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Abstract

We investigate by Monte Carlo simulations the critical properties of the three-dimensional bond-diluted Ising model. The
phase diagram is determined by locating the maxima of the magnetic susceptibility and is compared to mean-field and effective-
medium approximations. The calculation of the size-dependent effective critical exponents shows the competition between the
different fixed points of the model as a function of the bond dilution. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The qualitative influence of quenched disorder
at second-order phase transitions is well understood
since Harris proposed a relevance criterion [1] based
on the knowledge of the specific heat critical exponent
αpure of the pure model: whenαpure is positive, the
disordered system will reach a new fixed point with
new critical exponents whereas ifαpure is negative, the
same universality class will persist.

As a paradigmatic model, the three-dimensional
(3D) disordered Ising model characterized byαpure=
0.109(4) has been extensively studied by:
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• Renormalization group methods in the weak
quenched dilution regime. The best estimates for
the critical exponents obtained by this method
are [2]:

ν = 0.678± 0.010,

η = 0.030± 0.003,

γ = 1.330± 0.017.

• Monte Carlo simulations of the site-diluted case
for which the following exponents have been
found [3]:

ν = 0.6837± 0.0053,

β = 0.3546± 0.0028,

γ = 1.342± 0.010.

• Experimental investigations.
For a review of these different results, see Ref. [4].
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The general picture which is now widely accepted
is that, starting from the pure Ising model (with expo-
nentsν = 0.6304±0.0013,γ = 1.2396±0.0013,β =
0.3258±0.0014, see Ref. [5]), the critical temperature
decreases and eventually vanishes at the percolation
threshold below which there is no longer any long-
range order in the system, due to the absence of perco-
lating clusters. In the dilution-temperature plane, the
critical line Tc(p) which delimits ferromagnetic and
paramagnetic phases has two end-points (namely the
pure system and the percolation point) described by
unstable fixed points and it is commonly believed that
the quenched disordered system has universal prop-
erties described by a unique stable fixed point. Ac-
cording to this picture, the competition between fixed
points possibly leads to an effective variation of uni-
versal critical quantities.

In this paper, we first determine the phase diagram
of the bond-diluted problem (up to now, only the site-
diluted case has been studied) and compare it to a pre-
diction in the single-bond effective-medium approxi-
mation and then we try to illustrate the competition
between fixed points leading to crossover regimes in
some physical quantities.

2. Phase diagram

The bond-diluted Ising model is defined by the
following Hamiltonian with independent quenched
random interactions:

−βH =
∑

(i,j)

Kij δσi,σj (σi = ±1). (1)

The coupling strengths are allowed to take two dif-
ferent valuesKij = K ≡ J/kBT and 0 with probabil-
itiesp and 1− p, respectively,

P(Kij ) = pδ(Kij − K) + (1− p)δ(Kij ), (2)

c = 1 − p being the concentration of missing bonds,
which play the role of the non-magnetic impurities.
The simulation technique is based on the Swendsen–
Wang cluster algorithm with periodic boundary condi-
tions in the three space directions.

The phase diagram is obtained numerically from
the maxima of a diverging quantity (Fig. 1). Here
we choose the susceptibility, since the stability of
the disordered fixed point implies that the specific-
heat exponent is negative in the random system.

Fig. 1. Variation of the average magnetic susceptibilityχ̄L versus
the coupling strengthK = J/kBT for several concentrationsp and
L = 8, 10, 12, 14, 16, 18, 20. For each value ofp and each size, only
one value ofK has been simulated: the extension of theK values
has been obtained by the standard histogram reweighting technique.

Thus, the error in this quantity is larger than for the
susceptibility. The percolation threshold is located at
pc ≈ 0.2488.

To get an accurate determination of the maxima of
the susceptibility, we used the histogram reweighting
technique with 2500 Monte Carlo sweeps (MCS) and
between 2500 and 5000 samples of disorder. The num-
ber of Monte Carlo sweeps is justified by the increas-
ing behaviour of the energy autocorrelation time and
we chose for each size at least 250 independent mea-
surements of the physical quantities(NMCS > 250τE).

For a second-order phase transition, the autocorre-
lation time is expected to behave asLz at the criti-
cal point wherez is the dynamical critical exponent
(Fig. 2). For the disordered Ising model, we get the
values ofz shown in Table 1. We see that the critical
slowing down weakens for the disordered model and
becomes smaller when the concentration of magnetic
bondsp decreases, but it is necessary to increase the
number of disorder realizations whenp decreases be-
cause of the vicinity of the percolation threshold.

In order to check the quality of the averaging tech-
niques, we can study the stability of the susceptibility
for the largest size considered versus the number of
Monte Carlo sweeps involved in the thermal average.
The results are given in Table 2 for different samples
as well as for the disorder average. With 2500 MCS,
the accuracy of the results for a given sample is not
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Fig. 2. Variation on a log-log scale of the energy autocorrelation
time τE versus the sizeL of the system. The energy autocorrelation
time increases with the concentration of magnetic bondsp and its
greatest value obtained forL = 96,p = 0.7 is around 9.

Table 1
The dynamical critical exponentz as obtained from linear fits of
logτE vs logL

p 1 0.7 0.55 0.4

z 0.59 0.41 0.38 0.27

Table 2
Evolution of the susceptibility with the number of Monte Carlo
sweeps per spin for different samples,χj , and the average value
(with 2500 samples) atL = 96,p = 0.7

# MCS χ1 χ2 χ3 χ4 χ5 χ̄

100 1268 720 1141 939 833 1058
500 1272 1520 1223 1029 953 1210

1000 1262 1544 1205 1068 911 1219
1500 1282 1433 1277 1047 915 1227
2000 1332 1441 1221 1073 917 1235
2500 1358 1484 1234 1012 1014 1234

perfect, of course, but the precision of the average
over disorder is quite good on the other hand. The
disorder average procedure has been investigated by
computing the susceptibilityχj for different samples,
1 � j � Ns , whereNs is the total number of samples
(Fig. 3). We can see that the dispersion of the values of
χ is not very large because the fluctuations in the aver-
age value disappear after a few hundreds realizations.

The phase diagram obtained from the location
of the maxima of the susceptibility for the largest
lattice size as a function of the concentration of
magnetic bonds is shown in Fig. 4. The simple mean-

Fig. 3. Distribution of the susceptibility for the different disorder
realizations of the Ising model withL = 96 and a concentration of
magnetic bondsp = 0.7. The average value over the samplesχ̄ is
shown by the black line.

Fig. 4. Phase diagram of the 3D bond-diluted Ising model compared
with the mean-field and effective-medium approximations.

field transition temperature is drawn for comparison:
it gives a linear behaviour as a function of the
bond concentrationp and we can check that this
approximation holds only in the low-dilution regime,
p > 0.8. On the other hand, the effective-medium
approximation [6] gives very good agreement with the
simulated transition line. Treating only a single bond
in an effective medium leads to the following relation
for the critical coupling:

Kc(p) = ln
(1− pc)eKc(1) − (1− p)

p − pc

. (3)

This relation is exact in the vicinity of both the pure
system and the percolation threshold.



430 P.E. Berche et al. / Computer Physics Communications 147 (2002) 427–430

3. Competition between the fixed points

The main problem encountered in previous studies
of the disordered Ising model was the question of mea-
suring effective or asymptotic exponents. Although the
change of universality class should happen theoreti-
cally for an arbitrarily low disorder, it can be very diffi-
cult to measure the new critical exponents because the
asymptotic behaviour cannot always be reached practi-
cally. Another difficulty comes from the vicinity of the
ratiosγ /ν andβ/ν in the pure and disordered univer-
sality classes. Indeed, these values for the pure model
are [5]:

γ /ν = 1.966(6), β/ν = 0.517(3),

ν = 0.6304(13),

and for the disordered Ising model [3]:

γ /ν = 1.96(3), β/ν = 0.519(8), ν = 0.6837(53).

Thus, from standard finite-size scaling techniques,
the critical exponentν only will allow us to discrimi-
nate between the two fixed points. This exponent can
be evaluated from the finite-size scaling of the deriva-
tive of the magnetization versus the temperature which
is expected to behave as d lnm/dK ∼ L1/ν . From this
power-law behaviour, we have extracted the effec-
tive size-dependent exponent(1/ν)eff which is plotted
against 1/Lmin for different bond concentrationsp in

Fig. 5. Effective exponents(1/ν)eff as a function of 1/Lmin for
p = 0.95, 0.9, 0.8, 0.75, 0.65, 0.6, 0.45 and 0.36. The error bars
correspond to the standard deviations of the power-law fits. The
arrows indicate the values of 1/ν for the pure model [5] and the
site-diluted one [3].

Fig. 5 whereLmin is the smallest lattice size used in
the fits.

We clearly see that in the regime of low dilution
(p close to 1), the system is influenced by the
pure fixed point. On the other hand, when the bond
concentration is small, the vicinity of the percolation
fixed point induces a decrease of 1/ν below its
expected disordered value. Indeed, the percolation
fixed point is characterized by 1/ν ∼ 1.12 [7].

4. Conclusion

We have presented, from a numerical study, the
influence of bond dilution on the critical properties
of the 3D Ising model. The universality class of
the disordered model is modified by disorder but
its precise characterization is difficult because of the
competition between the different fixed points which
induce crossover effects, even for relatively large
lattice sizes. The next step is to accurately locate the
best dilution which minimizes these crossover effects.
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