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Edwards-Anderson model

Hamiltonian : H(s1, · · · , sN) = −
∑

〈ij〉
Jijsisj , s ∈ {−1, 1}

Gaussian disorder : P(J) = 1√
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3d – simple cubic lattice
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meta stable states

Local minima in energy

Single-flip stable states, i.e., the flip of any spin will

increase energy

All spins have negative energy:

ek = −
∑

〈ij〉
Jijsisj(δik + δjk ) < 0 for all k
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An algorithm to sample stable states

Start with spin configuration S0 and random numbers {ξ}

Minimize:

µ(S0, {ξ}) = {S0,S1, . . . ,Sf}, H(Si) > H(Si+1) and

H(Sf ) is meta stable

Find a weight function W (S0, {ξ}) such that all meta stable

states are equally likely

Run a Monte Carlo simulation by varying S0 and {ξ}
according to W (S0, {ξ})
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Minimization

Chose random spin with positive energy from Si and flip it

→ Si+1

Repeat until stable state is reached

Base selection on local properties: Flip the spin with the

largest random number
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Weight function

We use the number of spins with positive np(S) and

negative nn(S) energy of a spin configuration S

Probability of a particular sequence given S0:

P(S0,S1, . . . ,Sf |S0) =
f−1∏

i=0

1
np(Si )

Probability of a particular sequence given Sf :

P(S0,S1, . . . ,Sf |Sf ) =
f∏

i=1

1
nn(Si )

Bayes: P(Sf ) =
P(S0,S1,...,Sf |S0)
P(S0,S1,...,Sf |Sf )

P(S0)

W (S0, {ξ}) =
P(S0,S1,...,Sf |Sf )
P(S0,S1,...,Sf |S0)
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Distribution, single sample L = 4
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Distribution of meta stable states
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Overlap distributions single sample L = 10
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Overlap distributions single sample L = 10

0

0.2

0.4

0.6

0.8

1

1.2

−1 −0.5 0 0.5 1

β = 1.0

P
(Q

)

Q

coarse-grained
standard

Coarse-grain spin glass



Overlap distributions single sample L = 10
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Overlap distributions single sample L = 10
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Overlap distributions L = 10
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Overlap distribution T=0.42

B. Yucesoy, H. G. Katzgraber, and J. Machta, PRL 109, 177204 (2012)

Coarse-grain spin glass



Correlation length
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Concluding remarks

The distribution of local minima can be determined with

great accuracy.

The algorithm is more effective than standard single

spin-flip dynamics.

Overlap-distributions differ for single samples, but are

similar on average.
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Thanks for your attention
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