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Monte Carlo (MC) simulations and series expansions (SE) data for the energy, specific heat, magnetization,
and susceptibility of the three-state and four-state Potts model and the Baxter–Wu model on the square
lattice are analyzed in the vicinity of the critical point in order to estimate universal combinations of
critical amplitudes. We also form effective ratios of the observables close to the critical point and analyze
how they approach the universal critical-amplitude ratios. In particular, using the duality relation, we
show analytically that for the Potts model with a number of states q � 4, the effective ratio of the
energy critical amplitudes always approaches unity linearly with respect to the reduced temperature.
This fact leads to the prediction of relations among the amplitudes of correction-to-scaling terms of
the specific heat in the low- and high-temperature phases. It is a common belief that the four-state
Potts and the Baxter–Wu model belong to the same universality class. At the same time, the critical
behavior of the four-state Potts model is modified by logarithmic corrections while that of the Baxter–
Wu model is not. Numerical analysis shows that critical amplitude ratios are very close for both models
and, therefore, gives support to the hypothesis that the critical behavior of both systems is described by
the same renormalization group fixed point.

© 2008 Elsevier B.V. All rights reserved.

The fixed points of the renormalization group define the uni-
versal behavior of a system through a set of critical exponents
and universal combinations of critical amplitudes [1]. The univer-
sality concept divides all systems at criticality into a number of
universality classes. It is instructive to know the set of values of
the critical exponents and of the universal combinations of critical
amplitudes for a given universality class.

The two-dimensional Potts model [2] is the simplest model
which exhibits a phase transition. It is solved exactly at the critical
point for any number of spin components q and it is known that
for q � 4 it has a continuous phase transition while for q > 4 the
phase transition is of first order. The model has a great theoretical
interest as new theories may be tested in this model.

At the same time, this model may have some practical interest
as it can be realized, for various values of q as an adsorbate lat-
tice placed onto a clean crystalline surface. The full classification
of such systems with continuous transitions is known theoreti-
cally [3]. There are experiments in which some of them realize
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the 3-state and 4-state Potts model [4] and the critical exponents
can be experimentally estimated.

Critical exponents for the Potts model with q � 4 can be calcu-
lated exactly by different theoretical techniques [5,6]. The values
of the thermal critical exponents and of the magnetic critical ex-
ponents follow from the identification of the dimensions of the
conformal algebra operators [6].

Nowadays, there is no doubt on the values of the leading critical
exponents whereas, is some cases, the values of the correction-
to-scaling exponents and the values of the universal ratios of the
critical amplitudes are still under discussion. Our presentation is
intended to give a short review of the research on the subject.

The Potts model Hamiltonian [2] (see the review [7] for details)
can be written as H = −∑

〈i j〉 δsi s j , where si is a spin variable tak-
ing integer values between 0 and q − 1, and the sum is restricted
to the nearest neighbor sites 〈i j〉 on the square lattice.

Close to the critical temperature Tc at which the continuous
phase transition occurs, the residual magnetization M and the
singular part of the reduced susceptibility χ and of the specific
heat C of the system in zero external field are characterized by
the critical exponents β , γ , and α and by the critical amplitudes B ,
Γ± , and A± ,
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M(τ ) ≈ B(−τ )β, τ < 0, (1)

χ±(τ ) ≈ Γ±|τ |−γ , (2)

C±(τ ) ≈ A±
α

|τ |−α, (3)

where τ is the reduced temperature τ = (T − Tc)/T and the labels
± refer to the high-temperature and low-temperature sides of the
critical temperature Tc . The critical amplitudes are not universal by
themselves but some combinations of them, e.g., A+/A− , Γ+/Γ− ,
and Γ+ A+/B2, are universal [1] due to the scaling laws.

On the square lattice, in zero field, the model is self-dual. The
duality relation(
eβ − 1

)(
eβ∗ − 1

) = q (4)

fixes the inverse critical temperature to βc = ln(1 + √
q ). The val-

ues E(β) and E(β∗) of the internal energy at dual temperatures
are simply related through(
1 − e−β

)
E(β) + (

1 − e−β∗)
E(β∗) = −2. (5)

Dual reduced temperatures τ and τ ∗ can be defined by β =
βc(1 − τ ) and β∗ = βc(1 + τ ∗). Close to the critical point, τ and τ ∗

coincide through linear order, since τ ∗ = τ + ln(1+√
q )√

q τ 2 + O (τ 3).

The ratio of the free energy critical amplitudes A+/A− is equal
to unity due to duality. Moreover, duality relations may be used to
understand the dependence on temperature of the effective ampli-
tude functions which may be constructed from the energy in the
symmetric phase E+(τ ) and in the ordered phase E−(τ ∗),

A+(τ ) = α(1 − α)βc
(

E+(τ ) − E0
)
τα−1, (6)

A−(τ ∗) = α(1 − α)βc
(

E0 − E−(τ ∗)
)
(τ ∗)α−1, (7)

and of the effective amplitude ratio

A+(τ )

A−(τ ∗)
= (E+(τ ) − E0)τ

α−1

(E0 − E−(τ ∗))(τ ∗)α−1
, (8)

where the constant E0 is the value of the energy at the transition
temperature, E0 = E(βc) = −1 − 1/

√
q.

Evaluating expression (8) for small τ and denoting αq =
−E0βce−βc = ln(1+√

q )√
q , we obtain

A+(τ )

A−(τ ∗)
= 1 + (3 − α)αqτ + O

(
τ 1+α

)
. (9)

Note the linear dependence on τ of the effective amplitude ratio.
The 2-state Potts model is equivalent to the Ising model which

was solved exactly [8] (see Ref. [9] for details). The susceptibility
behavior was understood in the paper by Wu et al. [10]. It turns
out that there exist only integer corrections to scaling.1 Values of
the critical exponents and of some amplitude ratios are presented
in Table 1.

The critical behavior of the susceptibility reads as

χ(τ ) = Γ±|τ |−γ Xcorr
(|τ |	) + Ybt(τ ), (10)

where Xcorr(|τ |	) is the correction-to-scaling function, 	 =
−(2 − xε2 )/(2 − xε1 ) is the leading correction-to-scaling exponent,
and Ybt(τ ) represents an analytic expression (“background term”)
which accounts for non-singular contributions to the susceptibility.

The set of values of the thermal critical exponents xεn and of
the magnetic critical exponents xσn are known analytically [5,6],

xεn = n2 + ny

2 − y
, xσn = (2n − 1)2 − y2

4(2 − y)
, (11)

1 Conformal field theory [6,11] supports the absence of non-integer correction-to-
scaling exponents in the q = 2 case. For a recent and detailed discussions we refer
readers to Refs. [12–14].

Table 1
Exact values of critical exponents and ratios of critical amplitudes for the Ising
model (2-state Potts model).

ν α β γ A+/A− Γ+/ΓL R+
C = Γ+ A+/B2

1 0 1/8 7/4 1 37.69365 . . . 0.318569 . . .

Fig. 1. 3-state Potts model. The difference of the susceptibilities (χL − χT )|τ |γ as
function of |τ |2/3. Its almost linear dependence on |τ |2/3 supports the value 2/3
for the power of the leading correction to scaling.

Fig. 2. 3-state Potts model. Ratio of transverse to longitudinal susceptibilities.

in terms of the variable y linked to the number of states q by
cos( π y

2 ) = 1
2
√

q, where the spectrum of allowed integer values n
does depend on the value of q [6].

For the 3-state Potts model there is a finite number of cor-
rection terms [6], xε2 = 14/5, xε3 = 6, and xσ2 = 4/3. The leading
correction-to-scaling contribution is 	 = 2/3 and it was first sup-
ported in a numerical simulation [15].

Clear evidence for this leading correction to the scaling behav-
ior may be seen in Fig. 1, where we plot the difference of the
longitudinal and transverse susceptibilities (χL − χT ) (note the
cancellation of background terms (10) in the difference) multi-
plied by the leading behavior factor |τ |γ , as a function of |τ |2/3.
The ratio of the susceptibilities (χT /χL) is shown in Fig. 2 and
may be used to estimate the universal ratio of associated ampli-
tudes ΓT /ΓL .

Analytical predictions for the amplitude ratios of the Potts
model for q = 2,3, and 4 were given in the papers [16,17]. The val-
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Table 2
Exact values of critical exponents and estimates of the ratios of critical amplitudes
for the 3-state Potts model.

ν α β γ Γ+/ΓL ΓT /ΓL R+
C = Γ+ A+/B2 Remark

5/6 1/3 1/9 13/9 – – – Exact result
13.848 0.327 0.1041 [16,17]
13.83(9) 0.325(2) [20] – SE
13.83(9) 0.3272(7) 0.1044(8) [19] – SE
13.86(12) 0.322(3) 0.1049(29) [19] – MC

Table 3
Exact values of critical exponents and estimates of the ratios of critical amplitudes
for the 4-state Potts model.

ν α β γ Γ+/ΓL ΓT /ΓL R−
C = Γ− A−/B2 Remark

2/3 2/3 1/12 7/6 – – – Exact result
4.013 0.129 0.00508 [16,17]
3.5(4) 0.11(4) [20] – SE
3.14(70) 0.0068(9) [24] – MC
6.93(6) 0.1674(30) 0.00512(13) [25,26] – MC
6.30(1) 0.1511(24) 0.00531(5) [25,26] – SE

ues are shown in Table 2 together with numerical estimates from
Monte Carlo (MC) and series expansions (SE) analyses [18–20]. The
coincidence of the data is a good indication for the validity of both
two-kink approximation [16,17] to the exact scattering theory [21]
for 3-state Potts model and of the analysis of MC and SE data.

The analysis of the 4-state Potts model is much more compli-
cated because in addition to the corrections to scaling there are
confluent logarithmic corrections [22,23]. The result of the analy-
sis of MC and SE data [20,24,25] is shown in Table 3 together with
the analytical estimates [16,17].

Conformal field theory predicts the infinite set of renormal-
ization group (RG) exponents yεn = 2 − xεn = 3/2,0,−5/2, . . . .
The leading correction-to-scaling exponent ∝ yε2 vanishes and
gives rise to a logarithmic behavior [22]. In our recent publica-
tion [25,26], we revisited the renormalization group equations and
included in our analysis the known form of the logarithmic cor-
rections and of the next-to-leading corrections, taking into account
the width of the temperature region window examined. The infi-
nite set of magnetic exponents for the q = 4 Potts model xσn =
1/8,9/8,25/8, . . . translates into the magnetization exponent β =
1/12 and the leading correction-to-scaling exponent 	σ = 2/3. Fi-
nally, the following behavior of the susceptibility is assumed

χ+(τ ) = Γ+τ−7/6G3/4(− lnτ )
(
1 + a+τ 2/3 + b+τ . . .

) + D+ + · · · ,
(12)

where the function G contains a universal correction function E
[23,25,26] and the leading nonuniversal correction function F

G
(− ln |τ |) = (− ln |τ |) × E

(− ln |τ |) × F
(− ln |τ |), (13)

E
(− ln |τ |) =

(
1 + 3

4

ln(− ln |τ |)
− ln |τ |

)

×
(

1 − 3

4

ln(− ln |τ |)
− ln |τ |

)−1(
1 + 3

4

1

(− ln |τ |)
)

, (14)

F
(− ln |τ |) �

(
1 + C1

− ln |τ | + C2 ln(− ln |τ |)
(− ln |τ |)2

)−1

. (15)

We fit our data to estimate the amplitude Γ+ , the coefficient
of the leading correction to scaling a+ in Eq. (12), and the coeffi-
cients C1 and C2 in Eq. (15).

It is obvious that the logarithmic corrections (the whole func-
tion G(− ln |τ |)) cancel in simple ratios like A+/A− , Γ+/ΓL ,
ΓT /ΓL , etc. This has been demonstrated analytically for the effec-
tive ratio A+/A− (see Eq. (9)). We note also that the RG analysis

predicts [25,26] powers of logarithmic corrections to the specific
heat α′ = −1, the susceptibility γ ′ = 3/4, and the magnetization
β ′ = −1/8 such that they cancel in all universal ratios. For ex-
ample, the universal amplitude ratio R−

C may be calculated as the
limit of the ratio of functions

R−
C = lim

τ→0
τ

(E−(|τ |) − E0)χ−(|τ |)
M(|τ |)2

α(α − 1)βc, (16)

where E0 = E(0) = √
2. One can check that in the ratio (16) not

only powers of |τ | cancel but also powers of E . In the ratio, the
magnetization M and the energy difference E−(|τ |)− E0 have only
singular contributions and the only systematic deviation may come
from the background correction to the susceptibility χ−(|τ |). It
was shown in [19] that the contribution from this background
correction is negligible in the critical region window, and the esti-
mator (16) tends to the value 0.0055(1) as τ → 0.

The Baxter–Wu [27] model is defined on a triangular lattice,
with spins σi = ±1 located at the lattice nodes. The three spins
forming a triangular face are coupled with a strength J , and the
Hamiltonian reads

H = − J
∑
faces

σiσ jσk, (17)

where the summation extends over all triangular faces of the lat-
tice. The ground state is four-fold degenerate and the critical expo-
nents are found to be the same as for the 4-state Potts model.

The critical behavior of the magnetization, energy, and specific
heat are exactly known [27–29]. An analysis of Monte Carlo data
was performed by two of us [30] and preliminary estimates show
that the values of the susceptibility amplitude-ratio Γ+/ΓL ≈ 6.9
and of the ratio R−

C ≈ 0.005 are very near to those obtained from
our analysis of MC and SE data for the 4-state Potts model (see
Table 3). We have to note that logarithmic corrections to scaling
are absent in the critical behavior of the Baxter–Wu model and
this gives us a greater confidence in our analysis.

For the details of the MC simulations and SE data analysis we
refer the reader to the publications [19,25,26] and [30].

Delfino and Grinza [31] used the same analytical approach as
in [16] to study the Ashkin–Teller model which also belongs to the
4-state Potts model universality class for some particular choice of
the coupling constants. This leads to the estimate Γ+/ΓL ≈ 4.02
and ΓT /ΓL ≈ 0.129. These results are also very near to those for
the 4-state Potts model (see second line in Table 3).

A possible explanation of the deviation of the analytical pre-
dictions from our results may be the following: the two-kink ap-
proximation is exact for the 2-state Potts model, it is accurate for
the 3-state Potts model, but it may be insufficient to produce ac-
curate values for 4-state Potts model. Further analyses have to be
performed to resolve the contradiction among these results.
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