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Abstract

The geometrical approach to phase transitions is illustrated by simulating the high-temperature representation of the Ising
model on a square lattice.
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1. Prelude the critical temperature, while their percolation expo-
nents coincide with the thermal ones. In this way, a

The geometrical approach to phase transitions is an purely geometrical description of the phase transition

exciting research topic in contemporary physics. The N these models was achieved.
approach is patterned after percolation theory which Percolation theory is generic and transparent at the

describes clusters of randomly occupied sites or bonds S&me time, makmg I easy to adapt for the descrlptlo_n
on a lattice[1]. The fractal structure of these geomet- of other geometrical objects such as lines and domain

rical objects and whether or not a cluster spans the walls. Typical line objects featuring in phase transi-

lattice are central topics addressed by percolation the—t'(.)ns are, for example, (i) vortex lines in superfluids
. . g with a spontaneously broken global U(1) symmetry or
ory. By lumping together with a certain temperature- . : - . ; : ;
= . . o in gauge theories, and (ii) worldlines in Bose—Einstein
dependent probability neighboring spins in the same .
k . condensates:
spin state, spin models such as thetate Potts mod- . . . . .
) (i) Because of topological constraints, vortices in
els can be mapped onto percolation thef#}y The

resulting Fortuin—Kastelevn soin cluster rcolat ta superfluid cannot terminate inside the system and
esulting Fortuin—rasteleyn spin clusters percolate a generally form closed loops. Whereas in the broken-

symmetry phase only a few small vortex loops are
* Corresponding author. present, loops of all sizes appear at the critical point.
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Ii‘l" I ( From the percolation strengih,, (defined as the num-
ﬂ LT_\'I:'I_ ber of bonds per site in the largest graph) and the aver-

age graph sizgg, the fractal dimension of the graphs
is extracted through finite-size scaling. Our numerical
results are in good agreement with the analytic predic-
tion by Duplantier and Saley®], which was derived
using the Coulomb gas map.
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Fig. 1. Typical HT graph configurations generated on ax166

square lattice with periodic boundary conditions in the high- (left
panel) and low-temperature (right panel) phase.
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2. Order and entropy

Central in the geometrical description of phase
transitions is the distributio of the geometrical ob-

superfluid is pierced through and through with vor- Jects under consideration,

tex line [3]. This vortex proliferation is in complete I, cn~Te=t" 1)
analogy to the presence of a spanning cluster at the ’
percolation threshold in percolation phenomena. The giving the average number density of objects of size
disordering effect of the proliferating vortices destroys n present. The distribution consists of two parts. The
superfluidity in a superfluid, and often leads to charge second is a Boltzmann factor which exponentially sup-
confinement in gauge theories (both Abelian and non- presses large objects. The suppression coeffident
Abelian). vanishes with an exponenfd when the critical tem-
(i) Boson worldlines at finite temperature form peratureT; is approached « |Tc — T|Y°. At criti-
closed loops in imaginary time. Feynman'’s theory of cality, only the first factor survives and the distribution
Bose—Einstein condensation asserts that upon lower-becomes algebraié; (T;) o n~". This factor, giving
ing the temperature, small loops describing single par- the number of ways an object of given sizean be
ticles hook up to form larger exchange rings, so that implemented on the lattice, measures the configura-
the particles become indistinguishaf4é. At the crit- tional entropy. The exponentis related to the fractal
ical temperature, again as in percolation phenomena, dimensionD of the objects viar =d/D + 1 as in
worldlines proliferate and loops of arbitrary size ap- percolation theory, wheré is the space dimension.
pear, signaling the onset of Bose—Einstein condensa-The algebraic behavior of the distribution implies that
tion. The fractal structure of these worldlines encode objects of arbitrary size appear. Together with the ex-
the thermal critical exponents of the phase transi- ponento, the so-called Fisher exponentetermines
tion [5]. the critical exponents through scaling relations. Note
In this contribution, we report numerical results that only two independent exponents are needed to de-
on the geometrical approach to the Ising model on a termine the entire set of thermal critical exponents.
square latticd6]. We consider the high-temperature In the geometrical approach, this is reflected by the
(HT) representation of the model which, as is com- two parts comprising the distribution, with both hav-
mon for HT or strong-coupling representations, can be ing their own distinct physical meaning.
represented by closed graphs on the lattice. We do not The average graph sizgs is given in terms of the
enumerate all possible graphs to a given order, as isgraph distribution, as[1] xc = Y, nzln/Z; nly,
usually done in HT series expansidi$, but instead where the prime on the sum indicates that the largest
generate HT graphs by means of a Metropolis pla- graph in each measurement is omitted. At the criti-
quette updat§8] and study their fractal structure (see cal temperature, the percolation strength and xg
Fig. 1). In the high-temperature phase, large graphs are obey the finite-size scaling relatiors,, ~ L=c/V,
exponentially suppressed. Upon lowering the temper- xg ~ L¥é/¥, with the graph exponenf$] Ag = (1 —
ature, graphs of increasing size are generated, cumu-2) /oG, yc = (3— 16)/0G, andv the correlation length
lating in a proliferation of graphs at the critical point.  exponent, which for the 2D Ising model takes the value
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Fig. 2. Metropolis plaquette update at wokleft panei Existing HT
graph with the plaquette proposed for updating indicated by the bro-
ken squareRight panel New graph after the proposal is accepted.

v = 1. Measurement of these two observables using
?Iﬁerel:. l?]t.tlce SIZ?]S glveshtgg tY\tI)O gxponeﬁts G Fig. 3. Probability Ps for the presence of a spanning graph as
rom which in turn the graph distribution exponemngs function of the inverse temperatuge measured for lattice sizes

andog can be extracted. L = 16, 32,64, 128 256. Within the achieved accuracy, the curves
cross at the thermal critical poigt= S¢.

3. Plaquette update o .
tends to zero for smalB, while it tends to unity

for large 8. This observable has no scaling dimen-
sion and plays the role of the Binder cumulant in
standard thermodynamic studies, so that the cross-
Z = (coshg)?N 2V Z V", 2 ing point of the curves obtained for different lattice
{To) sizes marks the proliferation temperature of the infi-
nite system. Within the achieved accuracy, we found
that the measured curves cross at the thermal criti-
cal point, implying that the HT graphs (domain walls)
lose their line tensior® and proliferate precisely at
the Curie point (se€ig. 3). For the graph exponents
we found[6] Bg = 0.626(7), yc = 0.740(4), leading
to og = 0.732(6), ¢ = 2.4585) in perfect agree-
ment with the exact valuesg = 8/11=0.7273...,
16 =27/11=2.4546.. ., and the predicted fractal di-
ension[9] Dg = 11/8 of the HT graphs. From the
T graph exponents all the thermal critical exponents
can be obtained, so that these graphs encode the criti-
cal behavior.

The well-known HT representation of the Ising
model on a square lattice reads:

where{Io} denotes the set alosedgraphs specified

by n occupied bondsp is the total number of sites,
andv = tanhg, with g8 the inverse temperature. The
closed graphs are generated by means of a Metropolis
plaguette algorithm, where a proposed plaquette up-
date resulting im’ occupied bonds is accepted with
probability pyt = min(1, v” "), with n denoting the
number of occupied bonds before the upd&ie Re-
flecting the 2 symmetry of the Ising model, all bonds

of an accepted plaquette are changed, i.e. those tha
were occupied become unoccupied &k versgsee

Fig. 2). By the famous Kramers—Wannier duality, the
HT graphs form Peierls domain walls between spin
clusters of opposite orientation on the dual lattice,
and in the infinite-volume limit the plaguette update
is equivalent to a single spin update on that latfe Acknowledgements
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