Coarse-graining the state space of a spin glass

Stefan Schnabel and Wolfhard Janke

CompPhys 17

Edwards-Anderson model

- Hamiltonian : $\mathcal{H}\left(s_{1}, \cdots, s_{N}\right)=-\sum_{\langle i j\rangle} J_{i j} s_{i} s_{j}, \quad s \in\{-1,1\}$ - Gaussian disorder : $P(J)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{J^{2}}{2}}$
- Overlap of two configurations $Q\left(\mathbf{S}^{\alpha}, \mathbf{S}^{\beta}\right)=\frac{1}{N} \sum_{i} s_{i}^{\alpha} s_{i}^{\beta}$
- 3d-simole cubic lattice

Edwards-Anderson model

- Hamiltonian : $\mathcal{H}\left(s_{1}, \cdots, s_{N}\right)=-\sum_{\langle i j\rangle} J_{i j} s_{i} s_{j}, \quad s \in\{-1,1\}$
- Gaussian disorder : $P(J)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{J^{2}}{2}}$
- Overlap of two configurations $Q\left(\mathbf{S}^{\alpha}, \mathbf{S}^{\beta}\right)=\frac{1}{N} \sum_{i} s_{i}^{\alpha} s_{i}^{\beta}$
- 3d - simple cubic lattice

Edwards-Anderson model

- Hamiltonian : $\mathcal{H}\left(s_{1}, \cdots, s_{N}\right)=-\sum_{\langle i j\rangle} J_{i j} s_{i} s_{j}, \quad s \in\{-1,1\}$
- Gaussian disorder : $P(J)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{J^{2}}{2}}$
- Overlap of two configurations $Q\left(\mathbf{S}^{\alpha}, \mathbf{S}^{\beta}\right)=\frac{1}{N} \sum_{i} s_{i}^{\alpha} s_{i}^{\beta}$
- 3d - simple cubic lattice

Edwards-Anderson model

- Hamiltonian : $\mathcal{H}\left(s_{1}, \cdots, s_{N}\right)=-\sum_{\langle j\rangle} J_{i j} s_{i} s_{j}, \quad s \in\{-1,1\}$
- Gaussian disorder : $P(J)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{J^{2}}{2}}$
- Overlap of two configurations $Q\left(\mathbf{S}^{\alpha}, \mathbf{S}^{\beta}\right)=\frac{1}{N} \sum_{i} s_{i}^{\alpha} s_{i}^{\beta}$
- 3d - simple cubic lattice
- Local minima in energy
- Single-flip stable states, i.e., the flip of any spin will increase energy
- All spins have negative energy:
$e_{k}=-\sum_{\langle i j\rangle} J_{i j} s_{i} s_{j}\left(\delta_{i k}+\delta_{j k}\right)<0$ for all k

meta stable states

- Local minima in energy
- Single-flip stable states, i.e., the flip of any spin will increase energy
- All spins have negative energy: $e_{k}=-\sum_{\langle i j\rangle} J_{i j} s_{i} s_{j}\left(\delta_{i k}+\delta_{j k}\right)<0$ for all k

meta stable states

- Local minima in energy
- Single-flip stable states, i.e., the flip of any spin will increase energy
- All spins have negative energy:
$e_{k}=-\sum_{\langle i j\rangle} J_{i j} s_{i} s_{j}\left(\delta_{i k}+\delta_{j k}\right)<0$ for all k

An algorithm to sample stable states

- Start with spin configuration \mathbf{S}_{0} and random numbers $\{\xi\}$
- Minimize:

- Find a weight function $W\left(\mathbf{S}_{0},\{\xi\}\right)$ such that all meta stable states are equally likely
- Run a Monte Carlo simulation by varying S_{0} and $\{\xi\}$ according to $W\left(\mathbf{S}_{0},\{\xi\}\right)$

An algorithm to sample stable states

- Start with spin configuration \mathbf{S}_{0} and random numbers $\{\xi\}$
- Minimize:
$\mu\left(\mathbf{S}_{0},\{\xi\}\right)=\left\{\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f}\right\}, \quad \mathcal{H}\left(\mathbf{S}_{i}\right)>\mathcal{H}\left(\mathbf{S}_{i+1}\right)$ and $\mathcal{H}\left(\mathbf{S}_{f}\right)$ is meta stable
- Find a weight function $W\left(\mathrm{~S}_{0},\{\xi\}\right)$ such that all meta stable states are equally likely
- Run a Monte Carlo simulation by varying S_{0} and $\{\xi\}$ according to $W\left(\mathrm{~S}_{0},\{\xi\}\right)$

An algorithm to sample stable states

- Start with spin configuration \mathbf{S}_{0} and random numbers $\{\xi\}$
- Minimize:
$\mu\left(\mathbf{S}_{0},\{\xi\}\right)=\left\{\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f}\right\}, \quad \mathcal{H}\left(\mathbf{S}_{i}\right)>\mathcal{H}\left(\mathbf{S}_{i+1}\right)$ and $\mathcal{H}\left(\mathbf{S}_{f}\right)$ is meta stable
- Find a weight function $W\left(\mathbf{S}_{0},\{\xi\}\right)$ such that all meta stable states are equally likely
- Run a Monte Carlo simulation by varying S_{0} and $\{\xi\}$ according to $W\left(\mathbf{S}_{0},\{\xi\}\right)$

An algorithm to sample stable states

- Start with spin configuration \mathbf{S}_{0} and random numbers $\{\xi\}$
- Minimize:
$\mu\left(\mathbf{S}_{0},\{\xi\}\right)=\left\{\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f}\right\}, \quad \mathcal{H}\left(\mathbf{S}_{i}\right)>\mathcal{H}\left(\mathbf{S}_{i+1}\right)$ and $\mathcal{H}\left(\mathbf{S}_{f}\right)$ is meta stable
- Find a weight function $W\left(\mathbf{S}_{0},\{\xi\}\right)$ such that all meta stable states are equally likely
- Run a Monte Carlo simulation by varying \mathbf{S}_{0} and $\{\xi\}$ according to $W\left(\mathbf{S}_{0},\{\xi\}\right)$

Minimization

- Chose random spin with positive energy from \mathbf{S}_{i} and flip it $\rightarrow \mathbf{S}_{i+1}$
- Repeat until stable state is reached
- Base selection on local properties: Flip the spin with the largest random number

Minimization

- Chose random spin with positive energy from \mathbf{S}_{i} and flip it $\rightarrow \mathbf{S}_{i+1}$
- Repeat until stable state is reached
- Base selection on local properties: Flip the spin with the largest random number

Weight function

- We use the number of spins with positive $n_{\mathrm{p}}(\mathbf{S})$ and negative $n_{\mathrm{n}}(\mathbf{S})$ energy of a spin configuration \mathbf{S}
- Probability of a particular sequence given S_{0}

- Probability of a particular sequence given \mathbf{S}_{f} :

- Bayes: $P\left(\mathbf{S}_{f}\right)=\frac{P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{0}\right)}{P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{t}\right)} P\left(\mathbf{S}_{0}\right)$
- $W\left(\mathbf{S}_{0},\{\xi\}\right)=\frac{P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{t} \mid \mathbf{S}_{f}\right)}{P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{0}\right)}$

Weight function

- We use the number of spins with positive $n_{\mathrm{p}}(\mathbf{S})$ and negative $n_{\mathrm{n}}(\mathbf{S})$ energy of a spin configuration \mathbf{S}
- Probability of a particular sequence given \mathbf{S}_{0} :
$P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{0}\right)=\prod_{i=0}^{f-1} \frac{1}{n_{p}\left(\mathbf{S}_{i}\right)}$
- Probability of a particular sequence given S_{f}
$P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{f}\right)=\prod_{i=1} \frac{1}{n_{\mathrm{n}}\left(\mathbf{S}_{i}\right)}$
- Bayes: $P\left(\mathbf{S}_{f}\right)=\frac{P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{\mid} \mid \mathbf{S}_{0}\right)}{P\left(\mathrm{~S}_{0} \mathrm{~S}_{1}, \ldots, S_{j} / \mathrm{S}_{f}\right)} P\left(\mathbf{S}_{0}\right)$
- $W\left(\mathbf{S}_{0},\{\xi\}\right)=\frac{P\left(\mathbf{S}_{0}, \mathbf{S}_{f}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{f}\right)}{P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{0}\right)}$

Weight function

- We use the number of spins with positive $n_{\mathrm{p}}(\mathbf{S})$ and negative $n_{\mathrm{n}}(\mathbf{S})$ energy of a spin configuration \mathbf{S}
- Probability of a particular sequence given \mathbf{S}_{0} :

$$
P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{0}\right)=\prod_{i=0}^{f-1} \frac{1}{n_{p}\left(\mathbf{S}_{i}\right)}
$$

- Probability of a particular sequence given \mathbf{S}_{f} :
$P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{f}\right)=\prod_{i=1}^{f} \frac{1}{n_{n}\left(\mathbf{S}_{i}\right)}$
- Bayes: $P\left(\mathrm{~S}_{f}\right)=\frac{P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{0}\right)}{P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f \mid} \mathbf{S}_{f}\right)} P\left(\mathrm{~S}_{0}\right)$
- $W\left(\mathbf{S}_{0},\{\xi\}\right)=\frac{P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{t} \mid \mathbf{S}_{f}\right)}{P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{0}\right)}$

Weight function

- We use the number of spins with positive $n_{p}(\mathbf{S})$ and negative $n_{\mathrm{n}}(\mathbf{S})$ energy of a spin configuration \mathbf{S}
- Probability of a particular sequence given \mathbf{S}_{0} :

$$
P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{0}\right)=\prod_{i=0}^{f-1} \frac{1}{n_{p}\left(\mathbf{S}_{i}\right)}
$$

- Probability of a particular sequence given \mathbf{S}_{f} :

$$
P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{f}\right)=\prod_{i=1}^{f} \frac{1}{n_{n}\left(\mathbf{S}_{i}\right)}
$$

- Bayes: $P\left(\mathbf{S}_{f}\right)=\frac{P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{0}\right)}{P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{f}\right)} P\left(\mathbf{S}_{0}\right)$

Weight function

- We use the number of spins with positive $n_{\mathrm{p}}(\mathbf{S})$ and negative $n_{\mathrm{n}}(\mathbf{S})$ energy of a spin configuration \mathbf{S}
- Probability of a particular sequence given \mathbf{S}_{0} :

$$
P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{0}\right)=\prod_{i=0}^{f-1} \frac{1}{n_{p}\left(\mathbf{S}_{i}\right)}
$$

- Probability of a particular sequence given \mathbf{S}_{f} :

$$
P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{f}\right)=\prod_{i=1}^{f} \frac{1}{n_{\mathrm{n}}\left(\mathbf{S}_{i}\right)}
$$

- Bayes: $P\left(\mathbf{S}_{f}\right)=\frac{P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{0}\right)}{P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{t}\right)} P\left(\mathbf{S}_{0}\right)$
- $W\left(\mathbf{S}_{0},\{\xi\}\right)=\frac{P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{f}\right)}{P\left(\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{f} \mid \mathbf{S}_{0}\right)}$

Distribution, single sample $L=4$

Distribution of meta stable states

Overlap distributions single sample $L=10$

Overlap distributions $L=10$

Overlap distribution $\mathrm{T}=0.42$

B. Yucesoy, H. G. Katzgraber, and J. Machta, PRL 109, 177204 (2012)

Correlation length

H. G. Katzgraber, M. Körner, and A. P. Young, Phys Rev B 73, 224432 (2006)

Concluding remarks

- The distribution of local minima can be determined with great accuracy.
- The algorithm is more effective than standard single spin-flip dynamics.
- Overlap-distributions cliffer for single samples, but are similar on average.

Concluding remarks

- The distribution of local minima can be determined with great accuracy.
- The algorithm is more effective than standard single spin-flip dynamics.
- Overlap-distributions differ for single samples, but are similar on average.

Concluding remarks

- The distribution of local minima can be determined with great accuracy.
- The algorithm is more effective than standard single spin-flip dynamics.
- Overlap-distributions differ for single samples, but are similar on average.

Concluding remarks

- The distribution of local minima can be determined with great accuracy.
- The algorithm is more effective than standard single spin-flip dynamics.
- Overlap-distributions differ for single samples, but are similar on average.

Thanks for your attention

