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Abstract

All of the thermodynamic information on a statistical mechanical system is encoded in the locus and density of its partition
function zeroes. Recently, a new technique was developed which enables the extraction of the latter using finite-size data of the
type typically garnered from a computational approach. Here that method is extended to deal with more general cases. Other
critical points of a type which appear in many models are also studied.
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1. Introduction Traditionally, however, finite-size scaling (FSS)
may be used to extract thermodynamic information
Phase transitions are of central interest in statisti- from such systems. FSS, based on the hypothesis that
cal physics and related fields. Second-order transitionsthere are only two relevant length scales (namely the
are signaled by divergences and characterised by crit-correlation length of the infinite system and its finite-
ical exponents (e.gg for the specific heat and for size counterpart), typically only allows determination
the correlation length in the temperature driven case). of ratios of critical exponents associated with ther-
Such non-analytic behaviour is only present in systems modynamic functions, such as/v. An exception is
of infinite extent and is therefore inaccessible to Monte the correlation length critical exponemtvhich can be
Carlo simulations, which are restricted to a finite num- directly extracted from logarithmic derivatives of mag-
ber of degrees of freedom. netization moments or from the slope of the Binder
parameter (m%)/(m¥)2, k =1, 2, .... Alternatively
—_— , one may also consider the scaling behaviour of pseud-
(E:Orgf gggrcg%ﬁélng{ard.janke@itp.uni-|eipzig,d R ocritical points. The IatFer, defined as the extrema
(W. Janke)d.a.johnston@ma.hw.ac.@R. Johnston), of thermodynamic functions, approach the transition
r.kenna@coventry.ac.uR. Kenna). point asL ™, whereL denotes the linear extent of the

0010-4655/$ — see front mattér 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2005.03.101


http://www.elsevier.com/locate/cpc
mailto:wolfhard.janke@itp.uni-leipzig.de
mailto:d.a.johnston@ma.hw.ac.uk
mailto:r.kenna@coventry.ac.uk

458 W. Janke et al. / Computer Physics Communications 169 (2005) 457-461

system and. is the so-called shift exponent. The expo- ate function,z, of temperature, field or of a coupling
nenti coincides with Zv in many models, but thisis  parameter, one hasy (z) « Hj (z—zj(V)) wherej

not a consequence of FSS and is not always true. Seeabels the zeroes. In the general case where the distri-
e.g.,[1] for a review of the recent literature concern- bution of zeroes is two-dimensional, the free energy
ing this point. A further complication that arises from may be expressed ag = [[ gv(x,y)In(z — z —

the latter approach is that such a fit involves three pa- x — iy)dx dy, wheregy is the density of zeroes and
rameters and is non-linear, so usually is quite unstable (x, y) give their location in the complex plane with
and often inaccurate. the critical point,z., as the origin. In the infinite-

An increasingly popular approach is the use of FSS volume case, Stephenson has shown that the density
of the zeroes of the partition function. FSS of the low- near a second-order transition point satisfies a cer-
est zeroes in the complex temperature plane (Fishertain homogeneous partial differential equation, the
zeroes) provides a direct and accurate method to ex-solution of which may be written ageo(x,y) =
tract the exponent, and the imaginary parts of the y==" f(x/y™), wherem is related to the shape of
lowest zeroes (labelled by an indgx scale with lat- the locus[4]. Integrating out thec-direction, and in-
tice extent as Im; ~ L~V The real part of the  tegrating up to a point in the y-direction gives the
lowest partition function zero is another pseudocriti- cumulative density there to be
cal point, generally scaling ds*. >

It has long been known that a full understanding of Coo (") 7= ™. @)
the properties of the bulk system requires knowledge From this expression, the exponenmay be directly
of thedensity of zeroes too. Until recently, determina-  measured provided that a sensible definition for the cu-
tion of the density from finite-size Monte Carlo data mulative density of zeroes can be applied to a finite
was considered difficult if not impossible. The source system. Such a function is defined as follows. If the
of the difficulties is that it involves reconstruction of  jth zero isn-fold degenerate the densities to its imme-
a continuous density function from a discrete data set diate left and right are given by Gy (r) = j — 1 and
as the density of zeroes for a finite system essentially j + n — 1 respectively. The densist the jth zero,r;,

consists of a set of delta functions. is then defined as an average:

Recent considerations have bypassed these difficul- 1
ties by focusing instead on the integrated density of GL(rj) = _(j + n_ 1>, 2)
zeroeq?2]. In particular, this new approach facilitates 4 2

measurement of the strength of the transition through Combined with(1), this allows direct determination of
direct determination ofw (as opposed to traditional the critical exponen.
FSS measurements of the ratigv). While the new
technique proved successful, it was limited to systems
where the zeroes fall on curves in the complex para- 3. Applications
meter plane and where the zeroes are nondegenerate.
While these two properties are common to most mod- ~ We apply the new technique to Ising models in two
els in statistical physics, they are not generic and a hostdimensions for which the zeroes are calculable and
of examples now exist where the zeroes are distributed which possess each of the new features we wish to en-
across a two-dimensional region and/or occur in de- capsulate. In each case, the real, physical, critical point
generate sets. Here, the new technique is extended tds characterized by = 0.
deal with such general distributions of zer¢&k
Brascamp—Kunz lattice with anisotropic couplings:
The finite-size, standard, nearest-neighbour, square
2. General distributions of zeroes lattice Ising model has been solved in two dimensions
for certain sets of boundary conditions including those
When the partition functionZy, for a system of  first studied by Brascamp and Kuf&]. There, peri-
volume V = L? (d being the dimensionality of the odic boundary conditions are used in one direction,
system) can be written as a polynomial in an appropri- while at the extremities in the other direction the spins
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Fig. 1. The zeroes (top) for the anisotrogic= 40 Brascamp—Kunz
Ising model withJ’/J = 3 and their density distribution (bottom)
nearz =1 for L =40-140 andj =1 (x), j =2 (+), j = 3 (%),
j=4(),j=5(@),j=6(0),j=7()andj=8 ().

are fixed to+ on the one hand and the alternating
sequencet — + — --- on the other. For a lattice of
linear extentZ with anisotropic couplings and J’,

the partition function then takes the form of a single
product (as opposed to a sum of four such products,
which is the case when periodic boundary conditions
in both directions are usd®]), greatly ameliorating
the computation of its zerogs]. The zeroes are eas-
ily determined numerically and are distributed across a
two-dimensional region in the= 2 sinh(28) plane as
shown inFig. 1for J'/J =3 (with 8 = J/kgT). The
zeroes impact onto the real axis at the paiat 1 and

the critical behaviour is dominated by the zeroes close
by. The cumulative density distribution for this set of
zeroes is also plotted iRig. 1 That the curve goes
through the origin indicates the presence of a transition
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and an appropriate fit yields= —0.016(32) compat-
ible with expectations.

Bathroomttile lattice:  Two-dimensional distribution

of zeroes may also be obtained from systems with
isotropic couplings as demonstrated[i} where the
system is described in detail. In principle the full
finite-size partition function is a sum of four prod-
uct terms. One may construct Brascamp—Kunz type
boundary conditions for this lattice, which would have
the effect of projecting out one of these terms in the
expression for the partition function. Alternatively,
and more conveniently, one may discretize one of the
terms in the partition function with periodic boundary
conditions and assume for the purposes of the analy-
sis herein that the scaling behaviour of that term is
generic. Indeed, since we are essentially interested in
testing the scaling of the cumulative density of zeroes
rather than formulating the finite lattice models them-
selves, this is sufficient for our purposes (see {8$p

The zeroes of such a term have varying degrees
of degeneracy and are depicted in the complex
exp(—2B) plane inFig. 2, where AFM, PM, FM
and Q indicate the anti-ferromagnetic, paramagnetic,
ferromagnetic and unphysical phases, respectively.
The physical ferromagnetic critical point is given
by 7/ = 0.2490384 .. and the cumulative density of
zeroes nearby is also depicted in the figure. A fit
yields o« = 0.002(18), consistent with zero. There
is also an antiferromagnetic transition pointzat=
4.0154454 . .. A density fit to the zeroes nearby yields
o =0.0006163), again compatible witlk = 0.

Since the finite-size partition function is known ex-
actly in this case, and is a convenient single product,
it is possible to analytically extract the and A ex-
ponents from conventional FSS of the lowest lying
zeroes. Indeed, one finds that 1 (which again gives
a = 0 through hyperscaling) arid= 2 in both the fer-
romagnetic and antiferromagnetic cases.

Complex vertices: It has been pointed out that un-
physical singular points (i.e., points for which there
is no real8) may be considered as ordinary critical
points with distinctive critical exponents (see, e[d],
and references therein).

For the example of the two-dimensional Ising
model with Brascamp—Kunz boundary conditions, the
complex vertex points at=i and 2i inFig. 1are thus
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Fig. 2. The zeroes (top) for the = 40 bathroom-tile Ising model
and their density (bottom) near the ferromagnetic critical point
from data with L = 40-200 and;j = 1-4 (x), j = 5-12 (&),
Jj=13-16 &), j =17-24 ¢), j = 25-32 (), j = 33-40 ¢) and
J=41-44¢).

also of interest. However, analysis shows these not to

be of the conventional typé=ig. 3is a plot showing

how the first few zeroes in the simpler isotropic model

approach such a vertex at= i with increasing lattice
size.

To understand the unusual behaviour depicted, an
analytic approach is required. A full scaling analysis

of this model at its real transition poipt= 1 is given
in [1]. For a square lattice of linear exteht the ze-
roes, which are labelled;, are given by

Rez;; = 1(cosf; + cosg)),

Imz,-j =,/1-— (ReZij)zv

where6; = (2i — Dn/L and¢; = jn/(L + 1). Ex-
panding the cosines for large gives Re;; =1+

®)
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Fig. 3. Finite-size dependency of the zeroes close to the complex sin-
gular pointz =i in the isotropic Brascamp—Kunz model. The dotted
lines scale as Rg ~ L~ and the solid lines as Rg ~ L2

O(L™?) and Imz;; = O(L™Y), recoverings = 2 and
v =1, as above. For Rg; close to 1 (the physical crit-
ical point), bothi and j have to be close to zero and
the above expansion is legitimate. However, close to
the unphysical point =i, the two cosines irf3) have
to cancel and the expansion is no longer valid. Can-
cellations of this type remove the leadidg? term
for the approach to the vertex of the first few zeroes
(which then scale a&—2) and do not occur at a real
critical point. This explains the odd scaling behaviour
in Fig. 3and demonstrates the dangers inherent to a re-
stricted traditional analysis of leading zeroes. This and
related issues will be elaborated upon elsewhere.
The situation close to the unphysical points=
—0.6012318.. andz’ = —1.6632519.. in Fig. 2is
more conventional and density analyses vyield=
0.007(12) and o = —0.0095123) respectively. The
exponenty andi may also be extracted analytically
here and one again finds= 1, A = 2. It is interesting
to note that these are yet more cases whetees not
coincide witha [1].
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