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Abstract

We present an algorithm for the exhaustive enumeration of allmonomer sequences and conformations of short lattice protein
as described by the hydrophobic-polar (HP) model. The algorithm is used for an exact identification of all designing se
of HP proteins consisting of up to 19 monomers whose conformations are represented by interacting self-avoiding wa
simple cubic lattice. Employing a parallelized implementation on a Linux cluster, we generate the complete set of cont
of such walks.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The numerical treatment of protein models
highly nontrivial. On one hand, the design of realis
models suffers from the fact that the atomic int
actions among the constituents of proteins and w
their aqueous cellular environment are by no me
well understood[1]. On the other hand, the comp
tational effort increases drastically with the length
the molecules. Therefore, significant simplifications of
the realistic situation have to be introduced in orde
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facilitate a detailed analysis based on computatio
methods and, in particular, to allow studies of the
lation between sequence and conformation space
model proteins.

Herein, we will consider two versions of the ve
simple HP lattice model[2,3] which makes the fol-
lowing assumptions: Instead of considering all 20 d
ferent kinds of amino acids that occur in real p
teins the model comprises only two prototypes
residues: hydrophilic (or polar,P ) and hydrophobic
(H ) monomers, respectively. This is to account for
fact that most of the naturally occurring amino acids
can be classified in that way[1, p. 154]. Also the
atomar interactions are drastically simplified. Sho
range repulsion between monomers is taken into
count by modeling the conformations of HP prote
.
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asself-avoiding walkson regular lattices. The simpl
cubic (sc) lattice was used in this study. In addit
one considers in the most simple formulation of
model exclusively a nearest-neighbor attractive in
action between hydrophobic residues non-adjacent i
the polymer chain[2]. Slightly more involved variants
also take into account nearest-neighbor contacts
tweenHP and/orPPpairs[3]. This is an effective way
of describing the interaction of the molecule with t
aqueous environment[4].

Exact enumeration results obtained for short
proteins can be used as cross-checks for other
exact methods that search the conformational and
quence spaces of proteins. These include Monte Carl
and genetic algorithms (e.g.[5,6]), generalized ensem
ble techniques (e.g.[7]), chain growth algorithms (e.g
[8,9]), and combinations thereof (e.g.[10,11]). More
importantly, the complete treatment of all sequen
and conformations allows one to carry out system
statistical analyses of HP proteins. Our results for
sc lattice described in more detail in Ref.[12] com-
plement prior exact enumeration studies on the sq
lattice[13] and for HP proteins with conformationsre-
strictedto regular cuboids on the sc lattice[14,15].

In the next section we introduce the HP mod
used here in a little more formal way. Section3 ex-
plains the exact enumeration procedure in terms
which our results are obtained. The concept of
act enumeration is first illustrated with a naive im
plementation. What remains of Section3 is dedicated
to improvements of that simple implementation a
describes how these improvements apply to a sim
example case. In Section4 we show how our exac
results can be applied for a comparison of the nu
bers of self-avoiding walks and contact matrices a
for the determination of designing sequences in
HP model. Section5 concludes this article with
summary and an outlook on further statistical ana
ses based on the results of the enumerations pres
here.

2. HP models

An HP protein is defined by its sequence of mon
mers. We will denote the type of monomer byσi ,
where i = 1, . . . ,N is the position of the monome
in a polymer chain of lengthN and by conven-
d

tion σi ∈ {0=̂P,1=̂H }. Its conformation, which is a
self-avoiding walk on the lattice (with lattice spa
ing a = 1), is represented by an ordered collect
of lattice vectors that contain the positions of t
residues:X = (x1,x2, . . . ,xN). The distance betwee
monomersi and j is denoted byxij = |xi − xj |.
The attractive interaction between pairs of residue
short-ranged on the underlying lattice. It is considere
only between residues that are on nearest-neig
positions but not covalently bound in the molecu
chain. Such a pair of residues is said to be incontact.
This is expressed by the following energy function t
is assigned to each HP protein:

(1)E =
∑

i,j>i+1

Cij Uσiσj ,

whereCij = (1 − δi+1j ) for xij = 1, and zero other
wise, is a symmetricN ×N matrix calledcontact map
and

(2)Uσiσj =
(

uHH uHP

uHP uPP

)
is the 2× 2 interaction matrix.

In the present study, the HP model comes in t
versions that are different from one another in
way attractive interactions between the amino ac
are considered. In the original version of the model[2],
which we will refer to as HP model in the follow
ing, only a pair of hydrophobic residues in conta
contributes to the energy function(1) and the only
non-zero entry in the interaction matrix isuHP

HH = −1.
A modification of the model[3] also takes into ac
count an interaction between hydrophobic and po
monomers. We call it the MHP (mixed HP) model.
interaction matrix entries readuMHP

HH = −1, uMHP
HP =

−1/2.3 ≈ −0.435, anduMHP
PP = 0. The magnitude o

uMHP
HP is motivated by an analysis of inter-residue co

tact energies between different types of real am
acids[4].

A sequence of monomers is called adesigning se-
quenceif there exists exactly one conformation (u
to trivial symmetries, to be explained in more det
below) for its state of lowest energy. The interest
designing sequences is based on a generally acce
biochemical principle that sequence specifies con
mation, and, in turn, the conformation of a polym
determines its biological function. Accepting this prin
ciple also in the framework of the highly simplified H
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model leads directly to the concept of designing
quences. The conformation of the lowest-energy s
is uniquely determined for designing sequences o
Furthermore, the number of designing sequence
very small compared to the total number of 2N HP
sequences of a given chain lengthN . Thus, the ability
of identifying designing sequences may be seen
benchmark for algorithms that search the sets of c
formationsandsequences of HP proteins.

3. Exact enumeration

3.1. Naive implementation

A straightforward method of identifying designin
sequences of a given length is to perform an exact e
meration. This means to run through the whole se
sequences and for each sequence through the who
of conformations. Consider such a deliberately na
enumeration for short sequences of lengthN = 4 in
the HP model. Trivially, there are 24 = 16 different se-
quences and 6× 5 × 5 = 150 self-avoiding walks on
the sc lattice.

Up to symmetries,Fig. 1 shows all conformation
for N = 4. Only the conformation designated byFLL
has a contact between its first and last residues. C
sequently, all four HP sequences with a hydropho
monomer in the first and last positions of the seque
must be designing: there is only one conformation
the lowest energyE = −1. All other sequences ar
non-designing since the energyE = 0 is obviously de-
generate.

When increasing the number of monomersN by
one, the number of sequences doubles. Also, the n
ber of self-avoiding walks (SAW) is known to in
crease asymptotically by a factor ofµSAW ≈ 4.684
[16–18]. Consequently, the computational effort sca
roughly as 9.37N , i.e. exponentially fast with the chai
lengthN . This is why improvements of the naive en

Fig. 1. All relevant conformations forN = 4 together with their con-
figurational chain codes explained in the text.
t

meration become necessary even for rather short c
lengths.

3.2. Improvements

Some of these improvements are very obvio
Firstly, there is no point in carrying out the en
meration for two sequences that contain the sa
monomers but in reverse order. For example,
sequencesHPPP and PPPH are equivalent. Simply
counting the number of relevant sequences,RN , that
have to be considered in the enumeration yields

(3)RN = 2N−1 +
{

2
N
2 −1 if N even,

2
N−1

2 if N odd.

3.2.1. Symmetries on the sc lattice
Furthermore, not all self-avoiding walks are ind

pendent but related to each other by symmetry op
tions. On the sc lattice, there are six directions for
first bond of any conformation. Fixing the directio
of the first bond, we are left with(1/6)fs(X) mutu-
ally symmetric conformations, wherefs(X) is the to-
tal number of mutually symmetric self-avoiding wal
starting from the origin.Fig. 2illustrates these symme
tries for the conformation encoded byFLU in Fig. 1.
For a given conformationX, the symmetry factor is
given by

(4)fs(X) =
{

6 if X linear,
24 if X planar,
48 otherwise.

We represent conformations by means of chain co
that encode the steps of self-avoiding walks in ter
of a sequence of relative moves. On the sc lattice th
are five kinds of such moves which we denote
F (“forward”), L (“left”), R (“right”), U (“up”), and
D (“down”). The chain codes for all independent co
formations consisting of four monomers are sho
in Fig. 1. Two vectors are needed in order to defi
the five moves on the sc lattice: Letoi be a unit vec-
tor attached to the monomer atxi andsi another unit
vector atxi perpendicular tooi determining the di-
rection of theith step of the self-avoiding walk a
shown inFig. 3. Given a chain code, we determine t
conformationX by initially choosingx1 = (0,0,0),
o1 = (0,0,1), s1 = (0,1,0) and by specifying how to
go over from{xi ,oi , si} to {xi+1,oi+1, si+1} for each
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Fig. 2. All (1/6)fs(X) = 8 conformations are symmetric on the
lattice and their first bonds show into the same direction. Sym
try operations applied to the conformation (a) are rotations abou
the first bond (b, c, d), reflections at a lattice plane (e, f), and
compositions of rotations and reflections (g, h).

Fig. 3. Encoding a conformation in terms of relative moves on
lattice. Vectors designated byF, L, R, U, D are si+1(F), si+1(L),
etc.

of the five moves:

(5)oi+1 =
{oi for movesF,L,R,

−si for U,

si for D,

(6)si+1 =


si for F,

oi × si for L,

−oi × si for R,

oi for U,

−oi for D,

(7)xi+1 = xi + si .

Eqs.(5), (6), and (7)can be read off fromFig. 3.
In exact enumeration, it is not desirable to enum

ate conformations that are symmetric to each ot
This is easily achieved by enumerating the chain co
for conformations of a given lengthN considering
only codes that satisfy a chosen set of rules. The ch
of x1, o1, ands1 determines the first move which w
call by conventionF. Furthermore, we require the fir
move that makes the walk deviate from a linear con
mation to be anL-move and, subsequently, we requ
the first step into the third coordinate direction to b
U-move. For conformations of lengthN = 4 modeled
Fig. 4. Two different conformations which have a single conta
between their first and fourth monomers. Both belong to the s
contact map.

as self-avoiding walks of three steps there are six
ferent chain codes obeying these rules for not mutu
symmetric conformations (see againFig. 1).

3.2.2. Contact maps
As defined in(1), the energy of an HP protein do

not depend explicitly on its conformation but only o
the information of which pairs of monomers form co
tacts. This information is contained in the contact m
In general, more than one conformation correspond
a given contact map (seeFig. 4). Therefore, it is pos
sible to improve exact enumeration in terms of cont
maps: First, all self-avoiding walks of a given leng
are enumeratedoncein order to generate the comple
set of contact maps. In a second step, designing
quences are identified by running through the se
contact maps for each sequence. A sequence is
tified as designing if there is exactly one contact m
that corresponds to the lowest energy and, in turn
there is exactly one self-avoiding walk correspond
to that contact map.

The first step of this enumeration procedure
quires all contact maps to be stored in memory. So
straightforward properties of contact maps can be u
in order to occupy as little memory as possible. Ap
from symmetry (Cij = Cji ) and the trivial facts tha
self-contacts are not meaningful (Cii = 0) and that,
by definition, covalently bound monomers are n
counted as contacts (Cij = 0 if |i − j | = 1), these
properties are:

(8)Cij = 0 if |i − j | = 2n, n = 1,2, . . . ,

(9)
N∑

i=1

Cij �
{

5 if j = 1 or j = N,

4 otherwise,

which are easily seen to be consequences of the
sidered sc lattice geometry.Fig. 5 illustrates these
properties for theN = 8 case. There areZ8 = 9 pos-
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Fig. 5. Properties of contact mapsof conformations consisting
of N = 8 monomers. Contacts that correspond to entries tha
crossed out cannot be formed by conformations on the sc lat
There are nine pairs of residues that can possibly be in contac
dexed fields).

sible contacts for conformations of that length, i
nine bits are required to store any such contact m
in memory. In general, this number can be calcula
to be

(10)ZN =
{

1
4(N − 2)2 if N even,
1
4(N − 3)(N − 1) if N odd.

For each contact mapC, we also accumulate the num
bergc(C) of self-avoiding walks corresponding to th
contact map. In the determination ofgc(C) the triv-
ial symmetries described above are automatically ex
cluded. We include them in a separate quantitygs(C)

given by
∑

fs(X), where the sum runs over allgc(C)

conformations that correspond toC andfs(X) is given
by (4). Knowledge ofgs(C) is necessary for the ca
culation of thermodynamic quantities and we stor
for each contact map, too. Furthermore, we retain
each contact mapC the last chain code that we en
merate and whose conformation corresponds toC. In
particular, this yields all conformations correspond
to contact matrices withgc(C) = 1 which allows to
determine the ground-state conformations of des
ing sequences.
3.2.3. Parallelization
The number of contact maps that can be simu

neously held in memory was increased by distrib
ing them over several individual processors (IPs).
implemented the corresponding program accordin
the Message Passing Interface (MPI) standard[19]
and executed it on the local Linux clusterHagrid,1

consisting of 40 Athlon 1800+ MHz processors with
100 Mbit Ethernet communication.Fig. 6 shows the
basic structure of the program. The master proc
P1 generates all self-avoiding walksX and the corre-
sponding contact mapsC(X). For each self-avoiding
walk, it can behave in three different ways:

(1) If the memory associated to P1 is not yet filled up
andC(X) was not stored in this memory partitio
before,C(X) will be appended to the list of con
tact maps stored in P1.

(2) If C(X) is already stored in P1 the corresponding
countersgc(C) andgs(C) will be increased by one
andfs(X), respectively.

(3) If C(X) is not stored in P1 and its memory is com
pletely filled,C(X) will be stored in the master’
output buffer O1. When the output buffer is filled
up all contact maps in the buffer will be tran
ferred to the next IP’s input buffer I2.

This way of storing contact maps is termedselective
insertionin Fig. 6. The behavior of the slave process
P2,P3, . . . is very similar. The difference is that the
input buffers serve as sources of contact maps,
do not perform any kind of enumeration. Their me
purpose is lookup and storage of contact maps.

The second step of the enumeration, i.e. go
through all contact maps for all sequences, can be
ially parallelized in order to reduce the running tim
We achieved this by simply distributing the set of co
tact maps over all IPs. Then, each IP performs
enumeration with respect to its subset of contact m
Finally, all IPs send their enumeration results to
master process which compares the lowest ener
that were found by the slaves in order to find the “glo
ally” minimal energies and the correct degeneraciesgc

andgs. The speed-up factor due to this parallelizat

1 http://www.physik.uni-leipzig.de/Computer/Hagrid.

http://www.physik.uni-leipzig.de/Computer/Hagrid
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Fig. 6. Generating contact maps in terms of parallel distributed programming. Two individual processors (IPs), P1 and P2, are shown. Each
IP but P1 disposes of an input buffer Ii , and there is an output buffer Oi for all IPs but the last one. Buffering allows for faster informati
communication as less MPI messages have to be sent between the IPs.
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is virtually equal to the number of available proce
sors.

3.3. A simple example

In the following, we illustrate briefly how the im
provements discussed above apply to the very sim
N = 4 example. There areR4 = 10 relevant sequence
which we store in the array

S = [PPPP,PPPH,PPHP,PPHH,PHPH,PHHP,

(11)PHHH,HPPH,HPHH,HHHH].
Also, there are six relevant conformations as show
Fig. 1. In the first enumeration step, all contact ma
are determined. Five conformations (FFF, FFL, FLF,
FLR, andFLU) have no contacts and belong to t
trivial empty contact map which we will callC(0).
The conformation encoded byFLL has a single con
tact between its first and fourth residues; we refe
its contact map asC(1). Thus, there are only two con
tact maps withgc(C

(0)) = 5 andgc(C
(1)) = 1, and we

computegs(C
(0)) = fs(FFF)+fs(FFL)+fs(FLF)+

fs(FLR) + fs(FLU) = 126 andgs(C
(1)) = fs(FLL) =

24.
In the second step, we run through all sequen

from (11) for each of the two contact maps. The en
meration requires four more arrays of lengthR4 = 10
in order to store the lowest energy,E, the accumulated
degeneracies,Gc andGs, and an example conforma
tion for each sequence,W. After evaluation of the
energy function(1) for all sequences with respect
C(0) these arrays read

(12)E = [0,0,0,0,0,0,0,0,0,0],
(13)Gc = [5,5,5,5,5,5,5,5,5,5],

Gs = [126,126,126,126,126,126,126,126,

(14)126,126],
W = [FFF,FFF,FFF,FFF,FFF,FFF,FFF,FFF,

(15)FFF,FFF].
Calculating now the energies with respect toC(1)

yields once moreE = 0 for the first seven sequenc
and a lower energyE = −1 for the last three se
quences in(11). The arrays have to be updated acco
ingly. This means that for the sequences with ene
E = 0 the counter for the conformations,Gc, is incre-
mented, while it is reset for the other three sequen
since their energies are lower now. The degene
Gs which includes the symmetry factors for the co
formations is accumulated appropriately and the n
conformations possessing lower energies than tho
the previous step(15)are stored inW:

(16)E = [0,0,0,0,0,0,0,−1,−1,−1],
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(17)Gc = [6,6,6,6,6,6,6,1,1,1],
Gs = [150,150,150,150,150,150,150,24,

(18)24,24],
W = [FFF,FFF,FFF,FFF,FFF,FFF,FFF,FLL,

(19)FLL,FLL].
This shows that there are three designing seque
HPPH, HPHH, andHHHH corresponding to the entrie
equal to unity in(17), and from the corresponding e
tries in(19)we read off that, in this example, all thre
sequences possess the same unique ground-state
formationFLL with energyE = −1, as stored in(16).

Of course, parallelization must seem quite artific
in this very simple example. It would correspond
distributing the two contact mapsC(0) andC(1) over
two different IPs.

4. Applications

Table 1 and the correspondingFig. 7 show how
the number of self-avoiding walks,CN , grows in
comparison to the number of contact maps,MN ,
for chain lengthsN � 19. For a given chain length
there are many more self-avoiding walks than c
tact maps. The ratio between both numbers show
the rightmost column ofTable 1keeps growing with
n = N − 1. The exponential growth, as suggested
Fig. 7, can generically be described by the followi
n-

scaling ansatz[20,21]:

(20)Cn = Aµnnγ−1,

whereγ is a universal exponent andµ the effective co-
ordination number. For self-avoiding walks (SAW) w
reproduce the well-known resultsµSAW ≈ 4.684 and
γ ≈ 1.16 [16–18]by means of a ratio method anal
sis (see, e.g., Refs.[20,22,23]). Assuming a scaling
form (20) also for the number of contact maps (CM
a similar analysis yieldsµCM ≈ 4.38, i.e. their (still)
exponential growth is slower than that of self-avoidi
walks (see Ref.[12] for more details).

In the second enumeration step we determined
designing sequences of lengthN � 19, their num-
bers are shown inTable 2. As the interaction is mor
complicated in the MHP case, it is intuitively cle
that degeneracies are lifted and that there are h
more designing sequences for that model than in
HP case. We also note that there are fewer desig
sequences in the HP model on the sc lattice than
the same model and the same lengthsN on the square
lattice[13].

5. Summary and outlook

In the first part of our exact enumeration proced
we generated the complete sets of contact maps
self-avoiding walks ofn � 18 steps, i.e. for confor
mations of up toN = 19 monomers. We parallelize
Table 1
Number of self-avoiding conformationsCN and contact mapsMN on a sc lattice

N n = N − 1 1
6CN MN

1
6CN/MN

4 3 25 2 12.5
5 4 121 3 40.3
6 5 589 9 65.4
7 6 2821 20 141.1
8 7 13565 66 205.5
9 8 64661 188 343.9

10 9 308981 699 442.0
11 10 1468313 2180 673.5
12 11 6989025 8738 799.8
13 12 33140457 29779 1112.9
14 13 157329085 121872 1290.9
15 14 744818613 434313 1714.9
16 15 3529191009 1806495 1953.6
17 16 16686979329 6601370 2527.8
18 17 78955042017 27519000 2869.1
19 18 372953947349 102111542 3652.4



R. Schiemann et al. / Computer Physics Communications 166 (2005) 8–16 15

9

85
Fig. 7. Semi-log plot of the numbersCn of self-avoiding walks and numbersMn of contact maps vs. the walk lengthn = N − 1.

Table 2
Numbers of designing sequencesSN (only relevant sequences, see text) in the HP and MHP models

N 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1

SHP
N

3 0 0 0 2 0 0 0 2 0 1 1 1 8 29 47

SMHP
N

7 0 0 6 13 0 11 8 124 14 66 97 486 2196 9491 48
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our program such as to distribute the set of con
maps over several memory partitions of a Linux cl
ter. In the second step of enumeration, we determ
all designing sequences for both types of interacti
considered. Here, parallelization is used to decre
the required computer time.

The results obtained this way can be used i
statistical analysis of designing sequences and t
ground-state conformations. First, in the space
sequences, we can discuss thehydrophobicity, i.e.
the H-content of designing sequences as well ashy-
drophobicity profilesdescribing the distribution of hy
drophobic monomers in the polymer chain. Addition-
ally, it enables us to investigate in how far monom
are involved in the formation ofHH contacts (and
HP contacts in case of the MHP model) by defi
ing hydrophobic contact density profiles. Second, in
the space of conformations, the data obtained he
allow for the study of theend-to-end distancesand
radii of gyration as measures of the compactness
designed conformations. The consideration of the
tribution of thedesignabilityof designed conforma
tions shows that some conformations are prefe
over others as ground-state conformations of des
ing sequences. The complete statistical analysis ca
found in Ref.[12].

Finally, it should be pointed out that a slight va
ation of the enumeration procedure explained he
also allows for theexact determination of the den
sity of statesg(E), i.e. the number of conformation
corresponding to all energy levels and not just to
ground-state energy. This number includes all sym
tries which is why we store the degeneraciesgs(C) for
all contact mapsC (see Section3.2.2). For a given HP
sequence,g(E) can be used to determine the temp
ature dependence of energetic quantities, in partic



16 R. Schiemann et al. / Computer Physics Communications 166 (2005) 8–16

iated

n–
.14
the

s,

lk,
s
ew

98)

at-
on-

de

5;
.
09,

6)

,

:

an,

ed.,

ffi-
and
74,

26

ical

an-
and
89,
that of the specific heat whose peaks can be assoc
with conformational transitions[12].
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