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Edwards-Anderson model

© Hamiltonian : H(sq,--- ,sy) = — Y. Jjsisj, se{-1,1}
(i)
2
@ Gaussian disorder : P(J) = \/%79_%

@ Overlap of two configurations Q(S®,8°%) = 1, >~ s¢
i

@ 3d — simple cubic lattice
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meta stable states

@ Local minima in energy
@ Single-flip stable states, i.e., the flip of any spin will
increase energy

@ All spins have negative energy:
ex = —»_ Jjsisj(di + dj) < 0 for all k
(i)
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An algorithm to sample stable states

@ Start with spin configuration Sy and random numbers {¢}
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An algorithm to sample stable states

@ Start with spin configuration Sy and random numbers {¢}
@ Minimize:
1(So,{¢}) = {S0,S1,...,S¢},  H(Si) > H(Sj;+1) and
H(S¢) is meta stable

@ Find a weight function W(Sy, {£}) such that all meta stable
states are equally likely

@ Run a Monte Carlo simulation by varying Sy and {¢}
according to W(So, {¢})
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Minimization

@ Chose random spin with positive energy from S; and flip it
— Sit1
@ Repeat until stable state is reached
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Minimization

@ Chose random spin with positive energy from S; and flip it
— Sit

@ Repeat until stable state is reached

@ Base selection on local properties: Flip the spin with the
largest random number
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Weight function

@ We use the number of spins with positive n,(S) and
negative n,(S) energy of a spin configuration S
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Weight function

@ We use the number of spins with positive n,(S) and
negative n,(S) energy of a spin configuration S

@ Probability of a particular sequence given Sp:
f—1
P(So,S1,...,5¢So) = Ho ﬁ
=

Coarse-grain spin glass



Weight function

@ We use the number of spins with positive n,(S) and
negative n,(S) energy of a spin configuration S

@ Probability of a particular sequence given Sp:
f—1
P(So,S1,...,5¢So) = Ho ﬁ
=

@ Probability of a particular sequence given Sy:
f

P(So,S1,...,5¢S¢) = 1_[1 nn(18/)
j=
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Weight function

@ We use the number of spins with positive n,(S) and
negative n,(S) energy of a spin configuration S
@ Probability of a particular sequence given Sp:

f—1
P(So,S1,...,S¢|So) = Hoﬁ
=

@ Probability of a particular sequence given Sy:
f
P(S0.S1,--..81IS1) = I sy

: P(S.S1...-.8/S
@ Bayes: P(S¢) = W’D(So)
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Weight function

@ We use the number of spins with positive n,(S) and
negative n,(S) energy of a spin configuration S
@ Probability of a particular sequence given Sp:

f—1
P(So,S1,...,S¢|So) = Hoﬁ
=

@ Probability of a particular sequence given Sy:
f
P(S0.S1,--..81IS1) = I sy

: P(S.S1...-.8/S
@ Bayes: P(S¢) = W’D(So)

P(So,S1,....5¢|S
o W(So, {¢}) = HSaSr--S1S)

.....
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Distribution, single sample L = 4
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Distribution of meta stable states
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Overlap distributions single sample L=10
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Overlap distributions single sample L = 10
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Overlap distributions single sample L = 10
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Overlap distributions L = 10
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Overlap distribution T=0.42
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Correlation length
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Concluding remarks

@ The distribution of local minima can be determined with
great accuracy.
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Concluding remarks

@ The distribution of local minima can be determined with
great accuracy.

@ The algorithm is more effective than standard single
spin-flip dynamics.

@ Overlap-distributions differ for single samples, but are
similar on average.
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Concluding remarks

@ The distribution of local minima can be determined with
great accuracy.

@ The algorithm is more effective than standard single
spin-flip dynamics.

@ Overlap-distributions differ for single samples, but are
similar on average.

Thanks for your attention
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