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We discuss two different regimes of condensate formation in zero-range processes on networks: on
a q-regular network, where the condensate is formed as a result of a spontaneous symmetry break-
ing, and on an irregular network, where the symmetry of the partition function is explicitly broken.
In the latter case we consider a minimal irregularity of the q-regular network introduced by a single
Q node with degree Q�q. The statics and dynamics of the condensation depend on the parameter
�=ln Q /q, which controls the exponential falloff of the distribution of particles on regular nodes
and the typical time scale for melting of the condensate on the Q node, which increases exponen-
tially with the system size N. This behavior is different than that on a q-regular network, where
�=0 and where the condensation results from the spontaneous symmetry breaking of the partition
function, which is invariant under a permutation of particle occupation numbers on the q nodes of
the network. In this case the typical time scale for condensate melting is known to increase typically
as a power of the system size. © 2007 American Institute of Physics. �DOI: 10.1063/1.2740571�

The formulation of the principles of nonequilibrium sta-
tistical mechanics is a challenge for theoretical physics.
Nonequilibrium effects play an important role in many
phenomena, but we do not have a consistent theory that
would describe them. An exception may be systems close
to equilibrium for which we can gain some insight into
their dynamics using ideas of the linear response and of
the fluctuation-dissipation theorem. The far-from-
equilibrium dynamics is uncharted territory. It is there-
fore useful to look for solvable models belonging to the
latter class, which could teach us about what happens in
this case.

In this paper, we shall discuss zero-range processes on
networks which belong to this class. On the one hand, they
reveal an interesting, nontrivial, and very rich behavior in-
cluding a condensation, far-from-equilibrium dynamics, and
nonlinear effects as, for example, the formation or melting of
the condensate. On the other hand, due to a relation to the

balls-in-boxes model,1,2 which is exactly solvable, also these
nontrivial effects are analytically treatable.

The zero-range process is a stochastic process, which de-
scribes a gas of identical particles hopping between neigh-
boring sites of a lattice or network on which the particles
reside �for reviews, see Refs. 3–5�. The transition rate for
particles to hop from one site to an adjacent site depends
only on the state of the node from which the particle hops
and is independent either of the destination node or any other
node. Since the hopping rate requires only ultralocal infor-
mation, the corresponding process is called zero-range
process.

When the density of particles exceeds a certain critical
value, the system undergoes a condensation,1 where a single
node of the network which attracts a large number of par-
ticles. The condensation takes place in real space and not in
momentum space as for the Bose-Einstein condensation.
This type of condensation is called balls-in-boxes condensa-
tion; in short, “B-in-B” or “backgammon condensation,” be-
cause it was first discovered in the balls-in-boxes �backgam-
mon� model.1,2

The B-in-B condensation is observed in many systems.
For example, in statistical models of random trees �also
called branched polymers� one observes a phase transition
between a phase of generic elongated trees to a phase where
a typical tree looks rather like a bush with a singular node,
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which has a finite fraction of all branches.1,6 The statistics of
the degree distribution in the tree model can be mapped onto
the B-in-B model. The emergence of a singular node on a
tree corresponds to the emergence of a condensate of many
balls in one box in the B-in-B model. A similar geometrical
phase transition is observed in models of quantum manifolds
discussed in the context of quantum gravity.7,8 At the phase
transition the quantum manifolds collapse to a very singular
geometry whose volume is almost fully concentrated in the
closest neighborhood of a single point of the manifold. More
precisely, the ratio v /V of the volume v of the neighborhood
within a radius of order of an ultraviolet cutoff around this
point to the total volume V of the whole manifold is finite in
the limit V→� even if the radius is kept constant. Again, this
phenomenon can be viewed as a particular realization of the
B-in-B condensation.7

The B-in-B condensation explains many other phenomena
such as, for instance, wealth condensation,9 emergence of
singular nodes in complex networks,10,11 emergence of the
Hagedorn fireball in hadron physics,12,13 and some transi-
tions observed in shaken granular gases.14,15 Actually, the
mathematics of the condensation is also almost identical to
that of the Berlin-Kac phase transition in the spherical
model.16 In other words, the B-in-B mechanism is quite ge-
neric and common.

The state of the zero-range process is characterized by the
distribution of the numbers of particles at all N nodes of the
network: �mi�= �m1 , . . . ,mN�, where mi denotes the occupa-
tion number of the ith node. The total number of particles
M =m1+ ¯ +mN is constant during the process. Particles hop
from nonempty sites with a rate u�mi� depending only on the
site occupation number mi. The outgoing current of particles
from a site i is distributed equally among all qi links emerg-
ing from the node, so the effective hopping rate per link is
u�mi� /qi, where qi is called the node degree. The function
u�m� is identical for all nodes, but the factor 1 /qi is not,
since it explicitly depends on the node degree. In this paper,
we assume that the network topology is fixed and so is the
degree sequence �qi�. The most fundamental question is
whether the process has a steady state and, if so, whether it is
unique. The answer to this question is affirmative if the net-
work is connected. In this case the process has a unique
steady state, which depends only on the node degrees �qi�
and the numbers of nodes N and particles M. This steady
state corresponds to the only equilibrium state, which is
sooner or later reached by the process. In equilibrium, the
partition function can be calculated analytically,4

Z = �
m1=0

M

¯ �
mN=0

M

�m1+¯+mN,M�
i=1

N

p�mi�qi
mi, �1�

where

p�m� = �
k=1

m
1

u�k�
, p�0� = 1. �2�

The weight p�m� is identical for every node, but the total
node weights pi�m�	 p�m�qi

m have an additional contribution
qi

m explicitly depending on the node degree. Because of the
presence of the �Kronecker� delta function under the sum in
Eq. �1�, the partition function does not entirely factorize into
a product of independent weights for individual nodes. The

constraint on the total number of particles plays an important
role as we shall see below, because the occupation numbers
of individual nodes are not independent of each other.

The statics of the zero-range process is equivalent to a
B-in-B model with the partition function �1� describing a
system of M identical balls distributed in N boxes, each hav-
ing a weight function pi�m�. The probability that in equilib-
rium the system is in a state �mi� reads

P�m1, . . . ,mN� =
1

Z
�
i=1

N

p�mi�qi
mi =

1

Z
�
i=1

N

pi�mi� , �3�

where m1+ ¯ +mN=M as before. It is interesting to notice
that this probability is invariant with respect to the following
change of the weights:

p�m� → Ce�mp�m� . �4�

Indeed under the change �4� the partition function �1�
changes as Z→CNe�MZ. The multiplicative factor that ap-
pears in front of the partition function cancels out in the
probability �3� and thus the statistical averages do not depend
on the parameters C and �. This invariance is an important
property of the model. The parameter C has the meaning of a
normalization and can be used, for example, to normalize the
weights to a probability. One should notice that the hopping
rate u�m�= p�m−1� / p�m� is not affected by C. The parameter
�, or more specifically e�, rescales the hopping rate
u�m�→e−�u�m� or equivalently stretches the time scale
t→ te�.

The probability distribution �3� encodes the full informa-
tion about the static properties of the system. For example,
one can calculate statistical averages of any observable X,


X� = �
�mi�

P�m1, . . . ,mN�X�m1, . . . ,mN� �5�

or correlations 
XY�− 
X�
Y�, etc. A particularly interesting
observable is the number of incidents that the ith node is
occupied by m particles,

�i�m� = 
�mi,m
� = pi�m�

Zi�m�
Z

, �6�

where, using the B-in-B analogy, pi�m� is the weight of the
ith box, Z is the partition function for the total system of M
balls in N boxes, and Zi�m� is the partition function for M −m
balls in the N−1 remaining boxes. In a similar manner one
can count multinode distributions and average them over all
configurations. For example, averaging the two-node inci-
dent function �mi,m

�mj,n
over all configurations gives the

probability �ij�m ,n� that in equilibrium there are simulta-
neously m particles at node i and n particles at node j.

A zero-range process is said to be in the condensed phase
if a finite fraction of all particles tends to occupy one node
or, if one phrases it in terms of the underlying B-in-B model,
if a finite fraction of all balls is concentrated in one box. This
effect depends on the density of particles per node �or balls
per box� �=M /N. If one keeps � constant and takes the limit
N→�, one sees that above a certain critical density �c one
box contains on the average a large number of balls
��−�c�N, which grows with N, while any other box has only
�c balls.

026112-2 Bogacz et al. Chaos 17, 026112 �2007�

Downloaded 21 Jul 2007 to 193.175.8.27. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



The most thoroughly studied and probably most surpris-
ing example of the B-in-B condensation takes place in a
system of identical boxes, that is, for which all the weight
functions in Eq. �3� are identical: p1�m�= ¯ = pN�m�. The
corresponding zero-range process is realized on a q-regular
graph, which has identical degrees of all nodes. In this case
the partition function �1� is symmetric with respect to the
permutation of the box-occupation numbers �mi�. The con-
densation appears there as a result of a spontaneous symme-
try breaking, which selects one out of identical boxes for the
location of the condensate. The criterion for the appearance
of the condensation is controlled by the asymptotic value of
the hopping rate u�m� for m→�,

p�m − 1�
p�m�

= u�m� → u�. �7�

For u�=� �or if p�m�=0 for all m larger than a certain m0�
the corresponding critical density is infinite and there is no
condensation in the model. The system is always in a fluid
phase. This can be intuitively understood because if the hop-
ping rate u�m�→�, it amounts to an effective repulsion be-
tween particles which, in effect, avoids to occupy the same
site. On the contrary, for u�=0 there is no price to pay for a
numerous occupation of the same site, so in effect the par-
ticles tend to condense. The critical density is zero in this
case and therefore the system can be then only in the con-
densed phase. One can say that due to an effective attraction,
particles tend to keep as close as possible to each other. The
most interesting case is when u� is finite: 0�u���. Actu-
ally it is sufficient to consider only the case u�=1 since
within this model all other values of u� are equivalent to one
as follows from the invariance with respect to the transfor-
mation �4�. In the remaining part of the paper we shall there-
fore stick to the choice u�=1. The quantitative behavior de-
pends on the exact form of u�m� but the critical properties,
such as critical exponents, depend only on how u�m� ap-
proaches unity when m goes to infinity. When it behaves as
u�m�=1+	 /m+¯ for large m, then p�m� behaves asymp-
totically as p�m��m−	. In particular, one can choose p�m� to
be

p�m� =
�	 − 1�
�	�m!


�	 + m + 1�
�

�	 − 1�
�	�
m	 . �8�

When the density �=M /N exceeds the critical value �c, a
condensate with N�� particles is formed,4,17 where
��=�−�c. The critical density is given by the formula1,2

�c =

�
m=0

�

mp�m�

�
m=0

�

p�m�

�9�

and can be concisely expressed in terms of the generating
function K���=�mp�m�e−�m as �c=−K��0� /K�0�. In particu-
lar, for p�m� as in Eq. �8�, the critical density is �c

=1/ �	−2�. An interesting choice of the weights p�m� is
when one demands that every box has at least one particle
and p�m�=m−	. In this case the generating function has the
following integral representation:

K��� =
1


�	�0

�

dt
t	−1

e�+t − 1
, �10�

which uncovers mathematical similarities between the
B-in-B and the Bose-Einstein condensation. The statics of
the model can be solved analytically,1,2 with critical proper-
ties depending on 	.

The dynamics of the condensation has also been studied
analytically.4,17,18 Two questions can be posed: What is the
typical time scale for building the condensate from a homo-
geneous distribution of particles and what is its average life
time? Here we shall focus on the latter. Once the condensate
is formed, it moves across the system. It spends a long time
at one particular node but sometimes melts and is rebuilt at
another node. A typical time scale for melting the condensate
has been derived using mean-field arguments.17 In the mean-
field approach one monitors only a single node of the net-
work and derives effective equations balancing the inflow
and outflow of particles for this node. One does not care
about what happens in the remaining part of the system,
which, in this approximation, is treated as a homogeneous
reservoir of particles, where fluctuations are much faster than
the dynamics of the condensate. The monitored node is char-
acterized by the distribution of the number of particles
�i�m�, which, in an adiabatic approximation, is assumed to
be that of the steady state. For a homogeneous system, �i�m�
is identical for all nodes, so it is equal to the average overall
nodes: �i�m�=�i�m�	��m�, and it does not matter which
node is monitored. The full information is encoded in ��m�.
The occupation number of the monitored node may change
in one step by one unit or stay constant. This sequence of
changes can be viewed as a random walk in the effective
one-dimensional potential V�m�=−ln ��m�. The waiting time
for a condensate to melt can be thus viewed as the time
needed for a particle to randomly walk from m*, which cor-
responds to the value of the condensate m*	N��, to some
m0�m*. This time is related to going through the maximum
of the potential, whose position corresponds to the position
of the dip of the function ln ��m�. This position is very close
to m* /2, because the excess of particles is shared mainly by
two nodes.17 In the condensed phase the shape of the func-
tion ��m� can be approximated in the range of m from zero
to the dip location �see Fig. 1� by ��m�� p�m�, where we
assume that �mp�m�=1 as follows from Eq. �8�. So the value
of the function ��m� at the dip is roughly equal to p�m* /2�,
which gives the corresponding maximum of the effective po-
tential V*=−ln p�m* /2�. Thus, using the Arrhenius law, one
can expect that the time needed for a random walk to go over
this maximum is of order �eV* =1/ p�m* /2�. For p�m� as-
ymptotically behaving as �m−	 this yields �N	, i.e., a
power law in the system size N, with a coefficient propor-
tional to ����	. This crude argument gives already a good
estimate. It can be polished if one implements all details of
the zero-range dynamics into the mean-field analysis and
works out the consequences of the detailed balance condition
for the transition rates for a particle to hop into or from the
monitored node or to stay at it.3,17 One obtains an expression
for a monitored node i for the waiting time m→k

i , which tells
us how long it takes to fall from m to k�m particles, where
only the first-passage time is taken into account,

026112-3 Balls-in-boxes condensation on networks Chaos 17, 026112 �2007�

Downloaded 21 Jul 2007 to 193.175.8.27. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



m→k
i = �

r=k+1

m
1

u�r��i�r��l=r

M

�i�l� . �11�

For a regular graph the distribution �i�m� is identical for
each node, so the index i can be skipped. The typical melting
time, defined to be =m*→0, grows as before as �N	, but
with a slightly modified coefficient, which is now propor-
tional to ����	+1. It is only a small correction to the previ-
ously derived result since the dependence on N is the same.

In contrast to homogeneous systems, much less is known
about the zero-range process on inhomogeneous networks,
where the symmetry of the partition function �1� resulting
from identical node degrees is explicitly broken. Some at-
tempts have been made for scale-free networks19 to explore
the phase diagram and the dynamics of condensate forma-
tion, but not the lifetime of the condensate.

We will now take advantage of Eq. �11� to estimate the
typical time scale for the dynamics of condensation for in-
homogeneous systems, assuming that �11� applies within the
scope of the mean-field approximation also when �i�m� var-
ies from node to node. We will study the effect of inhomo-
geneity by introducing to a q-regular graph a single node
with degree Q�q. This type of irregularity with a single
node being different from the others is well suited to study
the effect of symmetry breaking in zero-range processes,
which generates a condensate on a single node. The param-
eter �=ln Q /q plays the role of an external field, which
breaks this symmetry. Let us first determine the static prop-
erties of such a system. Because the node weight for the Q
node, pQ�m�=Qmp�m�, differs from the weights for regular
nodes, pq�m�=qmp�m�, by an exponential factor �Q /q�m, it is
clear that this node has a tendency to attract more particles
than the others. We hence expect that �Q�m� increases fast
with m, while �q�m� decreases. The exact form of these dis-
tributions depends on the particular form of the weight func-
tion p�m� in Eq. �1�, but this does not significantly change
the generic behavior. The exponential effect coming from the

factor Q /q�1 is dominant. In order to simplify the calcula-
tions we therefore assume that the transition rates do not
depend on m: u�m�=1 or equivalently p�m�=1. One can
show20 that the distribution

�Q�m� � �Q

q
�m�M + N − m − 2

M − m
� , �12�

where we have skipped an overall normalization, develops a
maximum for m close to the upper limit M. Let us shortly
sketch the derivation of Eq. �12�. The details can be found in
Ref. 20. Applying Eq. �6� to the Q node we obtain �Q�m�
=QmZq�m� /Z, where Z is the partition function of the system
and Zq�m� is the partition function for a q-regular graph with
N−1 nodes and M −m particles. Since we want to focus on
the dependence of �Q on m we can neglect the inessential
normalization 1/Z. The partition function Zq�m� for a
q-regular graph can be easily calculated from Eq. �1�. As-
suming q1= ¯ =qN−1=q and p�m�=1 we have

Zq�m� = qM−m �
m1=0

M−m

¯ �
mN−1=0

M−m

�m1+¯+mN−1,M−m

= qM−m�M + N − m − 2

M − m
� . �13�

The sum over m1 , . . . ,mN−1 gives the number of all possible
partitions of M −m balls in N−1 boxes. It yields the binomial
factor in Eq. �12�. The prefactor qM−m combined with QM

from the expression �Q�m�=QmZq�m� /Z gives an exponen-
tial m-dependent factor �Q /q�m, which appears in Eq. �12�.
All other factors are independent of m.

As an example, we show in Fig. 2 the effective distribu-
tion, �Q�m�, of particles at the Q node for different system
sizes and for constant density of particles. Above the critical
density �c=1/ �Q /q−1�, the distribution has a maximum for
a number of particles, m*, which linearly grows with the total
system size, m*�N. Clearly this means that particles con-

FIG. 1. Plots of the distribution ��m� in the condensed phase, for 	=5 and
�=1. The critical density is �c=1/3. From top to bottom: N=M
=50,100,200,400. The position of the dip is marked by a filled circle on
each curve. The vertical line denotes its asymptotic position as N→�:
m* /2M =1/3. A similar picture can be found in Ref. 17 for 	=4.

FIG. 2. Plots of �Q�m� �solid lines� and �q�m� �dashed lines� for the almost
q-regular graph with one node Q�q. Here q=4, Q=16, �=1, and the criti-
cal density �c=1/3. The curves from top to bottom show N=M
=50,100,200,400. The vertical line marks the asymptotic position of
m* /M =2/3.
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dense at the Q node. In the same figure we also show the
distribution of particles �q�m� on a regular node. It falls off
exponentially,

�q�m� � � q

Q
�m

. �14�

In comparison to Fig. 1, the minimum of the average distri-
bution ��m� is located roughly at the intersection point of the
solid and dashed curves. The depth of this intersection grows
much faster with the system size than the corresponding
depth of the valley in Fig. 1, so we expect that the first-
passage time  also grows much faster with N. Indeed, we
shall show that it now grows exponentially.

Having the distributions of balls we can calculate the typi-
cal time scales Q=m*→0

Q for the condensate to disappear for
the first time from the Q node or q=m*→0

q for the same
quantity at a regular q node, applying Eq. �11�. Let us con-
centrate on Q. First, we observe that because �Q�m� de-
creases for m�m*, the condensate having much more than
m* balls decays fast until it reaches the equilibrium state with
m�m*. Therefore, the transition time M→0

Q is close to Q.
We will use the former to approximate Q since it is easier to
calculate. Inserting the distribution of balls �12� into the for-
mula �11� we obtain

Q � �
r=1

M

�
l=r

M

e��l−r��M + N − l − 2

M − l
���M + N − r − 2

M − r
� .

�15�

This equation can be approximately evaluated by changing
variables and extending the range of summation to infinity.
Finally, we arrive at a relatively closed formula for Q. It is,
however, quite complicated and we will not display it here.
An interested reader is referred to Ref. 20. Here we will
show only a graphical representation of the result in Fig. 3,
where we plot this quantity for N=20 and various M. One
can see that it agrees well with the Monte Carlo experiment.

In the thermodynamic limit for fixed density �, the time
Q simplifies to

Q � exp�N�� log � − �1 + ��log�1 + �� + ���� . �16�

For ��1, we get Q�e��N, which means that here the char-
acteristic “melting time” grows exponentially with the sys-
tem size, while q is found to grow only linearly. Actually the
time needed for the condensate to evaporate from the Q node
can be estimated also using the Arrhenius law, as before, if
one applies it to the effective potential V�m�=−ln �Q�m�. As
follows from Eq. �12�, this function has its maximum at m
=0 and the value of this maximum, when one normalizes
�12�, can be estimated from the Arrhenius law: *�eV�0�

=1/�Q�0��e���N. So, in contrast to the homogeneous case
the time grows now exponentially with the system size.

Let us summarize differences between the condensation
observed in zero-range processes on a q-regular network and
an irregular network. In the first case the partition function is
symmetric with respect to permutations of the occupation
numbers �m1 ,m2 , . . . ,mN�, so that any permutation of par-
ticles is as probable as any other. This symmetry is sponta-
neously broken at the critical point where a single node con-
taining the condensate becomes different from the others.
The symmetry is reduced to the group of permutations of the
remaining N−1 nodes. On an irregular network, on the other
hand, the symmetry is explicitly broken. Because of the na-
ture of the symmetry breaking, which produces a condensate
on a single node, one can expect that already a model with an
irregularity on a single node is sufficient to capture the main
characteristics of this transition. We have studied such a
minimal irregularity coming from a single node with degree
Q�q. The parameter �=ln Q /q plays the role of an external
field. The situation is very similar as for standard phase tran-
sitions. For ��0, one observes a characteristic exponential
suppression �q�m��e−�m of the particle distributions on
q-regular nodes, which can be compared to the exponential
falloff of the two-point correlation function in standard field
theoretical models, while for the absence of the external field
one observes long-range fluctuations: �q�m�� p�m�, which,
for the interesting class of weights p�m�, is of the power-law
type: �q�m��m−	. This change of behavior has also imme-
diate implications for the dynamics: a typical time scale for
the condensate melting for ��0 grows exponentially with
the system size and for �=0 subexponentially, typically as a
power.

A next step is to consider zero-range processes on com-
plex networks with an arbitrary degree distribution. One can,
in particular, address the question of self-averaging; that is,
whether a zero-range process on a single typical network
chosen at random from the given ensemble of networks with
the given degree distribution behaves in the same way as the
corresponding process averaged over many networks from
this ensemble. This would be the first step towards the inves-
tigations of dynamics on networks coupled to network topol-
ogy.
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