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Abstract

We take into consideration the 3D Edwards-Anderson model with bimodal bond distribution. Since the model is characterized by spin-glass behavior, finding ground states is an NP-hard
problem. Employing different simulation techniques the round trip time distribution is investigated and the performance of the different methods is compared. The methods taken into
consideration are the most established broad energy ensemble methods including the parallel tempering method and, in addition, a specially designed non-flat histogram technique which is
shown to outperform the currently existing methods.

Introduction

bimodal Edwards-Anderson-model:

H = −
∑
〈ij〉

JijSiSj, Jij ∈ {1,−1}

sum over all next neighbors in simple cubic lattice

spin glass model
properties:

frustration
disorder
finding ground states is NP-hard [1]

optimization problem

formulation of many optimization problems in Ising-type Hamiltonians available [2]

The flat MUCA method

aims at producing flat histograms in energy

generalized metropolis criterion employing inverse density of states

Pacc = min

(
1,
W (Enew)

W (Eold)

)
, W (E ) ∝ Ω−1(E )

estimator for density of states Ω(E ) determined iteratively before actual simulation

Parallel Tempering

run several replicas at fixed temperatures {βi}
allow for exchange of replicas between temperatures with probability

PEX = min
(

1, e∆β∆E
)
,

constant acceptance rates protocol employed with next neighbor exchanges [3]

The non-flat MUCA method

histogram shaped to PSH with weights

W (E ) ∝ Ω−1(E )PSH(E ).

PT concentrates effort towards low energy
region

idea: imitate PT by power law shaped
histograms

PSH(E ,E0, α) ∝ (E − E0)α

expressing relatively to the ground state

PSH(E ,∆E , α) ∝ (E − (Eg −∆E ))α
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best size-independent parameter set found: {∆E = 96, α = −3.6}
error in estimator for Ω(E )

∆Ω(E ) ∝ 1/
√

Nround trips

→ faster estimation of Ω(E ) with non-flat histograms

also applicable to Wang-Landau method

Scattering Plots

comparison of round trip times τ for fixed disorder realization and different methods
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power law MUCA performs better for hard disorder realization with performance loss for the
easy disorder realizations

Benchmarks and Extreme Value Statistics

visiting ground state represents extreme event

⇒ extreme value statistics are needed

all round trip times distributions of Fréchet type

Fréchet cumulative distribution function

CDF(τ ) = exp

(
−
(

1 + ξ
τ − µ
β

)−1/ξ
)

ξ shape, β scale, µ position

Mean

{
µ + β/ξ (Γ (1− ξ)− 1) for ξ < 1

∞ otherwise

Quantile Function

Q(p) = µ +
β

ξ
·
[

(− log(p))−ξ
]
, p ∈ (0, 1)

→ distribution mean not always defined

→ consider integral up to the (1− ε) - quantile:

Fréchet distribution for different parameter sets
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Fréchet distributions for L = 4
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τ ε =

Q(1−ε)∫
β/ξ−µ

τ

β

(
1 + ξ

τ − µ
β

)−1/ξ−1

exp

[
−
(

1 + ξ
τ − µ
β

)−1/ξ
]
dτ.

takes account for the properties of the distribution

allows for an extrapolation to higher round trip times

Finite-Size Scaling of the Shape Parameter

shape parameter as indicator of
performance for hard disorder realization

similar scaling for all different methods

non-flat MUCA systematically smallest ξ

distribution means for all methods
undefined for L = 8
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compared to flat MUCA improvement growing with lattice size

more then ten times smaller mean round trip time for L = 8

compared to parallel tempering up to roughly 3 times lower mean round trip time
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Conclusion

The non-flat histogram method has proven to yield lower mean round trip times for the 3D bimodal Edwards-Anderson spin glass for all considered lattice sizes. We were able to find one
universal histogram shape yielding an overall better performance than the existing methods. The shape is particularly well-suited for the hard instances of the problem, which due to the nature
of the underlying distribution and the scaling of its shape parameter are likely to play an increasing role with growing lattice size. The gain in performance is therefor expected to increase
when even larger system sizes are taken into consideration. The general idea of sampling non-flat histograms can easily be generalized to the Wang-Landau algorithm and may also be
successfully applied to other models which are characterized by rugged free energy landscapes.
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