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Abstract

We use a star-graph expansion technique to compute high-temperature series for the free energy and susceptibility of random-
bondq-state Potts models on hypercubic lattices. This method allows us to calculate quenched disorder averages for arbitrary
uncorrelated coupling distributions. Moreover, we can keep the disorder strengthp as well as the dimensiond as symbolic
parameters. This enables scans over large regions of the(p, d) parameter space for any value ofq. For the bond-diluted Ising
model (q = 2) in three dimensions we present first results for the critical temperature and exponentγ obtained from the analysis
of susceptibility series up to order 19. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Despite considerable efforts in the past few years
there are still many open problems in the physics of
disordered systems. One alternative to large-scale nu-
merical simulations are systematic series expansions.
Such expansions for statistical models defined on a
lattice are a well-known method to study phase tran-
sitions and critical phenomena [1]. The extension of
this method to disordered systems [2] demands the de-
velopment of new graph theoretical and algebraic al-
gorithms.

To this end we developed further the method of
“star-graph expansion” which allows one to take the
disorder average on the level of individual graphs,
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and apply it to Potts models with a bimodal quenched
distribution of ferromagnetic couplings.

Depending on dimensiond and number of states
q the pure Potts models show first- or second-order
phase transitions. According to the Harris criterion one
expects in the second-order case either the appearance
of a new random fixed point (d = 2, q = 3,4 and
d = 3, q = 2) or logarithmic corrections to the pure
fixed point (d = 2, q = 2). The latter system has been
successfully studied using high-temperature series
in [3].

At first-order transitions, randomness softens the
transitions. Ford = 2 even infinitesimal disorder
induces a continuous transition [4], whereas ford = 3,
q > 2 a tricritical point at a finite disorder strength is
expected [5].

In this note we report on an ongoing large-scale
project to study this area using series expansions.
We concentrate on the first, most laborious step, the
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generation of high-temperature series to high order,
and present first results of analyses of the resulting
susceptibility series for the bond-diluted Ising model
in three dimensions (3D).

2. Model

The q-state Potts model on arbitrary graphsG
with arbitrary coupling constantsJij assigned to the
nearest-neighbor links〈ij 〉 of G is defined by its
partition function

Z =
∑
{Si }

exp(−βH),
(1)

H = −
∑
〈ij〉
Jij δ(Si , Sj ),

whereβ = 1/kBT is the inverse temperature,Si =
1, . . . , q andδ(., .) is the Kronecker symbol. Quenched
disorder averages are done using an uncorrelated bi-
modal distribution of the form

P(Jij )= (1− p)δ(Jij − J0)+ pδ(Jij −RJ0), (2)

which can include spin glasses (R = −1,p = 1
2),

random-bond ferromagnets (0< R < 1) and bond
dilution (R = 0) as special cases. Other distributions
can, in principle, also be considered with our method.

3. Star-graph expansion method

Graphs constitute a partially ordered set under
the “subgraph” relation. Therefore, for every function
F(G) defined on the set of graphs exists another
functionWF (G) such that for all graphsG

F(G)=
∑
g⊆G

WF (g), (3)

and this function can be calculated recursively via

WF (G)= F(G)−
∑
g⊂G

WF (g). (4)

This gives for an infinite (e.g., hypercubic) lattice

F
(
Z
d
) =

∑
G

(
G : Z

d
)
WF (G), (5)

where(G : Z
d ) denotes the weak embedding number

of the graphG in the lattice [6]. LetG be a graph

with an articulation vertex where two star subgraphs
G1,2 are glued together. ThenWF (G) vanishes if
F(G)= F(G1)+F(G2). It is easy to see that the free
energy logZ has this property and it can be proved [2]
that the inverse susceptibility 1/χ has it, too, even for
arbitrary inhomogeneous couplingsJij . This restricts
the sum in Eq. (5) to a sum over star graphs. The
linearity of Eqs. (3)–(5) enables the calculation of
quenched averages over the coupling distribution on
the level of individual graphs. The resulting recipe for
the susceptibility series is:

– Graph generation and embedding number count-
ing;

– Calculation ofZ(G) and

Mnm(G)= Tr
(
qδ(Sn, Sm)− 1

)
e−βH({Jij })

for all graphs;
– Disorder average

Nnm(G)= [Mnm/Z]P(J );
– Subgraph subtraction

Wχ(G)=
∑
n,m

(N−1)nm −
∑
g⊂G

Wχ(g);

– 1/χ = ∑
G(G : Z

d )Wχ(G).

Implementing this program, we classified for the
first time all star graphs up to order 19 and calculated
their embedding numbers ford-dimensional hypercu-
bic lattices (up to order 17 for arbitraryd , order 18 and
19 for dimensions� 4). The embedding count uses a
refined version of the algorithm by Martin [6] employ-
ing optimized hash tables for collision testing.

For the symbolic calculations we developed a
C++ template library using an expanded degree-sparse
representation of polynomials and series in many
variables. The open source library GMP is used for
the arbitrary-precision arithmetics.

The partition function and correlation functions for
each graph are calculated in the cluster representation,

Mnm ∝
∑
Cnm

ql+c
( ∏

〈ij〉∈C
vij

)( ∏
〈ij〉/∈C

(1− vij )
)
. (6)

Herevij = (eβJij − 1)/(eβJij − 1 + q), the sum goes
over all clustersCnm ⊆G in which the verticesn and
m are connected,l is the number of links of the cluster
andc the number of connected components.
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The clusters are enumerated by Gray codes [7] such
that two consecutive clusters in the sum (6) differ by
exactly one (added or deleted) link. This results in a
considerable speed-up of the calculations by re-using
every term in the sum for the calculation of the next
one.

Our longest series, up to order 19, are obtained for
the case of bond dilution where (2) simplifies to

P(Jij )= (1− p)δ(Jij − J0)+ pδ(Jij ), (7)

since in this case the disorder average for a series is
most easily done via
[
v
n1
1 . . . v

nk
k

]
P(J )

= (1− p)kvn1+···+nk
0 . (8)

All calculations were carried out on Pentium Linux
farms and on a T3E.

4. Example: bond-diluted Ising model in
three dimensions

The 3D disordered Ising model has been exten-
sively studied both by field theoretical and numeri-
cal methods. The Monte Carlo simulations using site
dilution in [8] affirm the expectation that a new ran-
dom fixed point withγ = 1.342(5)(5) arises between
the pure one (p = 0) and the percolation threshold.
A comprehensive compilation of this and other Monte
Carlo results can be found in [9], showing a wide scat-
ter in the critical exponents of different groups, pre-
sumably due to large crossover effects.

In the literature many different series analysis tech-
niques have been discussed which all have their mer-
its and drawbacks [10]. Our high-temperature series
expansions for the susceptibility up to order 19 are
given with coefficients as polynomials inp, χ(v) =∑
n an(p)v

n. Therefore it should be well-suited for
the method of partial differential approximants [11]
which was successfully used to analyze series with
an anisotropy parameter describing the crossover be-
tween 3D Ising, Heisenberg and XY behaviour. But
this method was unable to give conclusive results.
Therefore we confined ourselves to the analysis of
single-parameter series for selected values ofp.

The ratio method assumes that the expected singu-
larity of the formχ(v) ∼ A(vc − v)−γ is the nearest

Fig. 1. Ratio approximants for different dilutionsp vs. 1/n.

to the origin. Then the consecutive ratios of series co-
efficients behave asymptotically as

rn = an

an−1
= v−1

c

(
1+ γ − 1

n

)
. (9)

Fig. 1 shows these ratios for different values ofp. In
order to make them visually comparable, they are (ex-
cept forp = 0.75) normalized by their respective criti-
cal couplingsvc . For smallp they show the typical os-
cillations related to the existence of an antiferromag-
netic singularity at−vc. Near the percolation threshold
at p = pc = 0.7512 (whereTc goes to 0,vc to 1) the
series is clearly ill-behaved, related to the exp(1/T )
singularity expected there. Besides that, the slope (re-
lated toγ ) is increasing withp.

The widely used DLog-Padé method consists in
calculating Padé approximants to the logarithmic deriv-
ative of χ(v). The smallest real pole of the approx-
imant is an estimation ofvc and its residue givesγ .
The results presented in Table 1 are the averages of
45–55 Padé approximants for each value ofp, with
the error in parentheses indicating the standard de-
viation. The scattering of the Padé approximants in-
creases withp, getting again inconclusive near the
percolation threshold. The critical exponentγ , as pro-
vided by this method, varies with the disorder strength.

More sophisticated analysis methods, such as in-
homogeneous differential approximants or the meth-
ods [12] M1 and M2, especially tailored to deal
with confluent singularities as one would expect in a
crossover situation, give essentially the same results.
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Table 1
Transition pointsvc = tanh(βcJ0/2) and critical exponentsγ for
different dilutionsp as obtained from DLog-Padé approximants

p vc γ

0 0.21813(1) 1.2493(7)
0.075 0.23633(1) 1.2589(8)
0.15 0.25788(1) 1.2714(8)
0.225 0.28382(1) 1.2873(10)
0.3 0.31566(2) 1.305(4)
0.375 0.35557(5) 1.329(4)
0.45 0.40743(10) 1.365(6)
0.525 0.4772(2) 1.400(10)
0.6 0.576(1) 1.435(60)

5. Conclusion

We have implemented a comprehensive toolbox for
generating and enumerating star graphs as required
for high-temperature series expansions of quenched,
disordered systems. Since the relevant parameters
(degree of disorderp, spatial dimensiond , number
of statesq , etc.) are kept as symbolic variables, the
number of potential applications is very large. Here
we have only presented a preliminary analysis of the
3D bond-diluted Ising model. The results obtained
so far leave three possibilities: the series are still
much too short to cope with the expected crossover
effects, the critical parameters arep-dependent or the
series analysis is seriously hampered by logarithmic
corrections [13].
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