Linear Programming and Cutting Planes for Ground States and Excited States of the Traveling Salesperson Problem

Hendrik Schawe Jitesh Jha Alexander K. Hartmann

November 30, 2017

Traveling Salesperson Problem

Linear Programming
 Integer Programming and Cutting Planes

Easy-Hard Transition

Exploring the Energy Landscape

Traveling Salesperson Problem

Given a set of cities V and their pairwise distances $c_{i j}$, what is the shortest tour visiting all cities and returning to the start?

from Dantzig, Fulkerson, Johnson, Journal of the Operations Research Society of
America, 1954, 42 cities

Traveling Salesperson Problem

Given a set of cities V and their pairwise distances $c_{i j}$, what is the shortest tour visiting all cities and returning to the start?

from Applegate, Bixby, Chvátal, Cook, 2001, 15112 cities

Traveling Salesperson Problem

Given a set of cities V and their pairwise distances $c_{i j}$, what is the shortest tour visiting all cities and returning to the start?

from Bosh, Herman, 2004, 100000 cities (not optimal, tour from 2009)

Linear Programming

$$
\begin{aligned}
\text { maximize } & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & \mathbf{A x} \leq \mathbf{b}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{c} & =\binom{1}{1} \\
\mathbf{A} & =\left(\begin{array}{ll}
\frac{4}{9} & 1 \\
1 & \frac{1}{5}
\end{array}\right) \\
\mathbf{b} & =\binom{5}{2.5}
\end{aligned}
$$

Linear Programming

$$
\begin{aligned}
\operatorname{maximize} & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & \mathbf{A x} \leq \mathbf{b}
\end{aligned}
$$

- polynomial time
- can be used for combinatorial (integer) problems
- works outside the space of feasible solutions
- is not always a valid solution
- result valid \Rightarrow result optimal
- yields at least a lower bound

TSP as LP

let $x_{i j}$ be the edge between cities i and j
$x_{i j}=1$ if i and j are consecutive in the tour else 0
$c_{i j}=\operatorname{dist}(i, j)$ is the distance between city i and j

$$
\operatorname{minimize} \sum_{i} \sum_{j<i} c_{i j} x_{i j}
$$

for example

$$
x_{i j}=\left(\begin{array}{ccccc}
\cdot & 1 & 0 & 0 & 1 \\
1 & \cdot & 0 & 1 & 0 \\
0 & 0 & \cdot & 1 & 1 \\
0 & 1 & 1 & \cdot & 0 \\
1 & 0 & 1 & 0 & \cdot
\end{array}\right)
$$

is the cyclic tour $(1,2,4,3,5)$

Constraints

$$
H
$$

Constraints

$$
\sum_{j} x_{i j}=2 \quad \forall i \in V
$$

- every city needs 2 ways

Constraints

$$
\sum_{j} x_{i j}=2 \quad \forall i \in V
$$

- every city needs 2 ways

Constraints

$$
\sum_{j} x_{i j}=2 \quad \forall i \in V
$$

- every city needs 2 ways

$$
\sum_{i \in S, j \notin S} x_{i j} \geq 2 \quad \forall S \subset V
$$

- kills subtours/loops
- kills some fractional solutions
- global min-cut to find

Constraints

minimize

$$
\sum_{i} \sum_{j<i} c_{i j} x_{i j}
$$

subject to

$$
\begin{array}{rlrl}
x_{i j} & \in\{0,1\} & & \\
\sum_{j} x_{i j} & =2 & i=1,2, \ldots, N \\
\sum_{i \in S, j \notin S} x_{i j} & \geq 2 & \forall S \subset V, S \neq \varnothing, S \neq V
\end{array}
$$

$\boldsymbol{\nabla} x_{i j}$ are restricted to integer

- relax/ignore this and cope with it later

च $\forall S \subset V$ are exponentially many

- add only violated

Dantzig, Fulkerson, Johnson, J. Oper. Res. Soc. Am., 2 (1954) 393

Generating a solution from a LP relaxation

- more sophisticated cutting planes
- Blossom inequalities
- Comb inequalities
- ...
- Branch-and-Bound or Branch-and-Cut
- Combine with heuristics to lower the bound

[^0]
Fuzzy Circle Ensemble (FCE)

Ensemble of disordered circles driven by the parameter σ

1. N cities on a circle with $R=N / 2 \pi$

Fuzzy Circle Ensemble (FCE)

Ensemble of disordered circles driven by the parameter σ

1. N cities on a circle with $R=N / 2 \pi$
2. displace cities
randomly

Fuzzy Circle Ensemble (FCE)

Ensemble of disordered circles driven by the parameter σ

1. N cities on a circle with $R=N / 2 \pi$
2. displace cities randomly

$$
r \in U[0, \sigma], \phi \in U[0,2 \pi)
$$

3. optimize the tour

Is there a phase transition easy circle \rightarrow hard realization?

FCE Examples, $N=1024, R=1024 / 2 \pi \approx 160$

$$
\sigma=0
$$

FCE Examples, $N=1024, R=1024 / 2 \pi \approx 160$

$$
\sigma=10
$$

FCE Examples, $N=1024, R=1024 / 2 \pi \approx 160$

$$
\sigma=20
$$

FCE Examples, $N=1024, R=1024 / 2 \pi \approx 160$

$$
\sigma=40
$$

FCE Examples, $N=1024, R=1024 / 2 \pi \approx 160$

$$
\sigma=80
$$

FCE Examples, $N=1024, R=1024 / 2 \pi \approx 160$

Solution probability p

Probability p that the SEC-relaxation is integer

Schawe, Hartmann, EPL 113 (2016) 30004

Structural Properties

Observable is surely method dependent search for "physical" properties of the optimal tours

- solve them by branch-and-cut
- do structural properties change at the transition points?

Tortuosity

$$
\tau=\frac{n-1}{L} \sum_{i=1}^{n}\left(\frac{L_{i}}{S_{i}}-1\right)
$$

Tortuosity

Schawe, Hartmann, EPL 113 (2016) 30004

Exploring the Energy Landscape (Work in Progress)

Complex Energy Landscape

change a fraction of an infinite system with finite energy
more precise
if relative difference of T^{*} and T^{o} in energy goes as $O\left(\frac{1}{N}\right)$ and their difference goes as $O(N) \Rightarrow$ sign of broken replica symmetry

Spinglass	TSP
Energy	Tour Length
Ground State	Optimal Tour
Link Overlap	Fraction of common Edges

[^1]
Exotic Constraints

Optimal tour $\left(T^{o}\right)$

Exotic Constraints

Most different tour from optimum within some ϵ of length

$$
\begin{gathered}
\operatorname{minimize} \sum_{\{i, j\} \in T^{o}} x_{i j} \\
\sum_{i} \sum_{j<i} c_{i j} x_{i j} \leq L^{o}+\epsilon
\end{gathered}
$$

Exotic Constraints

Add a penalty to the optimal edges

$$
\operatorname{minimize} \sum_{i} \sum_{j<i} c_{i j} x_{i j}+\frac{\epsilon}{N} \sum_{\{i, j\} \in T^{o}} x_{i j}
$$

Preliminary Results

The Euclidean TSP energy landscape seems trivial

 everything we tested decays with increasing system size Hints that conjectured replica symmetry holds before tested for uncorrelated distances

Thank you for listening

SELUNG ON EBAY: O(1)

STIL WORKING ON YOUR ROUTE?

What's the complexity class of the best linear programming cutting-plane techniques? I couldn't find it anywhere. Man, the Garfield guy doesn't have these problems ...

CC BY-NC Randall Munroe http://xkcd.com/399/

NP $\{$,-complete,-hard $\}$

- P
- decision problem
- solvable in polynomial-time
- e.g. "Is x prime?"
- NP
- decision problem
- verifiable in polynomial-time
- e.g. "Is x composite?"
- NP-hard
- any problem in NP can be reduced to one in NP-hard
- e.g. TSP, Spinglass Groundstates
- NP-complete
- is the intersection of NP and NP-hard

- e.g. SAT, Vertex Cover, TSP-decision

Tortuosity

$$
\tau=\frac{n-1}{L} \sum_{i=1}^{n}\left(\frac{L_{i}}{S_{i}}-1\right)
$$

Tortuosity

$$
\tau=\frac{n-1}{L} \sum_{i=1}^{n}\left(\frac{L_{i}}{S_{i}}-1\right)
$$

Tortuosity

$$
\tau=\frac{n-1}{L} \sum_{i=1}^{n}\left(\frac{L_{i}}{S_{i}}-1\right)
$$

Tortuosity

Schawe, Hartmann, EPL 113 (2016) 30004

Stör-Wagner Global Minimum Cut ${ }^{7}$

- $\mathcal{O}\left(|V||E|+|V|^{2} \log |V|\right)$

1. find an arbitrary s - t-min-cut
2. merge s and t
3. repeat until one vertex is left
4. smallest encountered s - t-min-cut is global min-cut
[^2]
Blossom Inequalities

$$
\sum_{m=0}^{k} \sum_{i \in S_{m}, j \notin S_{m}} x_{i j} \geq 3 k+1
$$

$$
\begin{aligned}
k \text { odd } & \\
S_{i} \cap S_{j}=\varnothing & \forall i, j \in\{1, \ldots, k\} \\
S_{0} \cap S_{i} \neq \varnothing & \forall i \in\{1, \ldots, k\} \\
S_{i} \backslash S_{0} \neq \varnothing & \forall i \in\{1, \ldots, k\} \\
\left|S_{i}\right|=2 & \forall i \in\{1, \ldots, k\}
\end{aligned}
$$

Blossom Inequalities

$$
\sum_{m=0}^{k} \sum_{i \in S_{m}, j \notin S_{m}} x_{i j} \geq 3 k+1
$$

Blossom Inequalities

$$
\sum_{m=0}^{k} \sum_{i \in S_{m}, j \notin S_{m}} x_{i j} \geq 3 k+1
$$

First Excitation: The Second Shortest Tour

Uniformly distributed cities in high dimensions $2 \leq D \leq 312$.

Runtime Measurements

Universality

Same analysis with other ensembles (Gaussian displacement, displacement in three dimensions, some blossom inequalities)

	σ_{c}	b
Degree relaxation	$\sigma_{c}^{\mathrm{lp}}=0.51(4)$	$b^{\mathrm{lp}}=0.29(6)$
SEC relaxation	$\sigma_{c}^{\mathrm{cp}}=1.07(5)$	$b^{\mathrm{cp}}=0.43(3)$
	$\sigma_{c}^{\tau}=1.06(23)$	-
	$\sigma_{c}^{\mathrm{cp}, \mathrm{g}}$	$=0.47(3)$
	$\sigma_{c}^{\tau \mathrm{g}}=0.44(8)$	$b^{\mathrm{cp}, \mathrm{g}}=0.45(5)$
	$\sigma_{c}^{\mathrm{cp}, 3}=1.18(8)$	$b^{\mathrm{cp}, 3}=0.40(4)$
fast Blossom rel.	$\sigma_{c}^{\mathrm{fb}}=1.47(8)$	$b^{\mathrm{fb}}=0.40(3)$

[^0]: e.g. implemented in Concorde (Applegate, Bixby, Chvátal, Cook)

[^1]: Mézard and Parisi, J. Physique, 47 (1986) 1285-1296

[^2]: ${ }^{7}$ M. Stör and F. Wagner, JACM, 1997

