
Application of simulated tempering and magnetizing to a two-dimensional Potts model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

J. Stat. Mech. (2013) P02039

(http://iopscience.iop.org/1742-5468/2013/02/P02039)

Download details:

IP Address: 133.6.213.40

The article was downloaded on 28/02/2013 at 00:46

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-5468/2013/02
http://iopscience.iop.org/1742-5468
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.S
tat.M

ech.(2013)
P

02039

ournal of Statistical Mechanics:J Theory and Experiment

Application of simulated tempering and
magnetizing to a two-dimensional Potts
model

Tetsuro Nagai1, Yuko Okamoto1,2,3,4 and Wolfhard Janke5

1 Department of Physics, Graduate School of Science, Nagoya University,
Nagoya, Aichi 464-8602, Japan
2 Structural Biology Research Center, Graduate School of Science, Nagoya
University, Nagoya, Aichi 464-8602, Japan
3 Center for Computational Science, Graduate School of Engineering, Nagoya
University, Nagoya, Aichi 464-8603, Japan
4 Information Technology Center, Nagoya University, Nagoya, Aichi 464-8601,
Japan
5 Institut für Theoretische Physik and Centre for Theoretical Sciences (NTZ),
Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
E-mail: tnagai@nagoya-u.jp, okamoto@phys.nagoya-u.ac.jp
and Wolfhard.Janke@itp.uni-leipzig.de

Received 14 December 2012
Accepted 6 January 2013
Published 27 February 2013

Online at stacks.iop.org/JSTAT/2013/P02039
doi:10.1088/1742-5468/2013/02/P02039

Abstract. We apply the simulated tempering and magnetizing (STM) method
to the two-dimensional three-state Potts model in an external magnetic field
in order to investigate STM’s applicability further. The temperature and the
external field are treated as dynamical variables updated during the STM
simulations. On the basis of adequate information obtained by STM for
several lattice sizes L × L (up to 160 × 160), we also perform a number of
conventional canonical simulations of larger lattices in order to illustrate the
crossover behavior of the Potts model in an external field with increasing L. The
temperature and external field for the larger lattice size simulations are chosen by
extrapolation of the detailed information obtained by STM. We present a careful
analysis of the crossover-scaling behavior at the phase transitions with respect
to the lattice size as well as the temperature and external field. The crossover
behavior is clearly observed in the simulations in agreement with theoretical
predictions.
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1. Introduction

Monte Carlo (MC) and molecular dynamics (MD) computer simulation methods have been
demonstrated in many applications to be indispensable tools for studying the statistical
properties of various physical systems in equilibrium. The quasi-ergodicity problem,
however, where the system gets trapped in states of local energy minima, has often posed
great difficulties. In order to overcome this difficulty, generalized-ensemble algorithms have
been developed and applied to many problems in spin models and biomolecular systems
(for reviews, see, e.g., [1]–[4]).

Well-known examples of generalized-ensemble algorithms are the multicanonical
algorithm (MUCA) [5, 6], simulated tempering (ST) [7, 8], and the replica-exchange
method (REM) [9, 10] (also referred to as parallel tempering). Closely related to MUCA
are the Wang–Landau method [11, 12] and so-called metadynamics [13]. REM is implicitly
a special case of the more general method described in the earlier work of [14], as shown
later in [15].

On the basis of the recent multi-dimensional generalization of generalized-ensemble
algorithms [16]–[18], the ‘simulated tempering and magnetizing’ (STM) method has
been proposed and developed [19, 20]. In [19, 20] two of us studied the classical Ising
model, introducing the external (magnetic) field as a second dynamical variable, besides
the temperature, and showed improvements over the conventional ‘one-dimensional’ ST
schemes, such as better sampling efficiency and potential applicability to a first-order
phase transition, which cannot be dealt with by one-dimensional ST.

In the present work, we further investigate the STM method by applying it to the two-
dimensional three-state Potts model in an external magnetic field [21, 22]. This model has
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several interesting applications in condensed matter physics [22], and its three-dimensional
counterpart serves as an effective model for quantum chromodynamics [23]–[26]. We show
that the STM scheme works in this more complicated system as well. We also look into
the crossover-scaling behavior as regards the dependence on the lattice size L as well
as temperature T and external field h. We observe that the STM method enables us to
investigate a wide area of sampling space.

The rest of this article is organized as follows. In section 2 we review the STM
method and give the details of our simulations. In section 3 we present the results. After
checking the two-dimensional random walks, we compare ST and STM, and calculate
various thermodynamic quantities for many sets of parameter values, in combination with
reweighting techniques. We then use this extensive data set to study the crossover-scaling
behavior at the phase transitions with respect to the lattice size as well as the temperature
and external field. In section 4 we conclude this paper with a summary and an outlook to
future work.

2. The model and methods

2.1. The model

We study the two-dimensional three-state Potts model in an external field with energy:

H = E − hM, (1)

E = −
∑
〈i,j〉

δσi,σj
, (2)

M =
N∑
i=1

δ0,σi
, (3)

where N = L2 denotes the total number of spins, δ is the Kronecker delta function, σi a
spin at the ith site, and h the external field. The spin σi takes on one of the three values 0,
1, or 2. The sum in (2) runs over all nearest-neighbor pairs, with the spins σi arranged on
the sites of a square L×L lattice with periodic boundary conditions. Data were obtained
by means of STM for lattice sizes ranging from 2× 2 to 160× 160 and additionally with
conventional canonical simulations on 320× 320 and 640× 640 lattices.

We recall that the three-state (standard) Potts model is equivalent to the three-state
planar Potts or Z3 model. We first introduce a spin

~si =

cos
2π

3
σi

sin
2π

3
σi

 . (4)

The zero-field energy term is then given by

Eplanar = −
∑
〈i, j〉

~si · ~sj, (5)
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and the magnetization reads

~M =
N∑
i=1

~si. (6)

In an external field chosen along the x-direction,

~h ≡ h~ex, (7)

the inner product of the external field and magnetization becomes

~h · ~M = hM (x), (8)

where M (x) stands for the x-component of ~M , which is given by
∑

i cos(2π/3)σi. Because
the argument of the cosine and sine in (4) can only take the values of 0, 2π/3, and 4π/3,
we have

E = (Eplanar −N)× 2
3
, (9)

M =

(
M (x) +

N

2

)
× 2

3
. (10)

Thus, we arrive at

E − hM =
2

3
Eplanar −

2

3
hM (x) − N

3
(2− h). (11)

Since the last term is an unimportant constant, the standard Potts model is equivalent to
the planar Potts model with a 2

3
-smaller coupling constant and magnetization normalized

by 2
3
:

H = E − hM, (12)

E = −2
3

∑
〈i,j〉

cos θij, (13)

M = 2
3

N∑
i=1

cos θi, (14)

where θij = θj − θi and θi = (2π/3)σi.

Because M (x) is the projection of ~M onto the x-axis, M (x) equals N when the system is
ordered in the 0-direction and−N/2 when it is ordered in the 1-direction or 2-direction (see
figure 1). The disordered phase is signaled by M (x) = 0. According to (10) this corresponds
to M = N for the ordered state in the 0-direction, M = 0 for the ordered states in the
1-direction or 2-direction, and M = N/3 for the disordered phase.

As one can see from (1) and (3) (or (12) and (14)), spin direction 0 is favored by a
positive external field (h > 0). Accordingly, a negative external field (h < 0) disfavors spin
direction 0 and the system is expected to behave like a two-dimensional Ising model. In
fact, in the limit h→ −∞, the three-state Potts model is equivalent to the Ising model
in zero external field, because the unfavored states are completely suppressed. Figure 1
illustrates the schematic picture of this relation.

For reference, we summarize the critical exponents for the two-dimensional Ising and
three-state Potts models in table 1.
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(a) (b) (c)

Figure 1. Schematic description of the behavior of the spins according to the
external field. (a) Spin 0 is favored for h > 0, i.e., spin 1 and spin 2 are disfavored.
(b) All three states are equivalent for h = 0. (c) Spin 0 is disfavored for h < 0.

Table 1. Critical exponents for the two-dimensional Ising and three-state Potts
models (yt = 1/ν, yh = (β + γ)/ν) [22].

Model yt yh β γ δ ν

Ising 1 15/8 1/8 7/4 15 1
Potts 6/5 28/15 1/9 13/9 14 5/6

2.2. The simulation methods

In this section we briefly review the STM method [19, 20]. While in the conventional ST
scheme [7, 8] only the temperature is considered as a dynamical variable, the STM method
employs the external field as a second dynamical variable, besides temperature. The
STM method is thus based on the multi-dimensional extension of generalized-ensemble
algorithms [16]–[18] where one considers

e−(E−hM)/T+a(T,h) (15)

as a joint probability for (x, T, h) (∈ X ⊗ {T1, T2, . . . , TNT
} ⊗ {h1, h2, . . . , hNh

}). Here,
a(T, h) is a parameter, x denotes a (microscopic) state, and X denotes the sampling space.
We have set Boltzmann’s constant to unity. Note that the temperature and external field
are discretized into NT and Nh values, respectively.

A suitable candidate for a(Ti, hj) may be found by looking into the probability of
occupying each set of parameter values. It is given by

P (Ti, hj) =

∑NT
k=1

∑Nh
l=1

∫
dx δik δjl e

−(E(x)−hlM(x))/Tk+a(Tk,hl)∑NT
k=1

∑Nh
l=1

∫
dx e−(E(x)−hlM(x))/Tk+a(Tk,hl)

(16)

=
e−f(Ti,hj)+a(Ti,hj)∑NT

k=1

∑Nh
l=1 e−f(Tk,hl)+a(Tk,hl)

(17)

∝ e−f(Ti,hj)+a(Ti,hj), (18)

where

e−f(Ti,hj) =

∫
dx e−(E−hjM)/Ti . (19)

This shows that the dimensionless free energy f(Ti, hj) is the proper choice for a(Ti, hj),
in order to generate a uniform distribution of the number of samples according to T and
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h. The free energy values can be estimated by a number of methods. For example, one
can obtain such values from preliminary simulations and reweighting techniques.

Any thermal average 〈A〉Ti,hj
at given Ti (∈ {T1, T2, . . . , TNT

}) and hj (∈
{h1, h2, . . . , hNh

}) can be obtained via the conditional expectation 〈A〉Ti,hj
= 〈A|Ti, hj〉STM.

Namely, we have

〈A〉Ti,hj
=

1

NTi,hj

NTi,hj∑
k=1

AkTi,hj
, (20)

where NTi,hj
is the total number of samples obtained at Ti and hj, and AkTi,hj

represents
the kth sample at Ti and hj.

When considering the temperature T and external field h as dynamical variables, they
can be updated similarly to the spin σi. The Metropolis criterion for updating T and h is
given by

w(Ti, hj → Ti′ , hj′ ) = min

(
1,
P (Ti′ , hj′ )

P (Ti, hj)

)
(21)

= min

(
1, exp

(
−
(

1

Ti′
− 1

Ti

)
E +

(
hj′

Ti′
− hj
Ti

)
M + a(Ti′ , hj′ )− a(Ti, hj)

))
. (22)

Once an initial state is prepared, STM simulations can be performed by repeating the
following two steps: (1) Perform a conventional canonical simulation at fixed Ti and hj
for a certain number of MC sweeps. (2) Update the temperature and/or external field by
using (22) with a(T, h) = f(T, h).

In our implementation, in step (2) above either T or h was updated (the choice between
T and h was made at random) by using (22) to a neighboring value (the choice between
the two possible neighbors was also made at random). Here, one MC sweep consists of
L×L single-spin updates. In the following we refer to the number of MC sweeps performed
between parameter updates as the ‘parameter-updating period’.

We remark that, as spins can be updated via a number of algorithms, other schemes for
updating the parameters can be employed [27]. There also exists a temperature-updating
scheme for ST, using the Langevin algorithm [28].

Table 2 summarizes the conditions for the present STM simulations. According to the
previous studies [20, 29, 30], we updated the parameters frequently. That is, we employed
very small parameter-updating periods.

In addition, we also performed conventional canonical simulations. Table 3 lists their
details. The temperature was chosen by means of extrapolations of the STM results. We
estimated the proper temperature by fitting the STM results to Tmax−Tc ∝ L−1/ν , where
Tmax is the temperature at which the observables take their maxima. The Greek letter
ν denotes the critical exponent of the correlation length. For vanishing external field we
fitted the data to the Potts case (ν = 5/6) and in (negative) external field, to the Ising
case (ν = 1).

For the spin variables we employed the single-spin update algorithm, that is, we
updated spins one by one with the heat-bath algorithm. As a quasi-random-number
generator we used the Mersenne Twister [31].
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Table 3. Parameter values for the regular canonical simulations.

Lattice size L 320 640

Total number
of MC sweepsa

4000 000 4000 000

(T, h)b (0.995 518, 0), (0.995 995, 0),
(0.996 490, 0)

(0.994 985, 0), (0.995 209, 0),
(0.995 512, 0)

(1.075 2077, −0.5), (1.077 044, −0.5),
(1.078 302, −0.5)

(1.075 672, −0.5), (1.076 181, −0.5),
(1.076 936, −0.5)

(1.101 447, −1.0), (1.102 321, −1.0),
(1.103 380, −1.0)

(1.100 386, −1.0), (1.101 043, −1.0),
(1.101 811, −1.0)

Ndata
c 10 20

a The number performed for each set of temperature and external field values.
b Three temperature values for each external field value were used.
c The data were stored every Ndata MC sweeps.

2.3. Free energy calculations

The simulated tempering parameters, or free energies, in (15) and (19) can be simply
obtained by reweighting techniques applied to the results of preliminary simulation runs
[16]–[18], [32]. We used two reweighting methods for the free energy calculations. One
method is the multiple-histogram reweighting method, or weighted histogram analysis
method (WHAM) [33]–[35], and the other is the multistate Bennett acceptance ratio
estimator (MBAR) method [36], which is based on WHAM.

The equations of the WHAM algorithm applied to the system are as follows. For
details, the reader is referred to [17, 34, 35]. The density of states (DOS) n(E,M) and
free energy f(Ti, hj) can be obtained from

n(E,M) =

∑NT
i=1

∑Nh
j=1 nTi,hj

(E,M)∑NT
i=1

∑Nh
j=1NTi,hj

exp(f(Ti, hj)− (E − hjM)/Ti)
, (23)

f(Ti, hj) = − ln
∑
E,M

n(E,M) exp(−(E − hjM)/Ti), (24)

where nTi,hj
(E,M) is the histogram of E and M at Ti and hj, and NTi,hj

is the total
number of samples obtained at Ti and hj. By solving these two equations self-consistently
by iteration, we can obtain n(E,M) and f(Ti, hj). The n(E,M) obtained allows one to
calculate any thermal average at arbitrary temperature and external field values. Note
that f(Ti, hj) is determined up to a constant, which sets the zero point of the free energy.
Hence n(E,M) is determined up to a normalization constant.

The MBAR is based on the following equations. Namely, by combining (23) and (24),
the free energy can be written as

f(Ti, hj) = − ln
N∑
n=1

exp(−(En − hjMn)/Ti)∑NT
k=1

∑Nh
l=1NTk,hl

exp(f(Tk, hl)− (En − hlMn)/Tk)
, (25)

where N is the total number of data, NTk,hl
is the number of samples associated with Tk

and hl, and En and Mn denote the energy and magnetization of the nth measurement.
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This equation should be solved self-consistently for f(Ti, hj). Note that, as in WHAM,
f(Ti, hj) is determined up to a constant.

We repeat the preliminary STM simulations and free energy calculations until we
finally obtain sufficiently accurate free energy values which let the system perform a
random walk in the temperature and external field space during the STM simulation.
Once this has been achieved, the final production run is performed.

Note that these two reweighting methods enable us to obtain not only free energy
values but also thermodynamic quantities at any temperature and at any external field.
Such averages are given by

〈A〉T,h =
N∑
n=1

WnaA(xn), (26)

Wna =
1

〈ca〉
exp(−(En − hMn)/T )∑NT

k=1

∑Nh
l=1NTk,hl

exp(f(Tk, hl)− (En − hlMn)/Tk)
, (27)

〈ca〉 =
N∑
n=1

exp(−(En − hMn)/T )∑NT
k=1

∑Nh
l=1NTk,hl

exp(f(Tk, hl)− (En − hlMn)/Tk)
. (28)

For further details, the reader is referred to [36, 37].
We also used two other methods for free energy calculations. One is given as follows.

By substituting a(T, h) in (18) with the estimates for the free energy f̃(T, h), we obtain

P (T, h) ∝ e−f(T,h)+f̃(T,h), (29)

or

f(T, h) = f̃(T, h)− lnP (T, h) + const. (30)

Here, P (T, h) can be obtained as a histogram at each set of parameter values in a
preliminary STM simulation. Thus, this equation enables one to refine the free energy
estimates much more easily than using the reweighting methods, because no iterations
are required. This method does not work well, however, when P (Ti, hj) is too small (or

f̃(Ti, hj) is too far away from the true value) for obtaining samples at (Ti, hj), while the
reweighting techniques still work.

The other method for the free energy calculations is a Wang–Landau-like scheme [11,
12], where one subtracts a fixed constant from the free energy value being sampled, during
preliminary simulations. To be on the safe side, we did not use such data for reweighting
techniques which, strictly speaking, require equilibrium data as input. Note that this
method also works with inaccurate free energy estimates. Thus, this method works even
when the free energy estimates are far away from sufficiently accurate values.

In the present work, we first used the reweighting methods and Wang–Landau-like
scheme to obtain rough estimates of the free energy for the entire parameter space. We
then used the combination of the reweighting methods and (30) for further refinements of
the free energy.
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Figure 2. History of temperature T for the linear lattice size L = 80.

Figure 3. History of external field h for the linear lattice size L = 80.

3. Results and discussion

We first examine whether the STM simulations were carried out properly or not. Figures 2
and 3 show the time series for the temperature and external field, respectively, for L = 80.
In both plots we see block structures reflecting the first-order phase transition line at h = 0
in the Potts model (see figure 3) and the second-order phase transition at the effective Ising
transition temperature Tc(h) ≈ 1.1346 for negative external field (see figure 2). Within
these blocks, the temperature and external field did indeed realize random walks.

Figures 4 and 5 show the energy and magnetization per spin, respectively, as functions
of the number of MC sweeps. Their time evolution also exhibits random-walk-like behavior.
Note that there exist expected correlations between the temperature and energy (see
figures 2 and 4) and between the external field and magnetization (see figures 3 and 5).
The same behavior was observed in simulations with other lattice sizes (data not shown).

Figure 6 shows the history of a differently defined magnetization given by

Mmax = L2mmax ≡

 max
j=0,1,2

 L2∑
i=1

δj,σi

− L2

3

× 3

2
. (31)
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Figure 4. History of the energy per spin, E/L2, for the linear lattice size L = 80.

Figure 5. History of the magnetization per spin, M/L2, for the linear lattice size
L = 80. Recall that M/L2 = 1 corresponds to the ordered state in the 0-direction,
M/L2 = 0 to the ordered states in the 1-direction or 2-direction, and M/L2 = 1/3
to the disordered state.

This quantity takes the physically more intuitive value of 1 when the system is in one of
the three ordered phases and the value 0 for the disordered phase. Here, we see a clear
negative correlation between E and Mmax (see figures 4 and 6).

In order to compare the results with ordinary ST simulations, we also performed an ST
simulation with L = 40. The ST simulation was performed with conditions similar to those
of STM, namely, the same total number of MC sweeps, same temperature distribution,
and so on, except that here we set h = 0.

With the data obtained, we performed the WHAM calculations to obtain the DOS.
As shown in figure 7, the area sampled by STM is larger than that sampled by ST. Thus,
the STM method enables us to perform reweighting techniques over a wider range. We
recall that M is zero in the 1-direction or 2-direction ordered phases. The disordered phase
corresponds to M/L2 = 1/3.

We further closely looked into the difference in sampled area between the two methods.
Figure 8 illustrates how the sampled areas differ. The red region was sampled by the STM
method exclusively, the green region by both methods, the blue region by the ST method
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Figure 6. History of Mmax/L
2 (≡mmax), for the linear lattice size L = 80.

Figure 7. Calculated DOS obtained by WHAM with (a) ST and (b) STM data.
The linear lattice size was L = 80.

only, and the white regions by neither of them. Thus, at first sight, it seems that there
are some areas which are not particularly well sampled by the STM method and that ST
may be somehow more powerful than STM.

Figure 9 zooms in on a region where blue is dominant (mainly sampled by ST). There
are many pigments (in red and green) which both methods sampled and which even
only STM sampled. This implies that because the ST method has more samples at a
smaller number of parameter values, the part sampled is narrower but denser. However,
the representative parts should be sampled properly by STM as well, although the sample
density decreases.

To make sure that the STM method really samples the relevant areas sufficiently, we
finally performed reweighting analyses along h = 0 with data obtained by ST and STM.
Figures 10 and 11 show the specific heat C/L2 and susceptibility χ/L2, respectively, as
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Figure 8. Difference in sampled points between ST and STM. The red, green,
blue, and white regions correspond to the area sampled by only STM, by both of
them, only by ST, and by neither of them, respectively (L = 40).

Figure 9. Zoom of the central (blue) region of figure 8 with increasingly higher
resolution.

functions of T along the line h = 0. They are defined by

C ≡ 〈E
2〉 − 〈E〉2

T 2
, (32)

χ ≡ 〈M
2
max〉 − 〈Mmax〉2

T
. (33)

The red and green curves correspond to the data obtained by STM and by ST,
respectively. The error bars were obtained by the jackknife method [38]–[41]. We do not
observe pronounced differences between the two methods. Thus, we confirm that both
methods let one sample the representative parts along h = 0 and that the STM method
enables one to obtain the DOS in wider areas.

Because the STM method enables us to obtain the DOS in a wide range of sampling
space, we can calculate the two-dimensional map of any thermodynamic quantity.
Figure 12 shows the specific heat and susceptibility per spin as functions of T and h when
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Figure 10. Specific heat C/L2 as a function of T for L = 40. The inset shows the
peak region with different abscissa and ordinate.

Figure 11. Susceptibility χ/L2 as a function of T for L = 40. The inset shows
the peak region with different abscissa and ordinate.

L = 80. This implies that the phase transition temperature converges to the Ising case
value of 1.1346 as the external field becomes more and more negative. Related theoretical
work can be found in, e.g., [42].

Figure 13 shows the specific heat as a function of temperature for some values of h
and L. With positive external field, the phase transition disappears. However, because
of finite-size effects, the abnormality, as measured by the diverging behavior, persists to
some extent. With smaller external field, the diverging behavior remains for larger L. Vice
versa, for larger L, the diverging behavior disappears more rapidly. This can be interpreted
as a crossover between L and h.

Figure 14 shows the free energy per spin as a function of temperature and external
field, which was obtained by applying MBAR to the results of the production runs. Note
that the partial derivative of this free energy with respect to h gives 〈M〉/TL2, where M
is defined in (3). The shape at h = 0 suggests a jump of 〈M〉 below Tc, indicating the
existence of first-order phase transitions.
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Figure 12. (a) C/L2 and (b) χ/L2 as functions of T and h for L = 80. The solid
vertical line corresponds to T = 1.1346, which is the critical temperature of the
Ising model (in the two-state Potts model normalization).

Figure 13. Specific heat C/L2 as a function of T for L = 5 (red), 10 (green),
20 (blue), 40 (magenta), and 80 (cyan). (a) h = 0.0, (b) h = 0.005, (c) h = 0.01,
(d) h = 0.02.

Finally to study the crossover behavior at the phase transitions, we calculated
the magnetization by MBAR around the Potts critical point. The scaling form of the
magnetization m = M/L2 is given by [43]

mLβ/ν = Ψ(tLyt , hLyh), (34)

where yt = 1/ν and yh = (β + γ)/ν. According to the crossover-scaling formalism [43], if
t−yh/yth (in the Potts model t−14/9h) is small enough, then the magnetization obeys m ∼ tβ
(= t1/9), and if h−yt/yht (in the Potts model h−9/14t) is small enough (i.e., t−14/9h is large
enough), then it obeys m ∼ h1/δ (= h1/14), where t = (Tc − T )/Tc. For the Potts critical
point, figure 15(a) shows that if the finite-size effects are negligible (L6/5t � 0.1) and
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Figure 14. Free energy per spin f/L2 and its contour curves as a function of T
and h. The linear lattice size was L = 80.

Figure 15. Difference between the magnetization and its expected scaling
behaviors around the critical point for L = 80. Shown are (a) |mL2/15 −
1.2(L6/5t)1/9| where the amplitude 1.2 was obtained by fitting the magnetization
data to t1/9 and (b) |mL2/15 − (L28/15h)1/14|. In both plots, the solid line
corresponds to h = 6t14/9.

t� (h/6)9/14 (i.e., t−14/9h is small), then the critical behavior is m ∼ t1/9. Figure 15(b)
shows that if finite-size effects are negligible (L28/15h� 0.1) and t� (h/6)9/14 (i.e., t−14/9h
is large), then the critical behavior is m ∼ h1/14. Thus, figure 15 clearly shows that the
line h = 6t14/9 gives the boundary of the two scaling regimes.

Because the three-state Potts model in a negative external field is expected to behave
like the Ising model, we also investigated the crossover behavior, between the two models.
The scaling exponents of χmax for increasing L of the Potts model and the Ising model are
given by γ/ν = 26/15 and 7/4, respectively. Figure 16 shows that the exponents are so
similar that we cannot discern the difference, despite the accuracy of the measurements.

We hence also measured different quantities, which are the maximum values of
d ln〈mmax〉/dβ, d ln〈m2

max〉/dβ, d ln〈U2〉/dβ, d ln〈U4〉/dβ, and d〈mmax〉/dβ. Here, U2 =
1 − 〈m2

max〉/3〈mmax〉2 and U4 = 1 − m4
max/3〈m2

max〉2 are the Binder cumulants [44]. The
derivatives were obtained by using [45]

d ln 〈mmax〉
dβ

= 〈E〉 − 〈mmaxE〉
〈mmax〉

, (35)
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Figure 16. χmax/L
2 for three characteristic h values as functions of L.

Figure 17. d ln〈mmax〉/dβ|max for three characteristic h values as functions of L.

d ln 〈m2
max〉

dβ
= 〈E〉 − 〈m

2
maxE〉
〈m2

max〉
, (36)

d ln 〈U2〉
dβ

=
〈m2

max〉
3 〈mmax〉2

{
〈E〉 − 2

〈mmaxE〉
〈mmax〉

+
〈m2

maxE〉
〈m2

max〉

}
, (37)

d ln 〈U4〉
dβ

=
〈m4

max〉
3 〈m2

max〉
2

{
〈E〉 − 2

〈m2
maxE〉
〈m2

max〉
+
〈m4

maxE〉
〈m4

max〉

}
, (38)

d 〈mmax〉
dβ

= 〈mmax〉 〈E〉 − 〈mmaxE〉 . (39)

Figures 17–21 show our results. Note that d ln〈mmax〉/dβ|max, d ln〈m2
max〉/dβ|max,

d ln〈U2〉/dβ|max, d ln〈U4〉/dβ|max, and d〈mmax〉/dβ|max are expected to behave
asymptotically as L1/ν , L1/ν , L1/ν , L1/ν , and L(1−β)/ν , respectively, as the lattice size L
increases [41]. These critical exponents are given for the Potts model by ν = 5

6
and β = 1

9
,

so (1 − β)/ν = 16/15, and for the Ising model by ν = 1 and β = 1
8
, so (1 − β)/ν = 7/8.
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Figure 18. d ln〈m2
max〉/dβ|max for three characteristic h values as functions of L.

Figure 19. d ln〈U2〉/dβ|max for three characteristic h values as functions of L.

We observe that all quantities along h = 0 (the red curve with filled squares) follow the
Potts case and that those for negative external field (green curve with filled circles and
blue curve with filled triangles) follow the Ising case in the limit of large L. In fact, the
two curves for h = −0.5 and −1.0 converge to almost the same line as L increases. On the
other hand, the curve for h = −0.5 (green curve) shows more deviation from the scaling
behavior for small L. This can also be understood as the crossover between L and h.

4. Conclusions

In this work, we applied the simulated tempering and magnetizing (STM) method [19, 20]
to the two-dimensional three-state Potts model. During the simulations, two-dimensional
random walks in temperature and external field were realized. The random walk covered a
wide area of temperature and external field, so the STM simulations enabled us to study
a wide area of the phase diagram from a single simulation run.

Because of the method’s capability of dealing with a wider area of the sampling space
(as is seen in the DOS), we can calculate thermodynamic quantities over an enlarged
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Figure 20. d ln〈U4〉/dβ|max for three characteristic h values as functions of L.

Figure 21. d〈mmax〉/dβ|max for three characteristic h values as functions of L.

range of the parameter space. We succeeded in reproducing many typical features of the
system in the presence of an external field.

We calculated the magnetization and specific heat (and related quantities) as functions
of temperature, external field, and lattice size around the critical point by reweighting
techniques. The results allowed us to study the crossover behaviors of the phase transitions.
From the magnetization, we observed a clear crossover between the scaling behaviors with
respect to temperature and external field. From the specific heat and other quantities, the
crossover in the scaling behavior with respect to external field and lattice size was also
identified. The results all showed agreement with previous theoretical studies. Thus, this
further supports the validity of STM.

With the data of the present work, we can calculate the two-dimensional density of
states n(E,M), so we can determine the weight factor for two-dimensional multicanonical
simulations. By doing so, we can perform two-dimensional multicanonical simulations,
which will be an interesting future task.

We finally remark that the present method is useful not only for spin systems but
also for other complex systems with many degrees of freedom. Note also that because our
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method does not require one to change the energy calculations, the method should be
highly compatible with existing program packages.
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