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Abstract. We discuss the effects of open boundary conditions and boundary 
induced drift on condensation phenomena in the pair-factorized steady states 
transport process, a versatile model for stochastic transport with tunable 
nearest–neighbour interactions. Varying the specific type of the boundary 
implementation as well as the presence of a particle drift, we observe phase 
diagrams that are similar but richer compared to those of the simpler zero-
range process with open boundary conditions. Tuning our model towards zero-
range-process-like properties we are able to study boundary induced effects in 
the transition regime from zero-range interactions to short-range interactions. 
We discuss the emerging phase structure where spatially extended condensates 
can be observed at the boundaries as well as in the bulk system and compare 
it to the situation with periodic boundaries, where the dynamics leads to the 
formation of a single condensate in the bulk.
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1. Introduction

Stochastic mass transport processes such as the asymmetric simple exclusion process 
(ASEP) or the zero-range process (ZRP) proposed by Spitzer [1] are simple transport 
models for particle hopping aiming to improve the understanding of basic phenomena 
in the dynamics of particles in driven diffusive systems. Generally, these particles are 
abstract and may represent objects from the microscopic to the macroscopic scale when 
combined with appropriate dynamics. It is this relation of abstract particles and a 
multitude of different kinds of dynamics that generates manifold mappings to physical 
processes and phenomena. One such phenomenon that is of particular interest to us, 
is the formation of particle condensates. In fact, dynamics leading to steady states in 
closed, periodic systems where particles form condensates have been studied already for 
the ZRP [1–9] as well as for processes with short-range interactions [10–12]. On inho-
mogeneous structures such as a star graph or scale-free networks even the most simple 
dynamics of uniform hopping can lead to condensation at the inhomogeneities [13–15]. 
On a homogeneous structure, condensates can emerge anywhere in the system as long as 
the interaction potential falls off sufficiently fast [10]. For a general overview of stochas-
tic transport processes and condensation phenomena we refer the reader to the reviews 
by Schütz [16] and Evans and Wacław [20, 21] or the book by Schadschneider et al [17].
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While the ZRP as well as the extended models can be considered to be driven far 
from equilibrium, their steady state that leads to the condensation remains the same 
as in equilibrium. In fact, in the case of systems with periodic boundaries with par-
ticle conservation, they are constructed to have this property. This is, however, not a 
general property of transport processes, as can be seen in the exclusion model of Katz, 
Lebowitz and Spohn [18, 19] where the stationary distribution may or may not depend 
on the external field depending on the interaction parameters of the model. It is, how-
ever, also of interest to understand the changes to the condensation process when this 
steady state is broken by replacing the periodic with open boundaries through which 
particles can enter or leave the system, thereby creating a current. In general, this 
external drive and current can lead to phase separation [22]. In fact, for the ZRP, a 
specific study has been performed by Levine et al [23], were among other results phase 
separation due to the introduced boundary drive has been observed. In this paper we 
seek to extend this approach to a stochastic transport process with short-range interac-
tions that feature spatially extended condensates in its steady state. This is of interest 
to us because, in contrast to the ZRP, such an extended process is able to interact with 
the boundary due to its non-zero interaction range. As a consequence we are forced to 
discuss different types of open boundaries to grasp their effects on possible condensate 
formation and dynamic phases. Also, instead of using a simpler transport process with 
short-range interactions such as proposed by Evans et al [10], we decided to employ a 
tunable model [11, 12] that can be parameterized to resemble the condensation proper-
ties of the ZRP as well as extended condensates such as those considered in [10]. This 
allows us to compare properties of this model to those of the ZRP discussed in [23] 
before going into detail with different types of boundaries. Because the short-range 
interactions in that class of transport processes are strongly related to the fact that the 
steady state of a closed system factorizes over pairs of adjacent sites, we will sometimes 
use the term pair-factorized steady states (PFSS) model, although with open boundaries 
a steady state does not necessarily exist. In a previous short note [24], we have already 
briefly discussed emerging phases and effects caused by the driven open boundaries. 
We did, however, consider only one specific type of open boundary and were severely 
limited by the employed numerical method. In a recent short communication [25], we 
sketched an improved simulation setup and discussed for this special case the phase 
diagram and transition dynamics between the phases in more detail. In particular, we 
pointed out that not only the details but, in fact, the very existence of phases depends 
on the choice of interaction with the boundary. We would, therefore, like to complete 
the picture with that versatile numerical approach and an emphasis on the point that 
the specific interaction details at the boundaries have significant impact on the sys-
tem’s phase diagram.

The remainder of this paper is organized as follows. In the next section we will 
briefly introduce the zero-range process as well as the tunable short-range interaction 
stochastic transport model and define the considered types of open boundaries. In the 
third section we describe the used numerical methods and motivate our choice for a 
kinetic Monte Carlo algorithm. In the fourth section we will discuss our results, first 
making a comparison with the zero-range process and then discussing emerging phases 
and properties in detail with short-range interactions turned on. Finally, we summarize 
our findings in the fifth section.
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2. Stochastic transport processes with open boundaries

The basic particle-hopping stochastic transport process consists of a one-dimensional 
lattice with L sites and a gas of M indistinguishable particles. Each site i of the lat-

tice can be occupied by any number = …m M0, ,i  of particles, where = ∑ =M mi
L

i1  is 

the total number of particles. These particles can leave their sites i with a rate ui and 
then jump to one of the adjacent sites. A target site is randomly selected among the 
neighbours with respect to the strength of asymmetric hopping given by the parameters 
p and q so that the actual rates of particles hopping to the sites right (i  +  1) and left 
(i  −  1) of the departure site become pui and qui, respectively, as indicated in figure 1. At 
the boundaries, particles enter or leave the system. We define exchange rate parameters 
p q,in in and p q,out out to control particle currents into and out of the system. The exact 
mechanisms of injection and removal of particles at the boundaries are discussed further 
below where we define the specific properties and implementations of the boundaries.

2.1. Zero-range process

The hopping rate function ui determines the dynamics of the particles in the system. 
For zero-range processes it must depend only on the occupation number of the depar-
ture site which results in a local-only interaction term. An example for a specific ZRP, 
that is of particular interest in the context of this work, is the condensation model with 
hopping rates

( ) = +u m b m1 / , (1)

where a single-site particle condensate spontaneously emerges for b  >  2 in the steady 
state of the periodic system when the particle density exceeds the critical density 

( )ρ = −b1/ 2crit,ZRP  [26].

2.2. PFSS process

In this paper, we consider a more generic model where the hopping rate function 
depends also on the number of particles on the adjacent sites as proposed by Evans 
et al [10]. With an appropriate choice of the hopping rate function, spatially extended 
condensates emerge in the periodic system due to the nearest–neighbour interaction. 
One generic choice of the hopping rate function of this process reads

( )
( )

( )⟨ ⟩ ⟨ ⟩

∏ ∏= =
−

u u m m
g m m

g m m
,

1,

,
,i

i j

i j

i j

i j

i j, ,
 (2)

making the interaction potentials between adjacent sites ⟨ ⟩i j,  sites isotropic for symmet-
ric weight functions g(m, n)  =  g(n, m). By construction this results in a pair- factorized 
steady state probability distribution of the form

({ }) ( )
⟨ ⟩

∏ δ=
∑

−

=

P m Z g m m, ,M L M L
i j

i j
m M

, ,
1

, ,
i

L

i

1

 (3)
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as long as the number of particles is conserved. Here {m} gives a complete state, ZM,L 
normalizes the steady state similar to the partition function in an equilibrium system 
and the Kronecker symbol fixes the particle number.

To be able to compare to the work on ZRP with open boundaries [23] as well as to 
consider a process with effective long-range interactions, we use the hopping rate func-
tion generated by the tunable interaction terms

( ) ( )
⎡
⎣⎢

⎤
⎦⎥

= − − − +β γ γg m n m n m n, exp
1

2
 (4)

proposed by Wacław et al [11, 12]. The weights g(m, n) consist of a zero-range interac-
tion term tuned by the parameter γ and a nearest–neighbour interaction term tuned 
by the parameter β. The steady state of this process features the formation of particle 
condensates of various properties depending on the values of these parameters. A criti-
cal density and thus condensation phenomena exists for ⩽ ⩽γ0 1. The condensate then 
assumes one out of three qualitatively distinct forms that strongly influences the mod-
el’s dynamics: a single-site peak for β γ< , an extended rectangular shape for γ β< < 1 
or a smooth parabolic shape for β> 1 [11, 12, 27]. Most important to our purpose is the 
ability to reproduce single-site condensates similar to those observed for the ZRP with 
hopping rates (1) for β γ<  and ⩽γ 1, as well as spatially extended smooth condensates 
for β> 1 and ⩽γ 1 similar to those observed in [10].

2.3. Open boundaries: mechanisms of particle exchange and external drive

For the zero-range process the implementation of open boundaries is straightforward 
because there is no interaction other than particle exchange. For the considered model 
(2)–(4), on the other hand, the type of interaction at the boundary sites i  =  1 and i  =  L 
has to be chosen explicitly due to its non-zero interaction range. We will consider and 
discuss two main types of implementations.

Our first approach is to interpret the system as isolated and discard the interaction 
terms of the bonds that cross the boundary as follows from the factorization of weights 
for arbitrary graphs in equation (2). In the following, we will refer to this type as loose 
boundaries. As a second approach we consider the system to be embedded in a larger 
system with a separation that hinders particle movement like a membrane. Here, we 
do not discard the interaction term for the bond that crosses the boundary as it reflects 

Figure 1. Schematic representation of the dynamics of a particle hopping process 
on a one-dimensional lattice with L sites, hopping rate ui and drift parameters p, 
q. At the boundary sites, the drift parameters towards the boundary are replaced 
with the removal parameters pout and qout as indicated. Likewise, the rate of particle 
injection at the boundaries is given by the parameters pin and qin, respectively.



Emergence of dynamic phases in the presence of different kinds of open boundaries

6doi:10.1088/1742-5468/2016/01/013207

J
. S

ta
t. M

e
c
h
. (2

0
1
6

) 0
1
3
2
0
7

the interaction with some mean-field occupation outside of the considered system by 
setting the external particle occupation to a constant value ∞m . In contrast to the first 
approach, we refer to this type with the term fixed boundaries. This results in the hop-
ping rates

( ) ( )    

( ) ( ) ( ) ( )    

⎧
⎨
⎩

=
−

∞ − ∞

u u
u m m u m m loose

u m m u m m u m m u m m fixed
,

, , , for boundaries,

, , , , , for boundaries.
L

L L

L L L
1

1 2 1

1 2 1 1
 

(5)

Additionally we consider two types of particle removal at the boundary sites that 
differ in the way the hopping rate determines the rate of particles leaving through 
the boundary. Intuitively, the rates of removal are u q1 out at the first and u pL out at 
the last site. This mechanism is used for the ZRP in [23] as well as in our own prior 
study [24]. Because normal hopping is involved for particles leaving the system, 
we use the term hopping removal to refer to this. Here, we also consider a second 
removal mechanism for particles that is symmetric to the mechanism of particles 
entering the system that occurs at a constant rate. For the latter mechanism we use 
the term constant removal. Because at the boundary sites the rate of particles leav-

ing the system is decoupled from the hopping rate u1 and uL, we replace them with 

u*
1  and u*

L and define

⎧
⎨
⎩

=u u
u u hopping

constant
*, *

, for removal,

1, 1 for removal,L
L

1
1    

   
 (6)

so that the removal rates become u q*1 out for the first and u p*L out for the last site. 

Rates of particles moving towards the bulk system remain unchanged (u1p and uLq, 
respectively).

In the following, we will consider only exchange rates that in general reflect the exter-
nal drive of the system. That is, for symmetric dynamics (p  =  q  =  1/2) the exchange 
parameters are identical at both boundaries ( = =p q p q,in in out out), while for totally 
asymmetric hopping (p  =  1, q  =  0) the exchange is restricted to that spatial direction 
as well ( = =q q 0in out ).

3. Numerical simulation methods

The usual approach to simulating the dynamics of a stochastic transport process as a 
Markov chain is as follows: first propose a random departure site i, second compute the 
acceptance probability for the hop from the hopping rate ui and third decide whether a 
particle hops to a randomly choosen neighbour. To compute an acceptance probability 
it is required, however, that the hopping rate function can be normalized for any per-
missible local combination of occupation numbers. This normalization basically results 
in a change of the simulation time scale by the normalization factor.

While this is possible both for hopping rate functions with an upper bound, such as 
equation (1) and those proposed by Evans et al [10], or when a maximum rate is known 
due to conservation of the total number of particles ( ) =M t const, it becomes inefficient 
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for increasingly separated intrinsic time scales of slow and fast events and thus results 
in a large ratio of rejected updates.

The hopping rates of the model considered here, however, do not have an upper 
bound in the regime β> 1. In fact, the required normalization constant would grow 
roughly as the square of the number of particles in the system, so that the approach 
to directly simulate the dynamics as sketched above cannot be used here. To work 
around this limitation as well as to improve efficiency in the presence of fast and slow 
events we employ a rejection-free kinetic Monte Carlo (KMC) algorithm introduced 
as the direct method by Gillespie [28, 29] for the simulation of coupled rate equa-
tions. While the method was designed for small chemical systems with few reactions, 
it can be made fit for efficient simulation of larger systems with some optimizations. 
The idea of the method is similar to those of other rejection-free KMC methods such 
as the n-fold way algorithm [30, 31] in that an update consists of selecting an event 
according to its specific rate Γk relative to the total rate Γ = ∑ Γk k of all possible 
events, execute it and update the system time → +∆t t t, where ∆t is the waiting 
time to generate this event. Finally the list of possible events and their assigned rates 
Γk are updated to reflect the new state of the system. In the direct method, the event 

k is picked by the relation ⩽∑ Γ Γ <∑ Γ=
−

=xi
k

i i
k

i1
1

1 1  and the exponentially distributed 

time increment ∆t is determined as ( )∆ = − Γt xln /2  using two uniformly distributed 

random numbers [ )∈x x, 0, 11 2 . For our model these events are all the particle trans-
fers between adjacent sites ⟨ ⟩i j,  with their rates u p u q,i i  for 1  <  i  <  L, u1p, uLq and 
the removal and injection of particles at the boundaries with rates u q u p, L1 out out and 
p q,in in, respectively.

The search for the appropriate event is easily improved by using a binary search 
tree [32] combined with multiple levels of search, where events that originate from the 
same site are grouped in the first search level, and then resolving to one specific event 
for that site. The step to update the rates of events is efficiently implemented by taking 
into account which events’ rates actually need updating based on which neighbouring 
sites were involved in the last step of the Markov chain. This is basically an applica-
tion of the proposed update principle of the next-reaction method [33] which involves 
building dependency graphs between events and rate recalculation to achieve this. As 
an additional advantage to simpler methods, the time scale of simulations becomes 
equivalent to the physical time scale, thus making it obsolete to define artificial time 
scales in terms of sweeps or local updates.

Because of the continuous time simulation method, we cannot compare CPU time 
per full update, but per unit physical time of the simulated system. For a lattice size of 
L  =  256 sites, the simple simulation for the ZRP takes 31 µs, somewhat faster than the 
KMC method with 37 µs for one unit of model time. In a situation with slow and fast 
events, however, the simple method becomes slower proportional to the ratio of large 
to small rates, while the performance of the KMC method does not suffer from that. In 
our simulations the typical inprovement factor with only ≈M 100 would be around 50 
but growing roughly with the square of the total particle number.

To compute the observables for the phase diagrams, we simulated at least 25 rep-
licas for each point ( )p p,in out , and between 50 and 100 for points near the transition 
lines.



Emergence of dynamic phases in the presence of different kinds of open boundaries

8doi:10.1088/1742-5468/2016/01/013207

J
. S

ta
t. M

e
c
h
. (2

0
1
6

) 0
1
3
2
0
7

4. Results

4.1. Open boundary effects in the zero-range process like regime

We start the discussion of boundary drive induced dynamical phases with a look at 
the zero-range process with hopping rates (1). Most notably, for b  >  2, it features spon-
taneous symmetry breaking and the formation of a single-site particle condensate in 
its steady state for periodic boundaries. That is, a single site contains a finite fraction 

ρ ρ−1 /crit  of all particles, where ( )ρ = −b1/ 2crit  is the critical density that is assumed 

on average in the rest of the system. Effects of open, driven boundaries on this model 
have been studied and discussed by Levine et al [23]. For the ZRP, we will use the 

parameter b  =  5 that results in a critical density of ρ = 1/3crit . In the following we 

tune the coupling parameters β and γ of our model equation (4) to a regime where the 
condensation process with periodic boundary conditions has similar properties in the 
steady state as the ZRP and compare some of the properties to those found for the 
ZRP. With the choice of parameters β = 0.4 and γ = 0.6 in equation (4) a single-site 
condensate and critical density of ρ = ±0.302 0.006crit  similar to that of the ZRP is 
expected for periodic boundary conditions [27]. We use loose boundaries with hopping 
removal, the latter of which is the same as that used for the ZRP in [23].

Two major phases are expected for the ZRP with open boundaries [23]. First, a 
steady state with a thin homogenous particle gas, and second, a phase with aggregate 
condensates formed at one or both boundaries that act as particle reservoirs and can 
influence the bulk system in between. To distinguish between these phases we measure 
time series of the total number of particles M(t) and the bulk density ρbulk. It is useful 
to determine a scaling exponent α for M(t) assuming it roughly follows a power-law 

( )∼ αM t t  to find the two phases. The bulk density is estimated as the average particle 
density in the bulk of the system

 ∑ρ =
+ −

> ∀ < >

=
i i

m m i i i i
1

1
, where 0 and ,

i i

i

i ibulk
bl bf

bf bl

bf

bl

 (7)

that is, the region from the first (ibf) to the last (ibl) unoccupied site in the system.
From the plots of the scaling exponent α given in figure 2 as well as the bulk den-

sity ρbulk given in figure 3 we can clearly identify the same phases for this regime of 
our tunable model (4) as of the ZRP. In both models there is a particle gas phase (G) 
with a low stationary particle density ρ ρ≡ bulk that increases towards the transition 
line to the aggregate condensate phase (A). There, large numbers of particles aggre-
gate at the first and/or last sites of the system. While the latter phase is homogeneous 
in systems with symmetric hopping (p  =  q  =  1/2), sub-phases Ain, Aout and A, where 
the aggregate condensate forms at the first site i  =  1, the last site i  =  L, or both, can 
be identified for asymmetric hopping ( ≠p q), see figures 2(b), (d) and 3(b), (d). The 
aggregate condensates at the boundary sites act as reservoirs for particles entering (Ain) 
and leaving (Aout) the system, effectively regulating particle flux through these sites. 
This can be seen well for totally asymmetric hopping, where in Ain the bulk density 

assumes the value ρ ρ= ± <0.15 0.04bulk crit in the tunable model and ρ ρ≈ = 1/3bulk crit  

for the ZRP. In Aout the reservoir cannot act on the bulk system, so that the bulk sys-
tem is still a particle gas. For symmetric hopping, however, both phases combine and 
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aggregate condensates at both boundaries act on the bulk system, increasing its density 
to ρ = ±0.20 0.04bulk  for the tunable model, still below criticality. The bulk system of 
the ZRP remains critical and long-lived bulk condensates sometimes emerge, which 
results in large values of the bulk density as shown in figure 3(c).

To understand the formation of a condensate at the influx boundary for totally 
asymmetric hopping a simple biased random walk in the occupation number of the first 
site can be considered [23]. Because the drift ( )− +p b m1 /in  of the walker becomes 
positive for influx rates >p 1in  and sufficiently high occupation of the first site, a stable 
condensate can emerge at that site. In fact, we observe a power-law dependence of the 
waiting time on the influx rate pin until the Ain-condensate forms after a quench to the 
aggregate condensate phase. This corresponds to the first-passage time of that random 
walk process to a sufficiently high occupation number where it has positive drift. For 
symmetric hopping, the argument is similar but results in a diagonal transition line to 
the aggregate condensate phases for ⩾p pin out because particles may leave directly after 
entering. For a more detailed discussion of this argument, also with respect to partially 
asymmetric hopping for the ZRP, we refer to the original work of Levine et al [23].

The same argument can be applied to our model (2)–(4) in the regime β< 1, when 
the weak short-range interactions are negligible. The resulting hopping rate at the first 
site becomes

( ( ) )
⎡
⎣⎢

⎤
⎦⎥

= − − +| | −| − |γ γ β βu m m m mexp
1

2
1 1 ,1 1 1 1 1 (8)

approximated by

⎡
⎣⎢

⎤
⎦⎥

γ β= +
γ β− −u m mexp

1

2
1 1

1
1

1
 (9)

for large values of m1. This in turn approaches the value 1 for large occupation numbers m1  
as long as β< 1, that is for the entire single-site and rectangular condensate regimes of 
the model. The drift of the first site’s occupation becomes positive for the same value 
of ⩾p 1in  and yields therefore the same transition line as for the ZRP.

The formation of the aggregate condensate at the outflux boundary at site L is eas-
ily understood in the totally asymmetric case with a similar argument as above. For 
<p 1in  all particles eventually reach the last site L. If the removal rate is smaller than 

Figure 2. Scaling parameter α of the total number of particles in the ((a), (b)) 
ZRP-like regime for β γ= =0.4, 0.6 and the ((c), (d)) ZRP for b  =  5. Low values 
of α≈ 0 indicate a stable, fluctuating total number of particles while α = 1 shows 
linear growth in time.
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the rate of particles arriving at the site <p pout in, the drift of the occupation number 
mL becomes positive and an aggregate condensate emerges.

4.2. Open boundary effects in the extended condensate regime

The goal of this section is to identify the qualitative phase structure of the described 
transport model depending on the strengths of particle exchange at the boundaries with 
respect to the considered types of boundary conditions. Within this section, the interac-
tion parameters of the tunable transport process equation (4) are fixed at β = 1.2 and 
γ = 0.6, setting it into the regime of smooth parabolic condensate shapes of the periodic 
system [27]. The critical density for these parameters in a comparable system with 
( = ≈L M L256, ) is ρ ≈ 0.3crit  due to finite-size effects and decreases to ±0.125 0.009 in 
the limit of large systems.

Based on the phase structure of the ZRP given in [23] and numerically reproduced 
for the ZRP and a short-range interaction transport model with smooth condensates in 
this and our own previous work [24] we expect to some extent a similar phase diagram. 
Therefore, to identify the phases, we continue to use the time series of the total num-
ber of particles M(t), its scaling exponent α and the bulk system particle density ρbulk 
introduced in the previous section. An example of the total mass versus time ( ) ∼ αM t t  
for loose boundaries and constant removal along with numerically determined values 
of α is given in figure 4. Additionally to these quantities we record the microstates of 
the systems at regular intervals, so that we can compute other quantities such as the 
occupation number profiles that we use later.

As shown in figure 5, the scaling exponent α identifies regions with distinct values 
of α≈ 0 and α≈ 1, that is, stationary as well as linear growing total numbers of par-
ticles M(t), respectively. For constant particle removal, additionally the value α≈ 0.6 
is observed on the transition line between these former regions. Together with the data 
for the bulk density shown in figure 6 we are able to identify candidates for gas phases 
with low values of α = 0 and ρbulk, and aggregate condensate phases where α = 1 and 
low values of ρbulk are observed. Additionally, a phase with stationary particle count 
but relatively large bulk density is found in between those for constant removal and 
symmetric hopping. To exactly identify the type of phase a system is in at any given 

Figure 3. Bulk density ρbulk in the ((a), (b)) ZRP-like regime for β γ= =0.4, 0.6 

and the ((c), (d)) ZRP for b  =  5. The critical densities for the PFSS and ZRP are 

ρ = ±0.302 0.006crit,PFSS  and ρ = 1/3crit,ZRP , respectively. Except for the non-criticality 
of the bulk system, the dynamical phase diagram of the tunable system is to a high 
degree similar to that of the ZRP.
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parameterization ( )p p,in out  we use graphical representations of the individual systems’ 
evolution of microstates over time such as shown in figure 7 and averaged occupa-
tion number profiles computed from many individual trajectories shown in figure 8. 
Combining this information we are fully set up to identify the regions in the phase 
diagrams and discuss their properties in the following sections.

4.2.1. Particle gas phase (G): For the considered types of interactions at the bound-
aries, a particle gas phase (G) as observed for the ZRP and ZRP-like regime of the 
tunable model exists. Likewise it features a thin gas of particles filling the complete 
system. It is observed for small enough values of influx rates pin and large enough 
outflux rates for symmetric hopping pout, so that particles can directly enter and leave 
the bulk system. In the gas phase the system can be thought of as being part of a larger 
periodic system. The stationary particle density ρ ρ= bulk (where α = 0 as shown in 
figure 5) increases with stronger drive at the boundaries towards the critical density of 
the steady state system as shown in figure 6. For the small system sizes we considered 
to obtain most of our data, the critical density is significantly influenced by finite-size 
effects. That is, for a small total number of particles as observed in the gas phase, the 
critical density ρ ≈ 0.3crit , where condensation first occurs, is considerably larger than 
the large system limit ρ = ±0.125 0.009crit  which is approached with increasing total 
particle number as shown in figure 9(a) for the ZRP and ZRP-like model and figure 9(b) 
for the extended condensate regime of the short-range model with β γ= =1.2, 0.6. 
Note that the observed bulk density ρbulk for the smaller systems is above the asymp-
totic value of ρcrit, but still below ρcrit of the finite system as it should be. The values 
for the critical density given in figure 9(a) were determined as the background density 
of a periodic system with overall particle density significantly above the condensation 
threshold. For a very similar ZRP with hopping rates ( ) = + γu m b m1 / , such finite-size 
effects have already been observed [34, 35].

Figure 4. Average total number of particles ( )∼ αM t t  for loose boundaries with 
constant removal of particles and symmetric dynamics ( = =p q p q,in in out out) 
determined from 25 replicas. There are four distinct groups of curves: linear growth 
of M(t) for >p pin out, approximate square root growth for =p pin out and two groups 
with stationary particle numbers, both for <p pin out. The straight grey lines indicate 
the different observed types of scaling. The scaling parameter α as determined 
from the average slope in the log–log-plot in the interval ⩽ ⩽t10 107 8 is given right 
to the respective key symbol.
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4.2.2. Aggregate condensate phases (A): For sufficiently large influx rates pin, particles 
tend to become adsorbed at the boundary and form aggregate condensates. This is 
observed for any of the boundary types. As in the ZRP and the ZRP-like regime, this 
phase actually consists of three regions with aggregate condensates at the influx bound-
ary, the outflux boundary and at both boundaries that exist individually for totally 
asymmetric hopping and mix to a single uniform region for symmetric hopping.

An example time series of an inbound aggregate condensate absorbing entering 
particles is shown in figure 7(b). The bulk density ρbulk as observed in figure 6 is consis-
tently below the asymptotic value of the critical density as determined in figure 9(b). 
The aggregate condensates show individual shapes depending on whether they absorb 
inbound or outbound particles as well as on the type of boundary (loose, fixed) and 
particle removal (hopping, constant). The qualitative shape of inbound aggregate con-
densates Ain (figures 8(b), (d), (f) and (h)) closely resembles the steady state condensate 
shape of the model with periodic boundaries. The shape of the outbound condensate Aout 
(figures 8(f) and (h)) has a relatively steep increase of occupation numbers towards the 
boundaries but becomes almost flat when approaching the transition to A with increas-
ing influx pin. In this transition zone (hatched area in phase diagrams of figures 6(b), (f) 
and (h)) the aggregate condensates show significantly increased widths with respect to 
mass, so that merging of both aggregate condensates is observed very early compared 
to the region A. As a low density bulk cannot exist, these transition regions are dotted 
in the phase diagrams of figure 6.

The difference in condensate shapes caused by the boundary types can be seen by 
comparing the respective profiles row by row in figure 8 and in fact is visible also in the 

Figure 5. Average scaling exponent α of the total number of particles in the 
system and phase boundaries for the various types of boundary conditions. The 
boundary type is given by combination of the labels on the left and top margins, 
e.g. (f) loose boundaries with constant removal and totally asymmetric dynamics 
( = = = =p q q q1, 0in out ). The additional spanning condensate (SC) phase, which 
features a single stationary bulk condensate of maximal width, as well as the 
spanning fluid (SF) phase, where the system absorbs new particles, in panels (e) 
and (g) will be discussed further below in the text.
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Figure 6. Particle density ρbulk in the bulk system for given boundary drives 
and the four considered types of open boundaries. The plot values are cut off at 
ρ = 0.25bulk  to retain readability for the system with constant particle removal, 
where due to the large bulk condensate the density is increased by orders of 
magnitude. In the dotted regions, the bulk density remains undetermined as the 
bulk condensate has been in contact with the system boundaries in all simulated 
replicas. The hatched region in panels (b), (f) and (h) marks a transition region 
between the Aout and A phases. The individual plots for each boundary type are 
labeled as in figure 5.

Figure 7. Example time series: (a) Gas phase (G, loose/hopping, p  =  q  =  1/2, 
= =p p1.25, 1in out ), (b) boundary aggregate condensate (Ain, fixed/hopping, 
= = = =p q p p1, 0, 2in out ), (c) spanning bulk condensate (SC, loose/constant, 
= = =p q p p, 1.25, 1.5in out ), (d) intermediate spanning fluid phase (SF, loose/

constant, = = =p q p p, 2in out ).
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large bulk condensate phase where it approaches the boundary as discussed below. For 
loose boundaries, the profile starts and ends at high occupation numbers with zero slope 
at the boundary. Since there is no interaction beyond the boundary, its shape is very 
close to one half of a steady state shape. With fixed boundaries, the condensate shape is 
forced to lower occupation numbers towards the boundaries by the interaction term with 
the mean-field occupation =∞m 0. Also, the maximum occupation of the condensates 

Figure 8. Average occupation number profiles mi at simulation time t  =  108 for 
the considered types of boundary conditions. Plot symbols refer to influx rates, 
colours to outflux. The boundary types are from top ((a), (b)) loose with hopping 
removal, ((c), (d)) fixed with hopping removal, ((e), (f)) loose with constant removal 
and ((g), (h)) fixed with constant removal. The left-hand side plots represent results 
for symmetric dynamics ( = = = =p q p q p q1/2, ,in in out out), the right-hand side 
results for totally asymmetric dynamics ( = = = =p q q q1, 0in out ). To improve 
readability, not all points are plotted as symbols. To compute these profiles, 25–40 
trajectories were used.
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becomes lower which leads to increased condensate widths because the total mass of the 
condensates is comparably independent of loose or fixed boundaries. The mechanism of 
particle removal at the boundaries seems to affect the aggregate condensates only to 
the extent that their rates of growth are changed. Constant removal lets more particles 
escape the system and therefore results in much smaller aggregate condensates.

To estimate the slope and position of the transition line to the phase A, we perform 
quenches of a large number of replicas of systems to several values of the influx rate 
>p pin in,crit beyond the transition line, where pin,crit is the critical influx rate for the 

given parameterization. For any value of the ‘depth’ −p pin in,crit of the quench into the 
phase we then measure at several times the transition ratio of the gas phase

( → ) ( ( ) )∑τ = −

=

P
N

H M t M
1

,
i

N

trans G A

1

thresh (10)

where H(x) is the Heaviside function, N is the number of replicas for a given value of 
pin and ρ=M a Lthresh crit  is a threshold mass (with a  >  1) to detect the transition to the 
aggregate condensate phase. This transition ratio is related to the survival probability 
of the gas phase as ( ) ( )τ τ= −P P1surv trans . The determined values for loose boundaries 
and hopping removal are given in figure 10(a). The power-law scaling of the transition 
time becomes evident when looking at a fixed transition ratio ≈P 0.5trans  in figure 10(a): 
approximately equidistant increases of the depth of quench halve the mean waiting 
time to reach that transition ratio. This is illustrated in figure 10(b), which shows the 
scaling of the depth of quench versus the waiting time for transition of 1/2 of the rep-
licas. The values determined for this scaling relation

τ− ∝
κ−p pin in,crit 1/2 (11)

Figure 9. Finite-size effects of the critical density for low to high overall density 
in a closed periodic system of different sizes of L  =  256, 512, 1024 and 2048 sites 
for (a) the ZRP and the effectively ZRP-like process with with β γ= =0.4, 0.6 
and (b) short-range interactions β γ= =1.2, 0.6. For sufficiently large particle 
numbers M beyond the visible local maxima, condensates emerge and the bulk 
density ρbulk becomes the critical density ρcrit. Points represent data obtained from 
simulation of the steady state (108 Monte Carlo sweeps), lines show the fitted 

finite-size scaling law ρ ρ= + −aM b
bulk crit  with ≈b 0.40, where the actual critical 

density ρ = ±0.125 0.009crit  is approached for increasing system size L and particle 
number M.
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near the transition line as well as the critical influx rates pin,crit are given in table 1. 
Additionally to the considered tunable model we also considered the ZRP to check our 
methods. As for the PFSS, we considered the waiting time until a condensate attached 
to the influx boundary neglecting formation of droplets in the bulk system. We only 
rarely observed the case were a droplet formed away from the boundary and grew to 
become the aggregate condensate. We did not observe the formation of stable con-
densates in the bulk. We would like to suggest that the situation for bulk condensate 
formation here is indeed different to that of the ZRP with periodic boundaries where 
coarsening sets in immediately (see [4]). The phase transition could appear, when a 
droplet in the bulk grows fast enough to become immobile and attach to the boundary 
instead of diffusing or leaving the system. From our observations, the aggregate con-
densates in fact form at the boundary.

Using these observations of the scaling of transition times to the aggregate conden-
sate phase, we reproduced the value of the critical influx rate =p 1in,crit  for the ZRP 
(see [23]) as well as determined the scaling exponent κ, see table 1.

We would also like to point out that the exponents observed for the scaling relation 
of the ‘depth’ of quench with the transition time are within their statistical errors iden-
tical (κ≈ ±0.22 0.02), although different models (tunable PFSS and ZRP), couplings 
(fixed and loose) or interaction at the boundary (hopping and constant removal) are 
considered. The physical meaning of this scaling exponent for a quench from the gas to 
the aggregate condensate phase is the connection of the ‘depth’ of the quench into the 
new phase to the time it takes until it manifests in the system (or the survival time of 
the old phase). The value of the scaling exponents here hints at a universality of this 
transition. Possibly related to this is the global persistence scaling exponent θ, which 

describes the distribution of survival times ( )τ τ∼ θ−P  of the old phase after a quench to 
a critical point [36–38] in non-equilibrium systems. However, we would like to postpone 
this interesting question to future work as we could not yet address it properly.

The nature of the aggregate condensate phase is different to the regime with negli-
gible short-range interactions (e.g. β γ= =0.4, 0.6), however. This becomes clear when 
looking at the argument of the finite biased random walk of the occupation of the 
boundary sites. The hopping rate at the first site with an unoccupied neighbour does 
not decrease or even approach a stationary value when the occupation number m1 
increases so that a single site aggregate condensate cannot form. With a neighbour of 
similar occupation, however, the hopping rate u1 has a local minimum for a non-zero 
occupation number, so that for this configuration of the first sites there is a positive 
drift of the occupation number in the random walk argument. Due to this interac-
tion with the sites in the system, a spatially extended condensate aggregates at the 
boundary.

4.2.3. Spanning condensate phase (SC): With symmetric hopping and constant par-
ticle removal, an additional phase featuring a single large condensate emerges interme-
diate between the gas and aggregate condensate phases. The condensate spans the bulk 
of the system almost approaching the boundaries. As in the gas phase, the total number 
of particles M(t) and therefore the condensate mass is stationary. This is already vis-
ible from the high value for the stationary total number of particles given in figure 4 
for rates ( ) ( )=p p, 1.0, 1.5in out  and (1.5, 2.0). An example time series leading to such 
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a spanning bulk condensate is shown in figure 7(c). The resulting average occupation 
profile for large times is shown in figures 8(e) and (g). There it is visible that towards 
the phase boundary to the aggregate condensate phase the bulk condensate starts to 
touch the boundary sites. This becomes clear in figures 6(e) and (g) where the dotted 
region indicates that the measurement of the bulk density as defined in equation (7) 
cannot be achieved because the bulk does not exist.

To understand why this additional phase occurs with the constant removal mech-
anism, we suggest that for single particles at the boundary as it occurs in the gas phase, 
the removal rate is much lower than with the hopping removal mechanism. With asym-
metric hopping this leads to emergence of an outward boundary aggregate condensate 
(Aout) as evident from figures 6(f) and (h). For symmetric hopping, however, this leads 
to an increase of the bulk density above the critical density and thus the formation of a 
bulk condensate. This condensate then absorbs particles until its stable maximum size 
is reached. When the particle influx rate pin becomes large enough to create aggregate 
condensates, the bulk condensate connects to the boundaries resulting in a flat occu-
pation profile. We mark this transition with a zig–zag line denoted as spanning fluid 

Figure 10. (a) Ratio of replicas with an emerged aggregate condensate after a 
waiting time →τG A after a quench to the aggregate condensate phase (10) for 
influx rate values of < <p1.4 1.6in  and constant outflux rate =p 1.5out  for totally 
asymmetric hopping. For this plot, from N  =  200 up to 800 replicas per influx 
value were used with system size L  =  256. Larger systems give qualitatively the 
same result. (b) Log–log plot of the excess influx rate −p pin in,crit versus the half-
value waiting time τ1/2, where half of the replicas have developed an aggregate 
condensate. Symbols represent numerical data determined from simulations of 
N  =  200 system replicas of size L  =  256, lines show the fitted scaling law (11).

Table 1. Numerically determined values for the scaling relation (11) of the quench 
depth −p pin in,crit versus the waiting time τ1/2 to transition for 1/2 of replicas.

Scaling exponent κ Critical influx rate pin,crit

β γ= =1.2, 0.6, fixed ±0.210 0.064  ±1.426 0.018

β γ= =1.2, 0.6, loose ±0.200 0.027  ±1.459 0.013

β γ= =0.4, 0.6, loose ±0.233 0.031 ±1.0337 0.0038

ZRP, b  =  5 ±0.218 0.014 ±1.0055 0.0024

Note: These values are determined for totally asymmetric hopping and fixed outflux rate 
=p 1.5out , where the critical influx rate does not depend on pout.
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(SF) phase in figures 5 and 6. The total number of particles in this transitionary state 
grows roughly with α≈ 0.6 as shown in figures 4 and 5.

5. Conclusion

We systematically studied the effects of open boundaries and external drive in a sto-
chastic transport process with tunable short-range interactions [11, 12] far from equilib-
rium. To do so in a meaningful and systematic way we proposed four different boundary 
types distinguished by the type of interaction and the mechanism of particle removal 
at the boundary. The interaction at loose or fixed boundaries reflects the non-existence 
or existence of an interaction term with a mean-field occupation across the boundary 
site. For leaving particles, additional to hopping removal, we propose constant removal 
for reasons of the symmetry of particle exchange. We considered the four types of open 
boundaries generated by combinations of these properties and determined the respec-
tive phase diagrams for both symmetric and totally asymmetric hopping dynamics.

We successfully applied the direct KMC technique, a continous-time Monte Carlo 
method to the system to control the unbounded values of the hopping rate of the 
chosen dynamics for β> 1 where in the steady state of the closed (periodic) system 
extended condensates of smooth parabolic shape form. This, however, also mitigates 
the need to artificially formulate update sweeps that coordinate regular particle hops 
with particle injections and removals because all events can be treated equally only 
according to their rates leading to a uniform time scale.

For negligible strength of the short-range interaction (β γ< ) we found a phase 
diagram that is essentially equivalent to that of the ZRP condensation model (1) as 
discussed in [23]. A homogeneous particle gas phase and an aggregate condensate phase 
make up the phase diagram. The transition mechanism between these can be under-
stood the same way as for the ZRP.

When the short-range interactions become important (β> 1) we find an enriched 
phase structure. The particle gas phase is identical to that in the prior models. In the 
aggregate condensate phases, however, spatially extended condensates emerge at the 
boundary sites with envelope shapes that adapt to the predominant flux of particles 
in or out of the system in case of asymmetric dynamics. The interaction at loose or 
fixed boundaries, while not changing the phase structure qualitatively, does have a 
significant effect on the transition lines between phases as well as the properties in the 
aggregate condensate phases. In the case of fixed boundaries, this is very obvious in the 
deformation of the aggregate condensates at the boundary sites. With the constant rate 
particle removal mechanism, however, we observed the emergence of a new intermedi-
ate phase featuring a dominant bulk condensate between the particle gas and aggregate 
condensate phases. To obtain a precise value for the critical influx rate that separates 
phases G and Ain for totally asymmetric hopping, we analyzed survival times of the gas 
state for different quenches to Ain. An interesting observation in this analysis was the 
identity of the scaling exponents of the relation between distance to the transition line 
and half-value survival time across different models, coupling strengths and considered 
boundary types. While we could not yet identify the cause of this scaling, it appears to 
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be a universal property for this type of phase transition. As a future project it would be 
interesting to work out its possible relation to the global persistence scaling.
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