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Abstract

We investigate the phase diagram of the bond-diluted three-dimensional 4-state Potts model which undergoes a strong first-
order phase transition in the pure case. We used standard large-scale Monte Carlo simulations with a cluster algorithm coupled
to multicanonical methods in the regime of low dilution where the transition is supposed to be first order. We present strong
numerical evidence for the existence of a tricritical point and we give an estimate of its location. 2002 Published by Elsevier
Science B.V.
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1. Introduction

The unavoidable presence of impurities in any ex-
perimental sample has motivated for several decades a
lot of experimental and theoretical studies of the influ-
ence of disorder. Twenty-five years ago, Harris showed
that quenched randomness modifies the universality
class of a second-order phase transition only when the
critical exponentα associated with the divergence of
the specific heat of the pure system is positive [1]. This
criterion has been checked experimentally many times
as for example in the order-disorder transition of hy-
drogen adsorbed on the(111)-surface of nickel [2].
Randomness softens first-order phase transitions and
may even turn a discontinuous transition into a con-
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tinuous one [3]. Aizenman and Wehr showed that in
dimensiond = 2 an infinitesimal amount of disorder
is sufficient to erase any discontinuity [4]. This was
verified numerically for theq-state Potts model which
undergoes in dimensiond = 2 a first-order phase tran-
sition whenq > 4 [5]. In higher dimensions (d > 2),
a tricritical point may appear at a finite concentration
of impurities, separating two regimes of discontinuous
and continuous transitions. Such a tricritical point has
been observed for the site-diluted 3-state Potts model
in dimensiond = 3 [6]. The pure system undergoes
a very weak first-order phase transition which makes
the determination of the location of the tricritical point
very difficult. We therefore focused on the diluted 4-
state Potts model which presents the advantage of ex-
hibiting a strong first-order phase transition making
clearly visible a regime of discontinuous transitions at
low dilution.
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2. Model and simulation setup

More precisely, we studied the bond-diluted 3D
4-state Potts model defined by the following Hamil-
tonian:

−βH =
∑
(i,j)

Kij δσi,σj (σi = 0, . . . ,3), (1)

where the sum extends over all pairs of neighboring
sites on the lattice and the couplingsKij are distrib-
uted according to the distribution

℘(Kij ) = pδ(K − Kij ) + (1− p)δ(Kij ). (2)

The parameterp is thus the concentration of bonds in
the system.p = 1 corresponds to the pure 3D 4-state
Potts model which undergoes a strong first-order phase
transition with a correlation lengthξ � 3 at the tran-
sition temperature [8]. One does not expect any finite-
temperature phase transition for concentrations below
the percolation thresholdpc � 0.2488 since the ab-
sence of any percolating cluster in the system forbids
long-range order. We considered all concentrationsp

multiple of 0.04 in the interval[0.28,1].
The system is studied using large-scale Monte

Carlo simulations with the Swendsen–Wang cluster al-
gorithm [7], which reduces the critical slowing-down
encountered at second-order phase transitions when
local update algorithms are used. A regime of first-
order phase transitions being expected at weak disor-
der, we checked that the number of Monte Carlo itera-
tions were sufficient in the neighbourhood of the tran-
sition temperature to observe several tunneling events
between the ordered and disordered phases. Never-
theless, once the transition point was approximately
located, we then performed multicanonical simula-
tions to get refined estimates of the free-energy bar-
rier. Thermodynamic quantities were averaged over a
large number of disorder realizations, between 2000
and 5000. The stability of the averages over random-
ness has been checked by plotting the averages with
respect to the number of random samples. Indeed, a
too small number of disorder realizations would lead
to typical values instead of average ones [9]. These
two values are different as can be seen in the probabil-
ity distribution which presents a long tail that prevents
the most probable event and the average one being the
same.

3. Transition line

We defined the location of the maximum of the
magnetic susceptibility as the transition temperature
Tt (L) for a given lattice sizeL. This choice was moti-
vated by the observation that the specific heat presents
larger error bars than the magnetic susceptibility and
because the stability of a possible second-order regime
implies a negative specific heat exponent (and thus a
non-diverging specific heat) at the random fixed point.
Canonical simulations for lattice sizesL = 2 to 16
have been performed for all concentrationsp to get a
rough estimate of the location of these maxima. Then a
larger simulation combined with histogram reweight-
ing was used to refine these estimates. The transition
line is plotted in Fig. 1. Mean-field theory for the Potts
model states that the transition temperature should be
in any dimension a linear function of the number of
neighbors, thus in the case of the bond-diluted Potts
model proportional to the concentration of bondsp.
Such a linear behaviour is indeed observed at weak
disorder over a quite large interval of concentration,
say[0.6,1]. At stronger disorder, however, the mean-
field approximation fails to reproduce the correct be-
haviour.

The phase diagrams of quenched bond disordered
Ising and Potts models were studied by Turban [10]
using an effective-medium approximation. Limiting
the approximation to a single bond, the following
estimate for the transition temperature is obtained:

Fig. 1. Phase diagram of the bond-diluted 3D 4-state Potts model.
The dashed line corresponds to the mean-field prediction and the
solid line to an effective-medium (EM) approximation.
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1/Tt (p) = log

[
(1− pc)e1/Tt (p=1) − (1− p)

(p − pc)

]
, (3)

which is exact in the limits of the pure system (p = 1)
and the percolation threshold (pc � 0.2488). As can
be seen in Fig. 1, the transition line is extremely well
reproduced by this approximation.

4. Nature of the transitions

In a second step, the order of the phase transition
was investigated. A first insight is given by the be-
haviour of the autocorrelation time at the transition
temperature with the lattice size. Indeed, the autocor-
relation time is the characteristic time of the Monte
Carlo dynamics that one can interpret as the number
of iterations required to get two statistically indepen-
dent spin configurations. When one uses local update
algorithms, the Monte Carlo simulation is essentially
a random walk in configuration space for a second-
order phase transition, and the autocorrelation time is
expected to behave likeLz with z � 2. Cluster algo-
rithms speed up the dynamics, i.e. reduce the dynami-
cal exponentz. In the case of a first-order phase transi-
tion, a free-energy barrier separates the two phases in
coexistence. The characteristic time of the dynamics is
thus the tunneling time through this barrier. Tunneling
is only possible by growing an interface between the
two phases, thus the autocorrelation time grows expo-
nentially with the energyσL2 of this surface whereσ
is the interface tension.

The behaviour of the integrated autocorrelation
time of the energy is plotted with respect to the lattice
size and for all dilutions in Fig. 2. For weak disorder,
a clear exponential behaviour is observed providing
evidence for a first-order phase transition. At strong
disorder, a power-law dependence is observed which
is a signal for a continuous phase transition. As
can be seen in Fig. 2, strong corrections to scaling
seem to be present in the case of the concentration
p = 0.56. One cannot exclude the possibility of
a weak first-order phase transition for which the
correlation length is larger than the considered lattice
sizes, resulting thus in a continuous-like behaviour.
Nevertheless, this would mean a correlation length at
the transition temperature larger thanL = 96 in the
case ofp = 0.56. A finite-size scaling study has been
performed atp = 0.56 that gives critical exponents

Fig. 2. Autocorrelation time of the energyτe at the transition
temperature with respect to the lattice sizeL for all considered
concentrations ranging fromp = 0.28 (bottom) top = 0.96 (top)
in steps of 0.04.

clearly supporting the picture of a second-order phase
transition [11].

We then performed large-scale multicanonical sim-
ulations in the supposed first-order regime for lattice
sizes betweenL = 13 and 25 and calculated the inter-
face tension as defined by:

σ = 1

2L2 log
Pmax

Pmin
, (4)

wherePmax is the probability at the top of the two
peaks corresponding to the two coexisting phases and
Pmin that at the minimum of the gap between them.
The simulations were performed at the transition tem-
peratureTt (L) previously determined. The collected
data were then reweighted using the Boltzmann weight
corresponding to the temperature for which the two
peaks have equal height. It is then easier to apply
Eq. (4) and define an interface tension. Fig. 3 presents
an example of such a reweighting procedure. Prelimi-
nary results show an interface tension which is clearly
vanishing forp = 0.56 as expected for a continuous
transition. As presented in Fig. 4, a linear interpola-
tion in 1/L of the data forp = 0.84 andp = 0.76 leads
to the conclusion of a non-vanishing interface tension
only for p = 0.84. The tricritical point would then
be betweenp = 0.76 andp = 0.84. It is also around
p = 0.80 that the autocorrelation times seem to switch
from an exponential to a power-law behaviour. Never-
theless, data for larger lattice sizes would be necessary
to confirm this picture but this would need a computa-
tion time unreachable for us.
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Fig. 3. Probability density of the energy reweighted at the tempera-
ture for which the two peaks have equal height. The two plots cor-
respond top = 0.56 (left) andp = 0.84 (right).

Fig. 4. Free-energy density barrier with respect to the inverse lattice
size for three different concentrations.

5. Conclusion

We have presented a large-scale Monte Carlo simu-
lation of the 3D bond-diluted 4-state Potts model. The
strong first-order phase transition of the pure system

is softened by randomness and clear evidence for a
continuous transition at strong disorder is found. The
analysis of both the autocorrelation time and the in-
terface tension leads to the conclusion of a tricritical
point aroundp = 0.80.
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