | > rlr + rr (24)

or that

|yl − TU • yrl| > rl + rrl
and |yl − TU • yrr | > rl + rrr . (25)

Beforehand, either the transformation Tl or Tr has to be pushed
down such that the actual positions yll, ylr or yrl, yrr are used.
This process is continued iteratively; whenever an individual
inequality is violated, it has to be replaced by two conditions that
are derived by splitting one of the participating nodes. Intuitively,
one should split the larger one. For this model, it seems that split-
ting the node which contains more monomers is slightly more
efficient (≈ 1%) than splitting the node with the larger radius.
The update is rejected if the process reaches a point where two
nodes that are leaves, i.e., monomers, overlap. Otherwise, when
the process terminates with all remaining inequalities fulfilled,
the update is accepted and the transformation TU is stored in the
node r:

T ′

r = TU , (26)

or is multiplied to the existing transformation, if this node still
contains one:

T ′

r = TU ◦ Tr . (27)

Finally, we retrace our steps and use the inverse tree-rotations as
before, in order to rebalance the binary tree.

There are some differences to Clisby’s technique beyond the
mere transition from lattice to continuum. In particular, in our
case the transformation in a given node applies to all nodes in the
sub-tree to which it is root while in Ref. [3] transitions apply only
to the sub-tree to which the right child of the node containing
the transformation is root. This means that in our case for every
monomer there are potentially log2 N transformations that need
to be applied, while for the original version this number is smaller
on average, e.g., there are no transformations that apply to the
first monomer x1 in any case. On the other hand, since in our
version we push down transformations, about half of all nodes
do not hold transformations at all such that the number that
actually applies is smaller then the maximal value. In order to
facilitate the tree-rotations we push down the transformations
so that the relevant nodes are empty. This is not easily done
in Clisby’s version. Instead new transformations that keep the
polymer configurations unchanged are determined which – at
least in one direction – requires the inversion of one of the
transformations. Since this is more complicated in continuum
than on the lattice we chose this modification. On the other hand,
with the original strategy it is in principle possible to omit the
nodes containing individual monomers which would reduce the
required memory by half.3 Achieving a similar improvement with
our method would only be possible by using structurally different
nodes that do not store transformations, radii, or sizes for leaves,
which would render the code a bit more complicated. We have
not compared both methods and do not claim that one performs
better than the other.

Testing our implementation for D = 0.5 with the pivot update
we find that the desired efficiency is indeed achieved and that
simulations with sizes up to N ≈ 107 are possible. In Fig. 5 we
show the mean time t(N) that is required for a single pivot up-
date. Although we cannot conclusively decide how this function
behaves in the thermodynamic limit, it seems plausible that its

3 N. Clisby, private communication.

Fig. 5. The average time t (in seconds) required for a single pivot update for
a hard-sphere polymer as a function of N . Inset: An estimate for the derivative
dt/dN ≈ δ(N) =

[
t(N

√
2) − t(N/

√
2)

]
/

(
N/

√
2
)

with a fitted function of the
form ∆(N) = exp [c1 − lnN + c2/(lnN − c3)] as guide for the eye and the
suggested asymptotic relation ec1/N .

Fig. 6. Scaling of the average squared end-to-end distance. Inset: Over several
orders of magnitude in length N − 1 the first correction to scaling is very well
described by a single term with exponent −0.5. The error bars in the inset are
obtained with the Jackknife method. They are too small to be depicted in the
main frame.

derivative (inset of Fig. 5) for large N becomes proportional to
N−1 which would imply that t(N) scales like logN . Updates are
accepted with satisfying probability which is, however, decreas-
ing with system size. While 80% of all updates are accepted for
N ≈ 10 this decreases to 20% for N = 223

≈ 107. We find that
the rate of acceptance for pivot updates attempted at the center of
the polymer is reasonably well described by Nκ with κ ≈ −0.09.

We performed simulations for N = 23, . . . , 223 starting with
a straight configuration. The first 64N Monte Carlo time steps
were dedicated to the equilibration of the system. Afterwards,
the number of steps depended on the system size. For instance,
we performed 2 × 109N steps for N ≤ 29, 4 × 108N steps for
N = 210, 4× 106N steps for N = 215, 3× 104N steps for N = 220,
and 2500N steps for N = 223. Thereby, one time step consists of
one pivot and one bond-rotation update. Statistical errors were
estimated using the Jackknife method. When looking at the data
shown in Fig. 6, we find that results agree with expectations. We
acknowledge that analyzing the behavior of quantities like the
squared end-to-end distance

⟨
r2ee

⟩
as a function of the number of

bonds (or steps of a walk) N − 1 is an intricate business and
that the exponent of the first correction is not known. We will
revisit it in detail in the future. Here, we are content with noticing
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that in the case D = 1.0 using the latest and most precise value
for the Flory exponent available from a recent lattice study [4],
ν = 0.5875970(4), we find that⟨
r2ee

⟩
= A(N − 1)2ν

(
1 −

B
√
N − 1

)
, (28)

with A = 1.77254 and B = 0.701 obtained from a fit for N >

103, provides a very good description of the scaling. This demon-
strates very convincingly the expected universality of lattice and
continuum self-avoiding walks.

7. Simulating Lennard-Jones polymers

7.1. Untruncated interactions

For applying this idea to polymers with Lennard-Jones in-
teraction the binary tree as used for the hard-sphere polymer
again provides a well-suited data structure. Using trees in order
to hierarchically estimate the interactions of N-body problems
is not a new approach. Similar strategies have been used to
simulate the (approximate) dynamics of gravitational systems
as early as 1986 [13]. In these studies a more or less homo-
geneous three-dimensional system is separated into cubic cells
which are organized in an octree, where each internal node has
eight children. The linear nature of the polymer simplifies the
situation considerably. Again, distinct groups of monomers A =

{xk, . . . , xk+sA−1} and B = {xl, . . . , xl+sB−1}, with k ≥ 1, l ≥

k + sA,N ≥ l + sB − 1, are represented by spheres

|xi − yA| < rA, i = k, . . . , k + sA − 1,
|xj − yB| < rB, j = l, . . . , l + sB − 1. (29)

The interaction between two such groups can be estimated if the
distance between the spheres exceeds the minimum position of
the Lennard-Jones potential

|yA − yB| − rA − rB > rmin = 21/6σ . (30)

Due to the monotonicity of the interaction U(r) for r > rmin the
energy

EAB =

k+sA−1∑
i=k

l+sB−1∑
j=l

U(|xi − xj|) (31)

has a lower bound

EAB ≥ sAsBU(|yA − yB| − rA − rB) = Emin
AB (32)

and an upper bound

EAB ≤ sAsBU(|yA − yB| + rA + rB) = Emax
AB . (33)

The energy is minimal if all monomers are concentrated at the
point closest to the opposite sphere and maximal if they are at
the farthest point.4 If the estimate is not precise enough, it can
be refined by splitting one of the contributing nodes A → {Al, Ar}

or B → {Bl, Br} such that for instance

Emin
AB = Emin

AlB + Emin
ArB and

Emax
AB = Emax

AlB + Emax
ArB (34)

4 More sophisticated estimates are possible. For example, if one keeps track
of the center of gravity of each group and if the distance between the spheres
exceeds the inflection point of the Lennard-Jones potential, it can be shown
that the energy is maximal if all monomers are concentrated in the centers of
gravity of their respective groups. This energy is, therefore, also an upper bound.
However, we found that the additional computations lead to a slower simulation
in spite of the reduced depth resulting from the improved estimates.

provide an improved estimate. This can be done in a recursive
fashion similar to the process applied for the hard-sphere poly-
mer. One of the interaction partners also has to be split up if
the two spheres are too close to each other in order to allow for
an estimation in the first place. For the Lennard-Jones polymer,
single monomers are represented by spheres with zero radius,
consequently the estimate becomes exact calculation,

Emin
AB = Emax

AB = U(|xk − xk|), (35)

if sA = sB = 1, and it can be evaluated also for distances below
the potential’s minimum distance.

If the binary tree is prepared as was done previously (Fig. 4)
with the root node possessing the children l and r and if we
intend to modify the right part using the transformation TU such
that symbolically r → r ′

= TUr then

∆E ∈ [Emin
lr ′ − Emax

lr , Emax
lr ′ − Emin

lr ]. (36)

Hence, the update is accepted if

Emax
lr ′ − Emin

lr < −
ln ξ

β
(37)

and rejected if

Emin
lr ′ − Emax

lr > −
ln ξ

β
. (38)

The interactions between l and r as well as l and r ′
= TU r

have to be evaluated and since in almost all cases initially the
spheres will be too close or the estimates too rough, almost
always interactions between nodes at lower levels will have to
be included. Of course, we hope to avoid to consider too many
interactions between small groups of monomers such that a de-
cision is reached while interactions are evaluated at a low spatial
resolution. This raises the question which particular interaction’s
estimate should be refined at any given point in order to improve
the sum such that the overall process is efficient, i.e., terminates
early. Similarly to the hard-sphere polymer it is possible to set
up a recursive process that proceeds to smaller nodes until a
particular condition is met. While previously non-intersection of
the spheres was the only choice, now it is not so straightforward.
Clearly the precision of an estimate of a node–node interaction
EAB can be derived by just calculating the difference Emax

AB − Emin
AB ,

but since this scales with the product sAsB of the number of
monomers of the two groups, it is useful to normalize

αAB :=
Emax
AB − Emin

AB

sAsB
, (39)

thus measuring the precision per monomer–monomer interac-
tion. Now, we can define a target value αc and descend to smaller
nodes until only interactions that have smaller values α remain.
If the result is not sufficiently precise for reaching a decision
according to (37), (38) the process is repeated with a lower target
value, e.g., αc/2. This approach has the advantage that it can easily
be implemented using a recursive function and does not require
additional data organization, since only the information about the
particular interaction at hand is required.

An alternative, perhaps more intuitive and – as it turns out –
more efficient strategy is to select the node–node interaction EAB
that possesses the largest absolute uncertainty Emax

AB − Emin
AB and

split its larger node. However, since for large polymers there can
be many millions of interactions, finding the most uncertain one
is not entirely trivial. Note that the node–node interactions form
two binary trees themselves. The roots are the interactions be-
tween the nodes l, r and l, r ′. Inner nodes in these trees represent
estimates of interactions that at some point have been found to be
too uncertain or impossible to make, due to close or intersecting
spheres, and the current estimate of the total interaction energy is
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Fig. 7. Difference in monomer positions for different methods (see text).
Simplified algorithms that always modify the right part of the polymer were
employed, hence the continued agreement for small k.

obtained by summation over the leaves. A tree is grown by adding
two new interaction nodes to a former leaf, thus replacing its
contribution in the total sum. These trees can be implemented as
actual data structures and used as search trees in order to easily
identify the leaf with the largest energy difference. This might
be achieved by adding a link (pointer) to every node that points
at the leaf with the largest energy difference in the sub-tree to
which this node is root. Leafs point to themselves and whenever
a leaf is modified, only the leaf itself and its direct ancestors
have to be potentially modified by comparing the links in their
children. If large polymers are considered with the number of
monomers being in the range of several thousands, the trees can
reach sizes of multiple millions of nodes. In order to limit the size
of required memory we choose to limit the size of the tree and
in those rare cases where the limiting size is reached we refrain
from growing it further and proceed to improve the estimates in
the leaves using the aforementioned recursive function and target
precisions.

Comparisons with a standard algorithm that calculates ∆E
accessing monomer coordinates directly have been done. Both
methods were initialized with the same configuration and indi-
vidual runs for a polymer of size N = 256 at kBT = 4ϵ performed.
This temperature is slightly above the Θ-point which we estimate
to be kBTΘ ≈ 3.9ϵ based on data not shown in this study. The
difference in monomer positions is shown in Fig. 7. Individual
curves show the situation after N, 2N, . . . , 10N combinations of
one pivot and one bond-rotation update. Although both methods
should in principle create the same trajectory in state space,
associativity as presented in (21) does not hold in a computer
simulation. It can make a tiny difference whether multiple trans-
formations are sequentially applied to the monomer’s coordinates
or whether they are combined beforehand via the multiplication
operation. Although the order of multiplication is mathematically
irrelevant there are rounding errors that lead to different results.
One could argue that since the new method performs fewer
multiplications, it does less rounding and is, therefore, likely to
be more stable. However, this is far from certain and further
investigations are required for a definite answer. Initially, the
differences are very small and do not affect whether an update
is accepted or rejected, but after a short while the trajectories
diverge. For the trajectories in Fig. 7 we find that true differences,
i.e., a difference in the sequence of rejections and acceptances of
updates, occurs for the first time after 9N moves. After 10N steps
the two configurations no longer bear any resemblance.

Fig. 8. Required times (in seconds) for the combination of a pivot and a bond-
rotation update for the standard method and our algorithm at kBT = 4ϵ
for a Lennard-Jones polymer of length N with untruncated interaction. Inset:
Acceptance rate as function of N for the pivot (+) and bond-rotation (×)
updates.

Simulations for different sizes at the same temperature allow
for comparisons and scaling of running times (Fig. 8). It is of little
surprise that the standard technique that requires the calculation
of all modified monomer–monomer distances soon approaches
quadratic complexity. Our method is now substantially slower
than for the hard-sphere polymer, but again it can be suspected
that for large systems logarithmic scaling is realized. The accep-
tance rate is now more strongly affected by the polymer length
and seems to decay in polynomial order with a larger albeit still
favorably small exponent. We estimate ∝ N−0.28 for the pivot and
∝ N−0.18 for the bond-rotation update.

Once a function that estimates the interaction between two
nodes in the tree has been set up, it can also be used to obtain
an estimate for the energy of the entire polymer. If we define the
internal energy of a node recursively as the sum of the interaction
between its children and the internal energy of its children with
individual monomers (leaves) possessing zero internal energy,

Hk,...,k+s−1 := Hk,...,k+ s
2 −1 + Hk+ s

2 ,...,k+s−1

+

k+ s
2 −1∑

i=k

k+s−1∑
j=k+ s

2

U(|xi − xj|),

Hl := 0, (40)

then the energy of the polymer is given by the energy of the root
node

H = H1,...,N . (41)

Since there are N − 1 internal nodes, we need N − 1 estimates of
node–node interactions each of which might recursively require
multiple additional estimates. However, there is a good chance
that for non-collapsed states and a target precision not too small
this can be done with complexity O(N logN) or faster. Once we
can estimate the energy of one configuration the estimation of the
difference between energies of two configurations is straightfor-
ward which allows for an implementation of the replica-exchange
algorithm [14]. The exchange probability for swaps between two
walkers at inverse temperatures β1 > β2 is given by

Paccept
swap = min

(
1, e(β1−β2)(E1−E2)

)
, (42)

so that the condition for accepting a replica-exchange update
with reduced information reads

E1 − E2 >
ln ξ

β1 − β2
. (43)
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Fig. 9. Time t (in seconds) required for a combination of pivot and bond-rotation
update as function of polymer size N for the two versions of the Metropolis
algorithm. The Lennard-Jones potential is truncated at 3σ and kBT = 3.5ϵ.

7.2. Truncated interactions

Finally let us consider the case with a truncated potential
which is the traditional technique applied when dealing with
large systems. The potential is set to zero beyond a certain cutoff-
distance rc and the remaining part is shifted in order to avoid a
discontinuity:

Ũ(r) =

{
U(r) − U(rc) if r < rc
0 otherwise.

(44)

There are two intuitive ways of simulating such a system using
the binary-tree structure. During an update one could proceed
similarly to the hard-sphere case and establish which pairs of
monomers are closer than the cutoff distance. Calculating their
energies allows for a precise determination of ∆E and the stan-
dard Metropolis algorithm can be applied. Or the algorithm using
reduced information could simply be used with the truncated
potential. We would expect that the former is more efficient at
low temperatures, since the estimation of interactions at small
distances in dense configurations is less precise and many refine-
ments might be necessary. At conditions near the collapse (kBT =

3.5ϵ, rc = 3σ ), however, we find that both methods perform
similarly well (Fig. 9). It is worth noting that in comparison to
the untruncated case even for the largest systems considered
(N = 215) the introduction of the cutoff has only led to a threefold
speedup.

8. Conclusion and outlook

In this study we have shown how the binary-tree method
developed by Clisby for the simulation of self-avoiding walks on a
lattice can be adapted to hard-sphere polymers with continuous
degrees of freedom. It turns out that system sizes of N ≈ 107

are not beyond the capabilities of these techniques. Although
we cannot be certain at this point, it seems that for very large
systems the computational complexity of an individual Monte
Carlo move scales like logN which is a considerable improvement
over standard techniques which are of complexity O(N) or worse.

We introduced a version of the Metropolis algorithm that does
not rely on exact knowledge of the change in energy and reaches
decisions based on sufficiently precise estimates. We applied this
method to a Lennard-Jones polymer without any interaction-
range cutoff close to the collapse transition and find that again
a scaling of logN for single steps seems to be the asymptotic

Fig. A.1. The binary tree during an update of the monomers xk, . . . , xl which are
at the highest level represented by node B. Node l and r limit this section on the
left and right and node–node interactions (or overlaps) have to be considered
between A,B and B,C.

behavior. Again, this is substantially better than the O(N2) scal-
ing of the established methods. It turns out that self-interacting
polymers up to length N ≈ 104 can be investigated easily. The
same idea in combination with the fact that estimates of the total
energy can be obtained much faster than the exact value can be
used to implement an improved version of the replica-exchange
algorithm for these systems.

Although an interaction-range cutoff of the potential as a
means to enable a simulation in the first place is no longer
required, polymers using such a truncated interaction can, of
course, be simulated using these methods. We find that for the
system sizes considered here simulations are only modestly faster
when a cutoff to the Lennard-Jones potential is used.

This work is intended to serve mainly as a proof-of-concept
with a focus on performance. Along the way we demonstrated the
universality of the scaling behavior of lattice and continuum self-
avoiding walks by conducting simulations of the latter with up
to N = 223

≈ 107 steps. Although relatively simple models were
considered in this study, it should be possible to introduce ex-
tensions like flexible spring-like bonds, bending stiffness or fixed
bond angles, or multiple types of monomers with little effort.
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Appendix. Modifying central parts of the polymer

As we have shown, for the Lennard-Jones polymer the ac-
ceptance rates decline when the system becomes large. It is,
therefore, desirable to introduce additional updates of a more
local nature that are not affected in this manner. This can be a
crank-shaft move, where a part of the polymer is rotated around
an axis passing through the limiting monomers or – if a model
with flexible bonds is used – the shift of one or more adjacent
monomers by a constant vector. The procedure is similar to the
discussed update, with the distinction that now we have two
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internal nodes that pose the boundaries of the section that is
to be moved. The tree is rearranged in a way that first one of
them becomes root and in a second phase the other becomes
a child of the new root node (Fig. A.1). With the tree in this
shape the three relevant parts of the polymer are represented
by single nodes and interaction between them can be evaluated
recursively. Once the update is accepted it is again possible to
apply the respective transformation at the highest level to a single
node before rebalancing the tree.
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