Critical behavior of the quantum Potts chain with aperiodic perturbation

Dimitris Voliotis

(Supervised by Christophe Chatelain)

Groupo de Fisica Teórica, IFSC Universidade de São Paulo, Brazil

CompPhys17 Leipzig

December 1, 2017

Introduction

- 2 Strong-Disorder Renormalization Group approach
 - Strong-Disorder RG approach

3 The quantum aperiodic Potts chain

- Quantum Potts chain
- SDRG results on quantum aperiodic Potts chain

4 Conclusion

 \bullet Condensed Matter Physics \rightarrow discovery of quasicrystals

(a) quasicrystal

Dimitris Voliotis (IFSC)

CompPhys17 Leipzig

December 1, 2017 3 / 26

- \bullet Condensed Matter Physics \rightarrow discovery of quasicrystals
- \bullet Mathematics \rightarrow Aperiodic tilling \rightarrow Penrose tiling

- \bullet Condensed Matter Physics \rightarrow discovery of quasicrystals
- Mathematics \rightarrow Aperiodic tilling \rightarrow Penrose tiling
- 2D classical systems \rightarrow RG method [Tracy, Luck, ...]

- \bullet Condensed Matter Physics \rightarrow discovery of quasicrystals
- Mathematics \rightarrow Aperiodic tilling \rightarrow Penrose tiling
- 2D classical systems \rightarrow RG method [Tracy, Luck, ...]
- 1D quantum spin chains \rightarrow Free-fermion gas [Turban, Iglói, Berche, Karevski, ...]

- \bullet Condensed Matter Physics \rightarrow discovery of quasicrystals
- Mathematics \rightarrow Aperiodic tilling \rightarrow Penrose tiling
- 2D classical systems \rightarrow RG method [Tracy, Luck, ...]
- 1D quantum spin chains → Free-fermion gas [Turban, Iglói, Berche, Karevski, …]
- $\bullet\,$ The most famous example is the Fibonacci sequence: $0\to 01$ and $1\to 0.$

• Substitution rules: $A \rightarrow S(A)$ and $B \rightarrow S(B)...$

• Substitution rules: $A \rightarrow S(A)$ and $B \rightarrow S(B)...$

- Substitution rules: $A \rightarrow S(A)$ and $B \rightarrow S(B)$...
 - Substitution rules: 0 ightarrow S(0) ightarrow 01 and 1 ightarrow S(1) ightarrow 0

- Substitution rules: $A \rightarrow S(A)$ and $B \rightarrow S(B)$...
 - Substitution rules: 0 \rightarrow S(0) \rightarrow 01 and 1 \rightarrow S(1) \rightarrow 0
 - The sequence after the *n* first iterations of the substitution rules:

n=0 0,	
n=1 01,	
n = 2 0110,	
n = 3 01101001,	
n = 4 01101001100101	10,

- Substitution rules: $A \rightarrow S(A)$ and $B \rightarrow S(B)$...
 - Substitution rules: 0 \rightarrow S(0) \rightarrow 01 and 1 \rightarrow S(1) \rightarrow 0
 - The sequence after the *n* first iterations of the substitution rules:

<i>n</i> = 0	0,
n = 1	01,
<i>n</i> = 2	0110,
<i>n</i> = 3	01101001,
<i>n</i> = 4	0110100110010110,

● To compute fluctuations→ Substitution matrix:

$$\mathbb{M} = \begin{pmatrix} n_A^{S(A)} & n_A^{S(B)} & \cdots \\ n_B^{S(A)} & n_B^{S(B)} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}, \underbrace{Fibonacci}_{} \mathbb{M} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
(1)

- Substitution rules: $A \rightarrow S(A)$ and $B \rightarrow S(B)$...
 - Substitution rules: 0 \rightarrow S(0) \rightarrow 01 and 1 \rightarrow S(1) \rightarrow 0
 - The sequence after the *n* first iterations of the substitution rules:

<i>n</i> = 0	0,
n = 1	01,
<i>n</i> = 2	0110,
<i>n</i> = 3	01101001,
<i>n</i> = 4	0110100110010110,

● To compute fluctuations→ Substitution matrix:

$$\mathbb{M} = \begin{pmatrix} n_A^{S(A)} & n_A^{S(B)} & \cdots \\ n_B^{S(A)} & n_B^{S(B)} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}, \underbrace{Fibonacci}_{} \mathbb{M} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
(1)

• wandering exponent: $\omega \equiv \frac{\ln|\zeta_2|}{\ln\zeta_1}$, $\zeta_1 > \zeta_2$

Dimitris Voliotis (IFSC)

• Strong-Disorder RG approach

The quantum aperiodic Potts chain

- Quantum Potts chain
- SDRG results on quantum aperiodic Potts chain

SDRG (S.K. Ma and C. Dasgupta (1979))

• The prototypical model in the studies of quantum disordered systems the random transverse field Ising model (RTFIM)

- The prototypical model in the studies of quantum disordered systems the random transverse field Ising model (RTFIM)
- RTFIM undergoes a QPT at T = 0

$$H = -\sum_{i} J_i \sigma_i^z \sigma_{i+1}^z - \sum_{i} h_i \sigma_i^x$$
(2)

- The prototypical model in the studies of quantum disordered systems the random transverse field Ising model (RTFIM)
- RTFIM undergoes a QPT at T = 0

$$H = -\sum_{i} J_i \sigma_i^z \sigma_{i+1}^z - \sum_{i} h_i \sigma_i^x$$
⁽²⁾

• Select the largest coupling $\Omega = \{J_i, h_i\}$

- The prototypical model in the studies of quantum disordered systems the random transverse field Ising model (RTFIM)
- RTFIM undergoes a QPT at T = 0

$$H = -\sum_{i} J_i \sigma_i^z \sigma_{i+1}^z - \sum_{i} h_i \sigma_i^x \tag{2}$$

- Select the largest coupling $\Omega = \{J_i, h_i\}$
- Diagonalize the Hamiltonian of this coupling

- The prototypical model in the studies of quantum disordered systems the random transverse field Ising model (RTFIM)
- RTFIM undergoes a QPT at T = 0

$$H = -\sum_{i} J_i \sigma_i^z \sigma_{i+1}^z - \sum_{i} h_i \sigma_i^x$$
⁽²⁾

- Select the largest coupling $\Omega = \{J_i, h_i\}$
- Diagonalize the Hamiltonian of this coupling
- Treat the system perturbativly

SDRG for RTFIM

- Renormalization of exchange coupling $J_i \sigma_i^z \sigma_{i+1}^z$
 - The two spins acts as a macrospin in a field

$$h_{eff} = \frac{h_i h_{i+1}}{J_i} \tag{3}$$

SDRG for RTFIM

- Renormalization of exchange coupling $J_i \sigma_i^z \sigma_{i+1}^z$
 - The two spins acts as a macrospin in a field

$$h_{eff} = \frac{h_i h_{i+1}}{J_i} \tag{3}$$

• Renormalization of a strong transverse field $h_i \sigma_i^{\times}$

• The spin is frozen and the neighbors are coupled by

$$J_{eff} = \frac{J_{i-1}J_i}{h_i} \tag{4}$$

The idea of IDFP D. Fisher (1994)

• Introduced the idea of Infinite Disorder Fixed Point

Image: A matrix

The idea of IDFP D. Fisher (1994)

- Introduced the idea of Infinite Disorder Fixed Point
- The disorder became extremely broad as the renormalization proceed

- Introduced the idea of Infinite Disorder Fixed Point
- The disorder became extremely broad as the renormalization proceed
- After a large number of RG rules, the approach becomes asymptotically exact

- Introduced the idea of Infinite Disorder Fixed Point
- The disorder became extremely broad as the renormalization proceed
- After a large number of RG rules, the approach becomes asymptotically exact

• The quantum Ising chain with relevant perturbation \rightarrow IDFP [A.P. Vieira *et al.*] \rightarrow compatible with exact free-fermion

- Introduced the idea of Infinite Disorder Fixed Point
- The disorder became extremely broad as the renormalization proceed
- After a large number of RG rules, the approach becomes asymptotically exact

- The quantum Ising chain with relevant perturbation \rightarrow IDFP [A.P. Vieira *et al.*] \rightarrow compatible with exact free-fermion
- The quantum Potts chain? \rightarrow q irrelevant for the random chain [Senthil and Majumbar].

- Introduced the idea of Infinite Disorder Fixed Point
- The disorder became extremely broad as the renormalization proceed
- After a large number of RG rules, the approach becomes asymptotically exact

- The quantum Ising chain with relevant perturbation \rightarrow IDFP [A.P. Vieira *et al.*] \rightarrow compatible with exact free-fermion
- The quantum Potts chain? \rightarrow q irrelevant for the random chain [Senthil and Majumbar].
 - FP independent of $q? \rightarrow$ Monte-Carlo simulations: q is relevant [Chatelain *et al.*].

3 The quantum aperiodic Potts chain

- Quantum Potts chain
- SDRG results on quantum aperiodic Potts chain

• Generalization of Ising model: q possible states, $\sigma_i = 1, 2, ..., q$

- Generalization of Ising model: q possible states, $\sigma_i = 1, 2, ..., q$
- The Pure chain $(J_i = J \text{ and } h_i = h)$:
 - For q = 2 4: 2nd order PT \neq Universality class
 - For $q \ge 4$: 1st order PT

• 2D classical Potts model \rightarrow Anisotropic limit: $J_u \rightarrow 0$ and $J_v \rightarrow +\infty$

$$-\beta H = \sum_{x,y} J_u \delta_{\sigma_{x,y},\sigma_{x+1,y}} + \sum_{x,y} J_v [\delta_{\sigma_{x,y},\sigma_{x,y+1}} - 1]$$
(5)

• 2D classical Potts model \rightarrow Anisotropic limit: $J_u \rightarrow 0$ and $J_v \rightarrow +\infty$

$$-\beta H = \sum_{x,y} J_u \delta_{\sigma_{x,y},\sigma_{x+1,y}} + \sum_{x,y} J_\nu [\delta_{\sigma_{x,y},\sigma_{x,y+1}} - 1]$$
(5)

• Quantum Hamiltonian [Solyon and Pfeuty 1981 and Turban 1981]

$$H = -\sum_{i} \sum_{\sigma=0}^{q-1} [J_{i}(\hat{\Omega}_{i})^{\sigma}(\hat{\Omega}_{i+1})^{-\sigma} + h_{i}N_{i}^{\sigma}].$$
 (6)

• 2D classical Potts model \rightarrow Anisotropic limit: $J_u \rightarrow 0$ and $J_v \rightarrow +\infty$

$$-\beta H = \sum_{x,y} J_u \delta_{\sigma_{x,y},\sigma_{x+1,y}} + \sum_{x,y} J_v [\delta_{\sigma_{x,y},\sigma_{x,y+1}} - 1]$$
(5)

• Quantum Hamiltonian [Solyon and Pfeuty 1981 and Turban 1981]

$$H = -\sum_{i} \sum_{\sigma=0}^{q-1} [J_{i}(\hat{\Omega}_{i})^{\sigma} (\hat{\Omega}_{i+1})^{-\sigma} + h_{i} N_{i}^{\sigma}].$$
(6)

Potts operators:

$$\hat{\Omega}_i = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & \omega & 0 & 0 \ 0 & 0 & \omega^2 & 0 \ 0 & 0 & 0 & \omega^3 \end{pmatrix}$$

for q = 4 for example, with $\omega = e^{\frac{2i\pi}{q}}$.

• Ladder operators $N_i |\sigma_i\rangle = |\sigma_{i+1}\rangle$

$$N_i = egin{pmatrix} 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{pmatrix}.$$

SDRG rules [Senthil and Majumdar]

• For strong bond *J_i*:

$$h_{eff} = \frac{2h_i h_{i+1}}{q J_i} \tag{7}$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• For strong field *h_i*:

$$J_{eff} = \frac{2J_{i-1}J_i}{qh_i}$$

э

(8)

SDRG for a family of aperiodic sequences

• substitution rules:

$$a \to ab^k, \quad b \to a \qquad \text{for} \quad b^k \equiv \underbrace{bb \dots b}_{k imes \text{letters}}$$
(9)

where k is a positive integer

SDRG for a family of aperiodic sequences

• substitution rules:

$$a \to ab^k, \quad b \to a \qquad \text{for} \quad b^k \equiv \underbrace{bb \dots b}_{k imes \text{letters}}$$
 (9)

where k is a positive integer

• By defining the ratios:

$$r^{(j)} = \frac{h^{(j)}}{J_b^{(j)}}, \quad s^{(j)} = \frac{J_a^{(j)}}{h^{(j)}},$$
 (10)
SDRG for a family of aperiodic sequences

• substitution rules:

$$a \to ab^k, \quad b \to a \qquad \text{for} \quad b^k \equiv \underbrace{bb \dots b}_{k imes \text{letters}}$$
 (9)

where k is a positive integer

• By defining the ratios:

$$r^{(j)} = rac{h^{(j)}}{J^{(j)}_b}, \quad s^{(j)} = rac{J^{(j)}_a}{h^{(j)}}, \quad (10)$$

• The SDRG rules are written:

$$\begin{pmatrix} \ln r^{(j+1)} \\ \ln s^{(j+1)} \end{pmatrix} = \begin{pmatrix} k & -1 \\ -k & k+1 \end{pmatrix} \begin{pmatrix} \ln r^{(j)} \\ \ln s^{(j)} \end{pmatrix} + \begin{pmatrix} C_k \\ 0 \end{pmatrix},$$
(11)

with $C_k = k \ln(\frac{2}{q})$.

SDRG for a family of aperiodic sequences

• substitution rules:

$$a \to ab^k, \quad b \to a \qquad \text{for} \quad b^k \equiv \underbrace{bb \dots b}_{k imes \text{letters}}$$
 (9)

where k is a positive integer

• By defining the ratios:

$$r^{(j)} = rac{h^{(j)}}{J^{(j)}_b}, \quad s^{(j)} = rac{J^{(j)}_a}{h^{(j)}}, \quad (10)$$

• The SDRG rules are written:

$$\begin{pmatrix} \ln r^{(j+1)} \\ \ln s^{(j+1)} \end{pmatrix} = \begin{pmatrix} k & -1 \\ -k & k+1 \end{pmatrix} \begin{pmatrix} \ln r^{(j)} \\ \ln s^{(j)} \end{pmatrix} + \begin{pmatrix} C_k \\ 0 \end{pmatrix},$$
(11)

with $C_k = k \ln(\frac{2}{q})$. • For an IDFP: $\ln s$ and $\ln r$ diverges $\rightarrow C_k$ remains finite.

Dimitris Voliotis (IFSC)

SDRG for a family of aperiodic sequences

 $\mathsf{Conclusion} \to \mathsf{Luck} \ \mathsf{criterion}$

• $k = 1 \rightarrow$ Irrelevant for q = 2

$\mathsf{Conclusion} \to \mathsf{Luck} \ \mathsf{criterion}$

- $k = 1 \rightarrow$ Irrelevant for q = 2
- k = 2 → Marginal for q = 2 Relevant for q > 2 → Possibility of q-independent FP?

Conclusion \rightarrow Luck criterion

- $k = 1 \rightarrow$ Irrelevant for q = 2
- k = 2 → Marginal for q = 2 Relevant for q > 2 → Possibility of q-independent FP?

 To observe this, we study PF, PD and TF → first for Ising and then for *q*-state Potts chain.

Conclusion \rightarrow Luck criterion

- $k = 1 \rightarrow$ Irrelevant for q = 2
- k = 2 → Marginal for q = 2 Relevant for q > 2 → Possibility of q-independent FP?
- $k > 2 \rightarrow \text{Relevant} \rightarrow \text{IDFP} \rightarrow q$ -independent FP
- To observe this, we study PF, PD and TF \rightarrow first for Ising and then for *q*-state Potts chain.

Conclusion \rightarrow Luck criterion

- $k = 1 \rightarrow$ Irrelevant for q = 2
- k = 2 → Marginal for q = 2 Relevant for q > 2 → Possibility of q-independent FP?
- $k > 2 \rightarrow \text{Relevant} \rightarrow \text{IDFP} \rightarrow q$ -independent FP
- To observe this, we study PF, PD and TF \rightarrow first for Ising and then for *q*-state Potts chain.
- We study the relevant Rudin-Shapiro sequence

• For IDFP, the energy cutoff scales like:

$$\Omega_j \sim e^{-L^{-\psi}} \Leftrightarrow L \sim \left(\ln \frac{\Omega_I}{\Omega_j} \right)^{-1/\psi}$$
 (12)

• For IDFP, the energy cutoff scales like:

$$\Omega_j \sim e^{-L^{-\psi}} \Leftrightarrow L \sim \left(\ln \frac{\Omega_I}{\Omega_j} \right)^{-1/\psi}$$
 (12)

• and the magnetization as

$$\mu^{(j)} \sim \left[\ln \frac{\Omega_I}{\Omega_j} \right]^{\phi} \tag{13}$$

• For IDFP, the energy cutoff scales like:

$$\Omega_j \sim e^{-L^{-\psi}} \Leftrightarrow L \sim \left(\ln \frac{\Omega_I}{\Omega_j} \right)^{-1/\psi}$$
 (12)

and the magnetization as

$$\mu^{(j)} \sim \left[\ln \frac{\Omega_I}{\Omega_j} \right]^{\phi} \tag{13}$$

 the magnetic scaling dimension x_m = β/ν is recovered if the total magnetization scales with the lattice size as

$$\mu^{(j)} \sim L^{1-\beta/\nu}.\tag{14}$$

with
$$\beta = \nu (1 - \phi \psi)$$
.

• For IDFP, the energy cutoff scales like:

$$\Omega_j \sim e^{-L^{-\psi}} \Leftrightarrow L \sim \left(\ln \frac{\Omega_I}{\Omega_j} \right)^{-1/\psi}$$
 (12)

and the magnetization as

$$\mu^{(j)} \sim \left[\ln \frac{\Omega_I}{\Omega_j} \right]^{\phi} \tag{13}$$

 the magnetic scaling dimension x_m = β/ν is recovered if the total magnetization scales with the lattice size as

$$\mu^{(j)} \sim L^{1-\beta/\nu}.\tag{14}$$

with $\beta = \nu (1 - \phi \psi)$.

• The coupling ratio is defined: $\rho={\it J}_1/{\it J}_0$

• Thue-Morse: Irrelevant \rightarrow no algebraic regime.

- Thue-Morse: Irrelevant \rightarrow no algebraic regime.
- Paper-Folding: $\beta/\nu = 0.252(3) \rightarrow$ no dependence on ρ .

• Period-Doubling: $\beta/\nu = 0.254(6) \rightarrow \text{close}$ with numerical result of F.J. Oliveira Filho *et al.*

- Period-Doubling: $\beta/\nu = 0.254(6) \rightarrow$ close with numerical result of F.J. Oliveira Filho *et al.*
- Three-Folding: eta/
 u= 0.139(5) ightarrow no dependence on ho

• Rubin-Shapiro: $\beta/\nu = 0.175(6) \rightarrow$ is not compatible with the analytical prediction by F.J. Oliveira Filho *et al.*

• Paper-Folding: no-dependence on q, exponent stable

- Paper-Folding: no-dependence on q, exponent stable
- Period-Doubling: no-dependence on q, exponent no stable

• Three-Folding: no-dependence on q, exponent stable

- Three-Folding: no-dependence on q, exponent stable
- Rubin-Shapiro: small dependence on q.

• $\Omega(L)$ is not monotonous but displays steps.

- $\Omega(L)$ is not monotonous but displays steps.
- Each one of these steps corresponds to the renormalization of the couplings with the same value.

- $\Omega(L)$ is not monotonous but displays steps.
- Each one of these steps corresponds to the renormalization of the couplings with the same value.
- To fit the data and extract the exponent *z*, we considered each step and extracted the corner of the step.

- $\Omega(L)$ is not monotonous but displays steps.
- Each one of these steps corresponds to the renormalization of the couplings with the same value.
- To fit the data and extract the exponent *z*, we considered each step and extracted the corner of the step.
- A log-log fit is performed only with the red points.

- $\Omega(L)$ is not monotonous but displays steps.
- Each one of these steps corresponds to the renormalization of the couplings with the same value.
- To fit the data and extract the exponent *z*, we considered each step and extracted the corner of the step.
- A log-log fit is performed only with the red points.
- The fit is performed into the scaling by the eq. $\Omega \sim L^z$.

Paper-Folding

• Exact expression[Iglói *et al.*]:
$$z = \frac{\ln(\rho^{1/2} + \rho^{-1/2})}{\ln 2}$$

Dimitris Voliotis (IFSC)

CompPhys17 Leipzig

2

Paper-Folding

• Exact expression[lglói *et al.*]: $z = \frac{\ln(\rho^{1/2} + \rho^{-1/2})}{\ln 2}$

• Large-coupling limit: $z \simeq -\frac{\ln \rho}{\ln 4}$

coupling ratio	z (SDRG theory)	z (SDRG simul.)	
$\rho = 3$	0.79248	0.79(1)	
ho = 6	1.2925	1.27(1)	
ho = 10	1.6610	1.66(6)	

Dimitris Voliotis (IFSC)

CompPhys17 Leipzig

Period-Doubling

• Exact expression[lglói *et al.*]:
$$z = \frac{\ln(\rho^{1/3} + \rho^{-1/3})}{\ln 2}$$

Dimitris Voliotis (IFSC)

CompPhys17 Leipzig

December 1, 2017 21 / 26

Period-Doubling

• Exact expression[lglói *et al.*]: $z = \frac{\ln(\rho^{1/3} + \rho^{-1/3})}{\ln 2}$

• Large-coupling limit: $z \simeq -\frac{\ln \rho}{3 \ln 2}$

coupling ratio	z (exact)	z (asymp.)	z (SDRG)
$\rho = 3$	1.094	0.528	0.56(1)
ho = 6	1.243	0.861	0.91(2)
ho = 10	1.388	1.107	1.15(5)

Dimitris Voliotis (IFSC)

CompPhys17 Leipzig

Three-Folding

• Exact expression[Iglói *et al.*]: $z = \frac{\ln[(2+\rho)(2+\rho^{-1})]}{2\ln 3}$

Dimitris Voliotis (IFSC)

CompPhys17 Leipzig

December 1, 2017 22 / 26

Three-Folding

• Exact expression[lglói et al.]: $z = \frac{\ln[(2+\rho)(2+\rho^{-1})]}{2\ln 3}$

• Large-coupling limit: $z \simeq \frac{\ln \rho}{2 \ln 3}$

coupling ratio	z (exact)	z (asymp.)	z (SDRG)
$\rho = 3$	1.118	0.500	0.53(1)
ho = 6	1.298	0.815	0.86(1)
ho = 10	1.468	1.048	1.10(6)

Dimitris Voliotis (IFSC)

CompPhys17 Leipzig

December 1, 2017 22 / 26

Rubin-Shapiro

 For relevant aperiodic sequence[F.J. Oliveira Filho et al.]: z is infinite and ψ = ω = 1/2.

Rubin-Shapiro

- For relevant aperiodic sequence[F.J. Oliveira Filho et al.]: z is infinite and ψ = ω = 1/2.
- scaling law: $L \sim \ln(rac{\Omega_l}{\Omega})^{1/\psi}$, $\psi = 1/2$

Rubin-Shapiro

- For relevant aperiodic sequence[F.J. Oliveira Filho et al.]: z is infinite and ψ = ω = 1/2.
- scaling law: $L \sim \ln(rac{\Omega_l}{\Omega})^{1/\psi}$, $\psi = 1/2$
- Numericaly result: $\psi = 0.5(3)$

Paper-Folding (q > 2)

• The first three renormalizations are the same for all the ρ and q!

Paper-Folding (q > 2)

- The first three renormalizations are the same for all the ρ and q!
- For a fixed ρ the scaling is depends on q.

Paper-Folding (q > 2)

- The first three renormalizations are the same for all the ρ and q!
- For a fixed ρ the scaling is depends on q.
- For q = 5, as expected depends on $\rho!$

Paper-Folding (q > 2)

- The dynamical exponent z increases with the number of states q!
- while for q = 2 is following the exact expression.

Figure: Dynamical exponent z with the coupling ratio ρ for several numbers of state q for Potts chains with the Paper-Folding sequence. The different curves correspond to different numbers of states q.

The quantum aperiodic Potts chain

- Quantum Potts chain
- SDRG results on quantum aperiodic Potts chain

• The SDRG approach gives good numerical results for the critical exponent β/ν of the aperiodic Ising chain.

- The SDRG approach gives good numerical results for the critical exponent β/ν of the aperiodic Ising chain.
- The β/ν for the Potts is found to be independent of q for the marginal sequences while very small dependence for Rudin-Shapiro \rightarrow IDFP.

- The SDRG approach gives good numerical results for the critical exponent β/ν of the aperiodic Ising chain.
- The β/ν for the Potts is found to be independent of q for the marginal sequences while very small dependence for Rudin-Shapiro \rightarrow IDFP.
- For the Ising chain, the dynamical exponent z is reproduced in very good agreement by numerical SDRG calculations for the strong-coupling limit while is confirmed the IDFP behavior for a relevant sequence.

- The SDRG approach gives good numerical results for the critical exponent β/ν of the aperiodic Ising chain.
- The β/ν for the Potts is found to be independent of q for the marginal sequences while very small dependence for Rudin-Shapiro \rightarrow IDFP.
- For the Ising chain, the dynamical exponent z is reproduced in very good agreement by numerical SDRG calculations for the strong-coupling limit while is confirmed the IDFP behavior for a relevant sequence.
- For the Potts chain, the scaling of the dynamical exponent increases with the number of states q → why?⇒ DMRG

- The SDRG approach gives good numerical results for the critical exponent β/ν of the aperiodic Ising chain.
- The β/ν for the Potts is found to be independent of q for the marginal sequences while very small dependence for Rudin-Shapiro \rightarrow IDFP.
- For the Ising chain, the dynamical exponent z is reproduced in very good agreement by numerical SDRG calculations for the strong-coupling limit while is confirmed the IDFP behavior for a relevant sequence.
- For the Potts chain, the scaling of the dynamical exponent increases with the number of states q → why?⇒ DMRG
- Vielen Dank

- The SDRG approach gives good numerical results for the critical exponent β/ν of the aperiodic Ising chain.
- The β/ν for the Potts is found to be independent of q for the marginal sequences while very small dependence for Rudin-Shapiro \rightarrow IDFP.
- For the Ising chain, the dynamical exponent z is reproduced in very good agreement by numerical SDRG calculations for the strong-coupling limit while is confirmed the IDFP behavior for a relevant sequence.
- For the Potts chain, the scaling of the dynamical exponent increases with the number of states q → why?⇒ DMRG
- Vielen Dank
- Obrigado

- The SDRG approach gives good numerical results for the critical exponent β/ν of the aperiodic Ising chain.
- The β/ν for the Potts is found to be independent of q for the marginal sequences while very small dependence for Rudin-Shapiro \rightarrow IDFP.
- For the Ising chain, the dynamical exponent z is reproduced in very good agreement by numerical SDRG calculations for the strong-coupling limit while is confirmed the IDFP behavior for a relevant sequence.
- For the Potts chain, the scaling of the dynamical exponent increases with the number of states q → why?⇒ DMRG
- Vielen Dank
- Obrigado
- Ευχαριστω